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Dpto. de Matemática Aplicada
Univ. de Murcia, Spain

gemadiaz@um.es

Laureano Gonzalez–Vega∗

Dpto. de Matemáticas
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Abstract

Following Mulmuley’s Lemma, this paper presents a generalization of the Moore–Penrose Inverse
for a matrix over an arbitrary field. This generalization yields a way to uniformly solve linear
systems of equations which depend on some parameters.

Introduction

Given a system of linear equations over an arbitrary field K with coefficient matrix A ∈ Km×n, A x = v,
the existence of solution depends only on the ranks of the matrices A and A|v. These ranks can be
easily obtained by using Gaussian elimination, but this method is not uniform. When the entries of
A and v depend on parameters, the resolution of the considered linear system may involve discussions
on too many cases (see, for example, [18]).

Solving parametric linear systems of equations is an interesting computational issue encountered,
for example, when computing the characteristic solutions for differential equations (see [5]), when
dealing with coloured Petri nets (see [13]) or in linear prediction problems and in different applications
of operation research and engineering (see, for example, [6], [8], [12], [15] or [19] where the elements of
the matrix have a linear affine dependence on a set of parameters). More general situations where the
elements are polynomials in a given set of parameters are encountered in computer algebra problems
(see [1] and [18]).

In this paper we give a generalization of Mulmuley’s Algorithm (see [16]). If A ∈ Km×n, we
introduce the following matrix A◦ ∈ K(t)n×m

A◦ =


1 0 . . . 0
0 t−1 . . . 0
...

...
...

0 0 . . . t−(n−1)

 At


1 0 . . . 0
0 t . . . 0
...

...
...

0 0 . . . tm−1

 ,

∗Partially supported by the European Union funded project RAAG (HPRN–CT–2001–00271) and by the spanish
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where t is a new variable. Next we define the Generalized Gram’s Polynomials of A as the coefficients
of the characteristic polynomial of A A◦, which are Laurent polynomials in the variable t. From the
Generalized Gram’s Polynomials it is possible in a very uniform and compact way:

1. to characterize the rank of A and,

2. once the rank of A is fixed, to determine:

(a) matrices associated with precise projections of K(t)m onto Im A and of K(t)n onto Ker A
respectively,

(b) the equations of Im(A),
(c) a Generalized Moore–Penrose Inverse of A, and
(d) given v ∈ Im(A), a solution of A x = v generalizing the classical Cramer’s Rule to the

underdetermined and overdetermined cases via our Generalized Moore–Penrose Inverse.

This provides a generalization of the classical Moore-Penrose Inverse and Gram’s Coefficients in the
real or complex cases. The surprising fact is that for non real fields (e.g., fields of characteristic p) the
rank of any matrix and a uniform generalized inverse of the matrix can be also controlled by a small
number of sums of squares of minors.

In fact our Generalized Gram’s Polynomials are only slight variants of the polynomials that appear
in Mulmuley’s Algorithm.

A consequence of this method is, as in [16], that the characterization of a full rank matrix in Km×n

(for any field K) can be done by using less than min(n, m)|n − m| + 1 polynomials in the entries
of A: each one of these polynomials is a sum of squares of maximal minors of A. If n = 2m then
min(n, m)|n−m|+1 = m2 +1, which is clearly far from the consideration of the

(
n
m

)
maximal minors

of A.
In general, the total number of sums of squares of minors to be used for characterizing the rank is

smaller than 1
2p(p + 1)p′, where p = min(m,n) and p′ = max(m,n), so it is bounded by O(p′ p2); note

that the total number of minors is clearly bigger than 2p (p′

p )
p
2 .

Compared to Mulmuley’s Method, an important (and new) characteristic of the proposed method
is the generalization of Moore–Penrose Inverses for each possible rank r. This allows us to obtain a
uniform solving of linear systems of equations once the rank is known. Moreover, this is particularly
useful when linear systems of equations depend on some parameters (avoiding thus any discussion on
the vanishing or not of the pivots to be used; see the last section for enlightening examples).

Our method requires a complexity similar to the one given in [11], where the parameterized Gauss
elimination is analyzed, and it is proved that with k parameters, the complexity of parametric solving
of A x = v is in nO(k).

The paper is organized as follows. The first section recalls the classical theory about generalized
inverses matrices. In the second section, we introduce a generalization of both Gram Coefficients
and of Moore–Penrose Inverse matrix for an arbitrary field. Finally, the third section presents three
different examples, where we apply the different results described in the second section.

1 Gram Coefficients and Moore-Penrose Inverse in real or complex
case

This section is devoted to introducing some important theoretical points of Gram Coefficients and
Moore–Penrose Inverse in the real or complex cases.

In [2, 3, 10, 14, 17], one can find different approaches to studying generalized inverses. In [7], one
can find precise proofs of the results appearing in this section.
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1.1 General theory

Let K be either the real or the complex field, E = Kn, F = Km and let L(E,F ) denote the set of all
linear transformations of E into F . If H is a linear subspace of E, we denote by πH : E → E the
orthogonal projection on H.

Let ϕ ∈ L(E,F ) and let A ∈ Km×n be a matrix representation of ϕ with respect to orthonormal
bases. If 〈x, y〉 denotes the inner product of x and y, the conjugate transpose A? of A represents the
adjoint transformation ϕ? such that:

∀x ∈ E ∀y ∈ F 〈ϕ(x), y〉F = 〈x, ϕ?(y)〉E (1)

The results recalled here are based on the following lemma.

Lemma 1.1 If A ∈ Km×n then:

Im A⊕Ker A? = F, Ker A⊕ Im A? = E . (2)

The matrices AA? and A?A are positive semi-definite matrices and in general they may be singular.

Definition 1.2 The Gram’s Coefficients of A are defined to be the coefficients Gk(A) = ak of the
polynomial:

det(Im + z AA?) = 1 + a1 z + · · · + am zm, (3)

where z is a variable. We also define G0(A) = 1 and G`(A) = 0 if ` > m.

If Q(z) = det(Im + z AA?) then det(zIm − A A?) = (−1)mzmQ(1/z). Hence the Gram’s Coefficients
of A are, except signs, the coefficients of the characteristic polynomial of AA?.

Lemma 1.3 (Gram’s Conditions for rank)

1. rk(A) ≤ r ⇐⇒ Gr+1(A) = 0 ⇐⇒
∧

k>r

Gk(A) = 0.

2. rk(A) = r ⇐⇒ Gr+1(A) = 0 6= Gr(A).

In the sequel we assume r = rk(A). So det(Im + z AA?)= det(In + z A? A) = 1 + a1 z +. . .+ ar zr .
The use of Cayley–Hamilton Theorem yields the following lemma.

Lemma 1.4 (orthogonal projections onto the image and onto the kernel)

1. The orthogonal projection πI onto the subspace I = Im A ⊆ F is equal to:

πI = a−1
r

(
ar−1A A? − ar−2(A A?)2 + · · ·+ (−1)r−1(A A?)r

)
. (4)

2. The orthogonal projection πI? onto the subspace I? = Im A? ⊆ E is equal to:

πI? = a−1
r

(
ar−1A

?A− ar−2(A?A)2 + · · ·+ (−1)r−1(A?A)r
)
. (5)

And the orthogonal projection onto the kernel of A is In − πI?.

Let ϕ0 be the linear isomorphism from Im A? to Im A, defined by the restriction of ϕ.
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Definition 1.5 Suppose rk(A) = r. The Moore–Penrose Inverse of A in rank r is the linear trans-
formation ϕ†r : F → E defined by:

∀y ∈ F, ϕ†r(y) = ϕ−1
0 (πIm A(y)).

Let A†r be the matrix associated with ϕ†r .

Proposition 1.6 (The Moore–Penrose Inverse) Assume rk(A) = r. Let v ∈ F . Then:

1. A†r ∈ Kn×m is given by:

A†r = a−1
r

(
ar−1In − ar−2(A? A) + · · ·+ (−1)r−1(A? A)r−1

)
A?

= a−1
r A?

(
ar−1Im − ar−2(A A?) + · · ·+ (−1)r−1(A A?)r−1

) (6)

Moreover, A = A A†r A, A†r = A†r A A†r , πI = A A†r and πI? = A†r A.

2. The linear system A x = v has a solution if and only if Gr+1(A|v) = 0.

3. If v ∈ Im A, then:
v = A A†r v (7)

and x = A†r v is one solution of the linear system A x = v. Moreover, it is the only solution in
the linear space generated by the columns of A?, that is, its norm is minimal.

Note that Equation (6) can be viewed as a definition of the matrix A†r ∈ Kn×m, only requiring
rk(A) ≥ r, that is ar 6= 0. This fact is useful in numerical analysis when the coefficients of A are real
numbers known with finite precision that implies some doubts about the rank of the matrix.

1.2 Cramer Identities

In this subsection, we give a description of the Moore–Penrose Inverse as a weighted sum of Cramer
Identities.

Lemma 1.7 The Gram’s Coefficient Gk(A) is equal to the sum of squares of modulus of k–minors of
the matrix A.

Observe that this lemma provides another way to understand Lemma 1.3. In the following, we
only consider the real case. Obvious modifications have to be made in the complex case. Suppose
rk(A) = r and v ∈ Im A.

Notation 1.8 • Aj denotes the j–th column of A.

• Aα,β denotes the submatrix of A where the rows and columns retained are given by subscripts
α = {α1, . . . , αr} ⊂ {1, . . . ,m} and β = {β1, . . . , βr} ⊂ {1, . . . , n} respectively.

• A1: m,β denotes the submatrix of A retaining the columns given by β. Aα,1: n denotes the sub-
matrix of A retaining the rows given by α.

• µα,β denotes the r–minor, determinant of Aα,β.

• Given j ∈ {1, . . . , r}, let σα,β,j denote the determinant of Aα,β but replacing the j–th column
with the column obtained from v retaining the rows α.
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• Let Adjα,β(A) = (In)1: n,β Adj(Aα,β) (Im)α,1: m .

Then for every subscript pair (α, β), since rk(A|v) = r, we obtain a Cramer’s Identity:

µα,β v =
r∑

j=1

σα,β,j Aβj
=
(

Aβ1 . . . Aβr

)  σα,β,1
...

σα,β,r

 =

=
(

Aβ1 . . . Aβr

)
Adj(Aα,β)

 vα1

...
vαr

 =

= A (In)1: n,β Adj(Aα,β) (Im)α,1: m v = A Adjα,β(A) v,

that is
µα,β v = A Adjα,β(A) v. (8)

Since Gr(A) =
∑

α,β µ2
α,β 6= 0, where the summation extends over all

(
n
r

)(
m
r

)
distinct sets of rows

and columns indices, by multiplying every equality (8) by µα,β and by adding up all these equalities,
we obtain the following expression:

Gr(A) v = A
(∑

α,β
µα,β Adjα,β(A)

)
v, (9)

which is highly similar to Equation (7) in Proposition 1.6. Indeed Equation 2.13 in [17] applied to our
case yields:

A†r = Gr(A)−1
∑

β,α
µα,β Adjα,β(A). (10)

interpreted as a weighted sum of Cramer Identities.

2 Generalization for an arbitrary field

This section is devoted to presenting a generalization of Gram Coefficients and Moore–Penrose Inverse
matrix for an arbitrary field K. Our work can be seen as an extension of the result of Mulmuley:

Lemma 2.1 (Mulmuley’s Algorithm) Let P ∈ Kn×n be a symmetric matrix, t a variable and
Qn = diag(1, t, t2, . . . , tn−1). If P̃ = P Qn and ck(t) is the coefficient of zn−k in the characteristic
polynomial of P̃ , then the rank of the matrix P is smaller or equal to r if and only if ck(t) = 0 for
k > r.

The classical results introduced in Section 1.1 are based on orthogonal sums of images and kernels
of A ∈ Km×n and A? ∈ Kn×m (Equation 2).

So, if we consider vector spaces over an arbitrary field K, all the results would similarly work if
we were able to define a good inner product and some suitable ϕ◦ : F → E satisfying (2) and if we
replace the expression orthogonal projection onto Im ϕ by projection onto Im ϕ parallel to Ker(ϕ◦).

2.1 General theory

With the purpose of generalizing Equation (2) for an arbitrary field K, we have to introduce a param-
eter t and to work over the field K(t). Next we define the quadratic form Φt,n on E′ = K(t)n with
values in K(t) as

Φt,n(ξ1, . . . , ξn) = ξ1
2 + t ξ2

2 + · · ·+ tn−1 ξn
2 ,
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and the quadratic form Φt,m on F ′ = K(t)m with values in K(t) as

Φt,m(ζ1, . . . , ζm) = ζ1
2 + t ζ2

2 + · · ·+ tm−1 ζm
2 .

The “associated inner products” with Φt,n and Φt,m, denoted by 〈·, ·〉E′ and 〈·, ·〉F ′ respectively, lead
us to the wanted linear transformation ϕ◦ in a natural way.

Given a K–linear transformation ϕ ∈ L(E,F ), we get by extension of scalars a K(t)–linear trans-
formation ϕ′ in L(E′, F ′). The matrix A of ϕ is the same as the matrix of ϕ′.

Thus, there exists only one linear transformation, A◦ : F ′ → E′, which verifies:

∀x ∈ E′, ∀y ∈ F ′, 〈A x, y〉F ′ = 〈x,A◦ y〉E′ (11)

which is very similar to Equation (1).
If Qn = diag(1, t, t2, . . . , tn−1) and Qm = diag(1, t, t2, . . . , tm−1) are the diagonal matrices asso-

ciated with 〈·, ·〉E′ and 〈·, ·〉F ′ respectively, A◦ is given by

A◦ = Q−1
n At Qm.

Hence, for all x ∈ K(t)n×1, y ∈ K(t)m×1, we have (A x)t Qm y = xt Qn (A◦ y).
In practice, if A = (ai,j), then A◦ = (tj−i aj,i); for instance:

A =

 a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

 , A◦ =


a11 t a21 t2 a31

t−1 a12 a22 t a32

t−2 a13 t−1 a23 a33

t−3 a14 t−2 a24 t−1 a34

t−4a15 t−3a25 t−2a35


Furthermore (A◦)◦ = A and (A B)◦ = B◦ A◦. Next we state and prove the following key lemma.

Lemma 2.2 With the previous notation:

Im A⊕Ker A◦ = F ′ , Ker A⊕ Im A◦ = E′. (12)

Thus,
Im A = Im A A◦ , Ker A◦ = Ker A A◦ ,

Ker A = Ker A◦A , Im A◦ = Im A◦A .
(13)

Proof 2.3 Clearly A and A◦ have same rank, so we only need to prove

Im A ∩Ker A◦ = {0} and Im A◦ ∩Ker A = {0}.

Equation (11) implies that:

• the orthogonal subspace of Im A (w.r.t. the bilinear form 〈·, ·〉F ′) is equal to Ker A◦, and

• the orthogonal subspace of Im A◦ (w.r.t. the bilinear form 〈·, ·〉E′) is equal to Ker A but, since
〈·, ·〉E′ is a non–degenerate bilinear form, the orthogonal subspace of Ker A (w.r.t. the bilinear
form 〈·, ·〉E′) is equal to Im A◦.

Moreover Im A and Ker A are defined over K inside F and E. So, it is enough to prove the following
statement:

Given a K–subspace H1 of F (resp. of E), if H is the K(t)–subspace of F ′ (resp. of E′)
generated by H1 then H ∩H⊥ = {0}.
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Suppose that (p1(t), . . . , pm(t)) ∈ H ∩ H⊥ and (p1(t), . . . , pm(t)) ∈ K[t]m. Let v1, . . . , vs ∈ Km be a
basis in H1 and a1(t), . . . , as(t) ∈ K(t) such that

(p1(t), . . . , pm(t)) =
∑

i

ai(t) vi.

Let u be a new unknown and let us work in K[t, u]. Since
∑

i ai(t) vi ∈ H⊥, it follows:

P (t, u) =
〈∑

i
ai(t) vi,

∑
i
ai(u) vi

〉
F ′

=
∑m

i=1
pi(t) pi(u) ti−1 = 0.

Now we deduce from the last equality that pi(t) = 0 for every i. We present a proof by induction on
the highest degree of pi’s.

If ∀i, deg(pi(t)) = 0 then the statement is easily verified. In the general case, we first see that
the independent coefficient of the pi’s are zero. The equality P (0, 0) = p1(0)2 implies that p1(0) = 0.
And if p1(0) = · · · = pk(0) = 0 then the coefficient of tk in P (t, u) is equal to pk+1(0)2 and therefore
pk+1(0) = 0. We conclude that all the independent coefficients are zero and every pi(t) is divisible by
t. So the result follows by induction.

Note that this proof is based on the one for Mulmuley’s Lemma in [16].
Lemma 2.2 is the analog of Lemma 1.1. This allows us to generalize Definitions 1.2 and 1.5,

Lemmas 1.3 and 1.4 and Proposition 1.6 in the following way.
A A◦ are in the Laurent polynomial ring K[t, 1/t].

Definition 2.4 The Generalized Gram’s Polynomials, G′k(A)(t) = ak(t) ∈ K[t, 1/t], and the General-
ized Gram’s Coefficients, G′k,`(A) = ak,` ∈ K, are given by the following expression:

det(Im + z AA◦) = 1 + a1(t) z + · · · + am(t) zm

ak(t) = t−k(n−k)

(
k(m+n−2k)∑̀

=0

ak,` t`

)
.

(14)

Observe that if the matrix A is real, usual Gram’s Coefficients are given by:

Gk(A) = G′k(A)(1) =
∑

`
ak,`. (15)

If p = min(m, n) and p′ = max(m,n), then the total number of Generalized Gram’s Coefficients is
equal to:

p∑
k=1

(k (m + n− 2k) + 1) = p +
1
6

p (p + 1) (3p′ − p− 2) ≤ 1
2
p(p + 1)p′ .

Generalized Gram’s Coefficients provide the rank of the given matrix, generalizing Lemma 1.3.

Lemma 2.5 (Generalized Gram’s Conditions for the rank)

1. rk(A) ≤ r ⇐⇒
∧

k>r

G′k(A)(t) = 0.

2. rk(A) = r ⇐⇒
∧

k>r

G′k(A)(t) = 0 ∧ G′r(A)(t) 6= 0.

This can be seen as a reformulation of the key result in [16]. Similarly, we can generalize Lemma 1.4.
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Lemma 2.6 (orthogonal projections onto the image and onto the kernel)
Let ak(t) = G′k(A). If rk(A) = r then:

1. The projection onto the subspace Im A ⊆ F ′ parallel to Ker A◦ is the orthogonal projection with
respect to 〈 , 〉F ′ and is given by:

πIm A = a−1
r

(
ar−1AA◦ − ar−2(AA◦)2 + · · ·+ (−1)r−1(AA◦)r

)
. (16)

2. The projection onto the subspace Im A◦ ⊆ E′ parallel to Ker A is the orthogonal projection with
respect to 〈 , 〉E′ and is given by:

πIm A◦ = a−1
r

(
ar−1A

◦A− ar−2(A◦A)2 + · · ·+ (−1)r−1(A◦A)r
)

(17)

and the projection onto Ker A parallel to Im A◦ is In − πIm A◦.

Remark 2.7 Actually the unknown t can be replaced in every formula with any value τ ∈ K which does
not cause the denominator ar(t) to vanish (always possible if the field K has more than r(m+n−2r)+1
elements).

Let ϕ0 be the linear isomorphism from Im A◦ ⊂ E′ to Im A ⊂ F ′, which is the restriction of ϕ′.
Next we introduce the generalization of the Moore–Penrose Inverse.

Definition 2.8 Suppose rk(A) = r. The Generalized Moore–Penrose Inverse of A in rank r is the
linear transformation ϕ†r,t : F ′ → E′ defined by:

∀y ∈ F ′, ϕ†r,t(y) = ϕ−1
0 (πIm A(y)).

Let A†r,t be the matrix associated with ϕ†r,t.

Next result shows how to obtain the Generalized Moore–Penrose Inverse of A for an arbitrary field
and it is the most important result presented in the paper.

Theorem 2.9 (Generalized Moore–Penrose Inverse)
Let ak(t) = G′k(A), v ∈ F and rk(A) = r. Then

1. The Generalized Moore–Penrose Inverse of A ∈ Km×n in rank r is given by:

A†r,t = a−1
r

(
ar−1In − ar−2A

◦A + · · ·+ (−1)r−1(A◦A)r−1
)

A◦ (18)

Moreover, A A†r,t A = A, A†r,t A A†r,t = A†r,t, A A†r,t = πIm A and A†r,t A = πIm A◦.

2. The linear system Ax = v has a solution if and only if G′r+1(A|v) = 0.

3. If v ∈ Im A, then:
v = A A†r,t v (19)

and x = A†r,t v is one solution of the linear system A x = v. Moreover, it is the only solution in
the linear space generated by the columns of A◦.

Corollary 2.10

i) If A is injective (i.e., r = n) and v ∈ Im A, the vector A†r,t v is the only solution of the
corresponding linear system. Therefore, it does not depend on t and the coordinates of A†r,t v,
which are, a priori, rational functions on the variable t, are in fact in K: computing the divisions
of the numerators by the denominator returns constants.
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ii) Given A†r,t by Equation (18), if we define

Br = ar(t) A†r,t =
∑

Br,kt
k, Br,k ∈ Kn×m,

then A Br,k A = ar,k A.

Moreover, for every ar,k 6= 0, we can define

Cr,k = 1/ar,k Br,k, Dr,k = Cr,k A Cr,k,

and then it is easily checked that the matrix Dr,k satisfies the equations

A Dr,k A = A, Dr,k A Dr,k = Dr,k.

Thus, we can conclude that Dr,k ∈ Kn×m is a generalized inverse of A and so:

(a) If v ∈ Im(A), then Dr,k v is a solution of A x = v,
(b) A Dr,k is a projection onto Im A, and
(c) I−Dr,k A is a projection onto Ker A.

For more details see [7].

2.2 Generalizing Cramer Identities

Next, we introduce a description of the Generalized Gram’s Coefficients of A as sums of squares of
minors.

Lemma 2.11 Let A ∈ Km×n ⊆ K(t)m×n and µα,β be the k–minor where the rows and columns
retained are given by subscripts α = {α1, . . . , αk} ⊂ {1, . . . ,m} and β = {β1, . . . , βk} ⊂ {1, . . . , n}. If
Sm,n,k,` is defined as:

Sm,n,k,` = {(α, β) | |α| − |β| = `− k(n− k)} ,

then the Generalized Gram’s Coefficient ak,` = G′k,`(A) is given by:

G′k,`(A) =
∑

(α,β)∈Sm,n,k,`

µα,β
2. (20)

By the same reasoning as in the previous section, we obtain Equation (8). Thus, if for every (α, β)
in Sm,n,k,`, we multiply both sides of Equation (8) by µα,β t|α|−|β| and add up all these equalities, we
obtain the following expression:

G′r(A) v = A

∑
α,β

µα,β t|α|−|β| Adjα,β(A)

 v (21)

which is very close to Equation (19) in Proposition 2.9. In fact, by applying Equation 2.13 in [17], we
get:

Proposition 2.12
Let A ∈ Km×n, then:

A†r,t = G′r(A)−1
∑
α,β

µα,β t|α|−|β| Adjα,β(A). (22)

As in the usual case, Equation (22) shows that the Generalized Moore–Penrose Inverse can be
interpreted as a weighted sum of Cramer Identities. Observe that if we evaluate Equation (22) at
t = 1, then we find out the theory of the Moore–Penrose Inverse in the real case.
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2.3 Case of symmetric matrices

If A = At , there is a more simplified expression for its generalized Moore-Penrose Inverse than
Equation (18). So, assume that E = F , rk(A) = r and A = At. Since A is symmetric, A◦ = Q−1

n A Qn.
Let Ã = A Qn. Then,

Im Ã = Im A, Ker Ã = KerA◦,
Im A = Im(Qn A◦), Ker A = Qn(KerA◦)

and Equation (12) can be rewritten as the orthogonal decomposition with respect to 〈·, ·〉E′ :

Im Ã⊕Ker Ã = Im A⊕Ker A◦ = E′.

Let ϕ̃0 denote the linear automorphism of Im A obtained as restriction of Ã. So A, Ã and ϕ0 have the
same rank r, and the direct sum Im Ã⊕Ker Ã = E′ implies the following:

det(In + z Ã) = 1 + b1(t)z + · · ·+ br(t)zr , (23)

with br 6= 0 and br+1 = . . . = bn = 0. As a result, the Mulmuley’s Lemma is derived, as it was
expected, and we have the following simplified versions of the previous results.

Proposition 2.13 (Generalized Moore–Penrose Inverse in the symmetric case)

1. The orthogonal projection πIm A onto the subspace Im A of E′ with respect to 〈 , 〉E′ is equal to:

πIm A = b−1
r

(
br−1 Ã− br−2 Ã2 + · · ·+ (−1)rb1 Ãr−1 + (−1)r+1Ãr

)
.

2. We have A†r,t = Qn Ã †r,t and Ã †r,t is given by:

Ã †r,t = b−1
r

(
br−1 πIm A − br−2 Ã + · · ·+ (−1)rb1 Ãr−2 + (−1)r+1Ãr−1

)
.

In [3], similar formulas for classical Moore–Penrose Inverses of hermitian matrices can be found.

3 The shape of the Generalized Cramer’s Rule: examples

3.1 Cramer’s Rule for underdetermined systems of linear equations

For the underdetermined system of linear equations,(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)  x1

x2

x3

 =
(

b1

b2

)
, (24)

the Generalized Gram’s Polynomials are given by det(I2 + zA A◦):

1 +

(
a2

2,1t +
(
a2

1,1 + a2
2,2

)
+

a2
1,2 + a2

2,3

t
+

a2
1,3

t2

)
z

+


∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2 +

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣2
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣2
t2

 z2.

Thus the matrix A has rank
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• equal to 2 if and only if the polynomial

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2 +

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣2
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣2
t2

(25)

is not zero,

• equal to 1 if and only if the polynomial in (25) vanishes identically and the polynomial

a2
2,1t +

(
a2

1,1 + a2
2,2

)
+

a2
1,2 + a2

2,3

t
+

a2
1,3

t2
(26)

is not zero, and

• equal to 0 if and only if both polynomials (25) and (26) vanish identically.

Assuming rank(A) = 2, the (simplified) solution of the considered system is presented “á la
Cramer” by the following expressions describing a rational curve in K3:

x1(t) =

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣ b1 a1,2

b2 a2,2

∣∣∣∣+
∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣ ∣∣∣∣ b1 a1,3

b2 a2,3

∣∣∣∣
t

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2 +

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣2
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣2
t2

x2(t) =

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣ a1,1 b1

a2,1 b2

∣∣∣∣+
∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ ∣∣∣∣ b1 a1,3

b2 a2,3

∣∣∣∣
t2

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2 +

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣2
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣2
t2

x3(t) =

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣ ∣∣∣∣ a1,1 b1

a2,1 b2

∣∣∣∣
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ ∣∣∣∣ a1,2 b1

a2,2 b2

∣∣∣∣
t2

∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2 +

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣2
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣2
t2

(27)

Algebraically these expressions verify the system in (24) providing thus a rational curve in K3 giving
a solution for (24) for every value of the parameter t (not vanishing the denominator).

Knowing, for example, that ∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ 6= 0,

the usual solution

x2 =

∣∣∣∣ b1 a1,3

b2 a2,3

∣∣∣∣∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ −
∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ x1, x3 =

∣∣∣∣ a1,2 b1

a2,2 b2

∣∣∣∣∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ −
∣∣∣∣ a1,2 a1,1

a2,2 a2,1

∣∣∣∣∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ x1
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is obtained by reparametrizing the obtained rational curve through the simplification of the rational
functions in (27) which provides x2 and x3 in terms of x1 after performing the corresponding polynomial
division with respect to t.

3.2 Cramer’s Rule for overdetermined systems of linear equations

For the overdetermined system of linear equations, a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

 (
x1

x2

)
=

 b1

b2

b3

 , (28)

the Generalized Gram’s Polynomials are given by det(I3 + zA A◦):

1 +

(
a3,1

2t2 +
(
a3,2

2 + a2,1
2
)
t +
(
a2,2

2 + a2
1,1

)
+

a2
1,2

t

)
z

+
( ∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣2 t2 +
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣2 t +
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2)z2.

Under the assumption of rank 2 for the matrix A, the following curve (in K2) of solutions is obtained:

x1(t) =

∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣ ∣∣∣∣ b2 a2,2

b3 a3,2

∣∣∣∣ t2 +
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣ ∣∣∣∣ b1 a1,2

b3 a3,2

∣∣∣∣ t +
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣ b1 a1,2

b3 a2,2

∣∣∣∣∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣2 t2 +
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣2 t +
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2
,

x2(t) =

∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣ ∣∣∣∣ a2,1 b2

a3,1 b3

∣∣∣∣ t2 +
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣ ∣∣∣∣ a1,1 b1

a3,1 b3

∣∣∣∣ t +
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣ a1,1 b1

a2,1 b2

∣∣∣∣∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣2 t2 +
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣2 t +
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2
(29)

In this case, where the existence of solution is not assured, the evaluation of A does not provide
the the vector b. Instead, the conditions for the existence of solution are obtained:

 a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

( x1(t)
x2(t)

)
=

 b1

b2

b3

−

∣∣∣∣∣∣
a1,1 a1,2 b1

a2,1 a2,2 b2

a3,1 a3,2 b3

∣∣∣∣∣∣



∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣ t2∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣ t∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣


∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣2 t2 +
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣2 t +
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2
(30)

The solution curve contains a true solution of the considered system (under the assumption of rank
2) if and only if, as expected, ∣∣∣∣∣∣

a1,1 a1,2 b1

a2,1 a2,2 b2

a3,1 a3,2 b3

∣∣∣∣∣∣ = 0.

12



Under this condition (and assumption of rank 2 for A) the solution curve in (29) reduces to exactly
one point since every rational function defining the solution curve simplifies to a constant: depending
on which maximal minor provides the rank 2 for A, a different constant is obtained for each rational
function after the corresponding simplification.

3.3 Parametric solving of systems of linear equations

If the matrix A depends on some parameters then this method provides a nice way to parameterize
its rank and the solutions of any system of linear equations A x = v by using the coefficients of the
characteristic polynomial A A◦.

Example : We consider a linear system defined over C, where the coefficient matrix A is given by:

4ba + 4a2 + 4b2 + 4 7− 2a2 − 2b3 7a− 2a3 − 2ab3 + 3

4ba2 + 4a3 + 4ab2 + 4a+ 7a− 2a3 − 2ab3 + 5a2+ 7a2 − 2a4 − 2a2b3 − 6a+
+2ba + 2a2 + 2b2 + 2 +5b3 − 9 +5a3 + 5ab3 + 1

8ba + 8a2 + 8b2 + 8 2 + a2 + b3 2a + a3 + ab3 + 4

4ba + 4a2 + 4b2 + 4 3− a2 − b3 3a− a3 − ab3 + 1

−6ba− 6a2 − 6b2 − 6 2− 2a2 − 2b3 2a− 2a3 − 2ab3 − 2


and a, b are parameters taking values in C. Observe that by applying our method, it is not necessary
to consider the conjugates of the parameters appearing in the system.

We first calculate the Generalized Gram’s Polynomials in order to study the different possible
ranks of A according to a and b. The matrix A◦ is given by:

A◦ = Q−1
3 At Q5 =


1 0 0

0 t−1 0

0 0 t−2

 At



1 0 0 0 0

0 t 0 0 0

0 0 t2 0 0

0 0 0 t3 0

0 0 0 0 t4


.

Thus, det(I5 + z AA◦) = 1+ a1(t)z + a2(t)z2 + a3(t)z3. In this case a1(t) is never the zero polynomial.
Moreover, with

a3(t) = a3,6 t6 + a3,5 t5 + a3,4 t4 + . . . + a3,0,

a2(t) = a2,8 t6 + a2,7 t5 + . . . + a2,0t
−2,

by Equation (20), Gram’s Coefficients for k ∈ {3, 2} are given by:

a3, l :



a3,0 = µ2
{1,2,3},{1,2,3}, a3,1 = µ2

{1,2,4},{1,2,3},

a3,2 = µ2
{1,2,5},{1,2,3} + µ2

{1,3,4},{1,2,3},

a3,3 = µ2
{1,3,5},{1,2,3} + µ2

{2,3,4},{1,2,3},

a3,4 = µ2
{2,3,5},{1,2,3} + µ2

{1,4,5},{1,2,3},

a3,5 = µ2
{2,4,5},{1,2,3}, a3,6 = µ2

{3,4,5},{1,2,3},

13



a2, l :



a2,0 = µ2
{1,2},{2,3}, a2,1 = µ2

{1,2},{1,3} + µ2
{1,3},{2,3}

a2,2 = µ2
{1,2},{1,2} + µ2

{1,3},{1,3} + µ2
{2,3},{2,3} + µ2

{1,4},{2,3},

a2,3 = µ2
{1,3},{1,2} + µ2

{1,4},{1,3} + µ2
{2,3},{1,3} + µ2

{1,5},{2,3} + µ2
{2,4},{2,3},

a2,4 = µ2
{1,4},{1,2} + µ2

{2,3},{1,2} + µ2
{1,5},{1,3} + µ2

{2,4},{1,3}+
+µ2

{2,5},{2,3} + µ2
{3,4},{2,3},

a2,5 = µ2
{1,5},{1,2} + µ2

{2,4},{1,2} + µ2
{3,4},{1,3} + µ2

{3,5},{2,3} + µ2
{2,5},{1,3},

a2,6 = µ2
{2,5},{1,2} + µ2

{3,4},{1,2} + µ2
{3,5},{1,3} + µ2

{4,5},{2,3},

a2,7 = µ2
{3,5},{1,2} + µ2

{4,5},{1,3}, a2,8 = µ2
{4,5},{1,2}

and the different possible ranks of A according to the values of the Generalized Gram’s Polynomials
are:

1. a3(t) 6= 0 ⇐⇒ (a2 + b3 − 2)(a2 + 1 + ba + b2) 6= 0 ⇐⇒ rk(A) = 3

2. a3(t) = 0 ∧ a2(t) 6= 0 ⇐⇒ rk(A) = 2:

• (a2 + b3 − 2) = 0, (a2 + 1 + ba + b2) 6= 0

• (a2 + 1 + ba + b2) = 0, (a2 + b3 − 2) 6= 0

3. a3(t) = 0 ∧ a2(t) = 0 ⇐⇒ rk(A) = 1

• a6 + 2a5 + 4a4 − a3 − a2 − 6a + 5 = 0, b − a2 + 2 − a3 − a = 0 ⇔ (a2 + b3 − 2) =
0 ∧ (a2 + 1 + ba + b2) = 0

Once the rank is determined, in view of Equations (18) and (19), the different possible solutions
of the linear system are uniformly given by:

• rk(A) = 3: x =
1

a3(t)
(
(A◦A)2 − a1(t)A◦A + a2(t)

)
A◦v

• rk(A) = 2:

x =
1

a2(t)
(−A◦A + a1(t)I3)A◦v (31)

• rk(A) = 1 : x =
1

a1(t)
A◦v

For instance, if we consider a = 1, b = 1, v = (−6,−8,−8,−2, 4), then rk(A)= rk(A|v)=2 and the
solution is given by Equation (31) as follows:

x =
(

0,
−2t

t + 4
,
−4

t + 4

)
= (0,−2, 0) +

1
t + 4

(0, 8,−4),

such that (0,−2, 0) is a concrete zero of our system and 1
t+4(0, 8,−4) is solution of the homogenous

linear system defined by A. ut
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Example : We consider a linear system defined over Z11, where the coefficient matrix A is given by:

7ab + 2a2b + 9a2 + 2a3 + 7a 7a + 1 + 9ab + 9b 3

2a3b + 7a2b + 2a4 + 9a3 + 8a2+ 6a2 + 3a + 9a2b + 3ab+ 2a
+ab + 9b + 10a + 9 +5b + 1

7ab + 2a2b + 9a2 + 2a3 + 7a 2a + 5 + ab + b 4

a2b + 9ab + a3 + 10a2 + 9a 3a2 + 4 + ab + b 5 + 3a

9ab + a3 + 2a2 + a + 3a3b + 10b+ 3a + 7 + 7ab + 3a2+ 3 + a + 4b
+a4 + 10 + 7ab2 + 2a2b2 + 9a2b +10a2b + ab2 + b2


and a, b are parameters taking values in Z11.

We first calculate the Generalized Gram’s Polynomials in order to study the different possible
ranks of A according to a and b. The matrix A◦ is given by:

A◦ = Q−1
3 At Q5 =


1 0 0

0 t−1 0

0 0 t−2

 At



1 0 0 0 0

0 t 0 0 0

0 0 t2 0 0

0 0 0 t3 0

0 0 0 0 t4


.

Thus, det(I5 + z AA◦) = 1 + a1(t)z + a2(t)z2 + a3(t)z3. Note that a1(t) is never the zero polynomial;
in fact, a1,0 = 9. Moreover, with

a3(t) = a3,6t
6 + a3,5t

5 + a3,4 t4 + . . . + a3,0, a2(t) = a2,8t
6 + a2,7 t5 + . . . + a2,0t

−2,

by Equation (20), Gram’s Coefficients for k ∈ {3, 2} are given by:

a3, l :



a3,0 = µ2
{1,2,3},{1,2,3}, a3,1 = µ2

{1,2,4},{1,2,3},

a3,2 = µ2
{1,2,5},{1,2,3} + µ2

{1,3,4},{1,2,3},

a3,3 = µ2
{1,3,5},{1,2,3} + µ2

{2,3,4},{1,2,3},

a3,4 = µ2
{2,3,5},{1,2,3} + µ2

{1,4,5},{1,2,3},

a3,5 = µ2
{2,4,5},{1,2,3}, a3,6 = µ2

{3,4,5},{1,2,3},

a2, l :



a2,0 = µ2
{1,2},{2,3}, a2,1 = µ2

{1,2},{1,3} + µ2
{1,3},{2,3}

a2,2 = µ2
{1,2},{1,2} + µ2

{1,3},{1,3} + µ2
{2,3},{2,3} + µ2

{1,4},{2,3},

a2,3 = µ2
{1,3},{1,2} + µ2

{1,4},{1,3} + µ2
{2,3},{1,3} + µ2

{1,5},{2,3} + µ2
{2,4},{2,3},

a2,4 = µ2
{1,4},{1,2} + µ2

{2,3},{1,2} + µ2
{1,5},{1,3} + µ2

{2,4},{1,3}+
+µ2

{2,5},{2,3} + µ2
{3,4},{2,3},

a2,5 = µ2
{1,5},{1,2} + µ2

{2,4},{1,2} + µ2
{3,4},{1,3} + µ2

{3,5},{2,3} + µ2
{2,5},{1,3},

a2,6 = µ2
{2,5},{1,2} + µ2

{3,4},{1,2} + µ2
{3,5},{1,3} + µ2

{4,5},{2,3},

a2,7 = µ2
{3,5},{1,2} + µ2

{4,5},{1,3}, a2,8 = µ2
{4,5},{1,2}
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and the different possible ranks of A according to the values of the Generalized Gram’s Polynomials
are:

1. a3(t) 6= 0 ⇐⇒ (a + b + 1)(b− 2)(a− 10)(a− 2) 6= 0 ⇐⇒ rk(A) = 3

2. a3(t) = 0 ∧ a2(t) 6= 0 ⇐⇒ rk(A) = 2:

• a = 2, b 6= 2

• b = 2, (a− 2)(a− 8) 6= 0

• a = 10, b 6= 0

• a + b + 1 = 0, b(b− 2) 6= 0

3. a3(t) = 0 ∧ a2(t) = 0 ⇐⇒ rk(A) = 1

• a = 2, b = 2

• a = 8, b = 2

• a = 10, b = 0

Once the rank is determined, in view of Equations (18) and (19), the different possible solutions
of the linear system are uniformly given by:

• rk(A) = 3: x =
1

a3(t)
(
(A◦A)2 − a1(t)A◦A + a2(t)

)
A◦v

• rk(A) = 2:

x =
1

a2(t)
(−A◦A + a1(t)I3)A◦v (32)

• rk(A) = 1 : x =
1

a1(t)
A◦v

For instance, if we consider a = 3, b = 2, v = (9, 5, 0, 2, 6), then rk(A) = rk(A|v) = 2 and the solution
is given by Equation (32) as follows:

x =
(

1,
t

t + 3
,

6
t + 3

)
= (1, 1, 0) +

1
t + 3

(0, 8, 6),

such that (1, 1, 0) is a concrete zero of our system and 1
t+3(0, 8, 6) is solution of the homogenous linear

system defined by A. ut
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