
PSEUDOSPECTRAL COMPONENTS AND THE DISTANCE TO
UNCONTROLLABILITY∗

J. V. BURKE† , A. S. LEWIS‡ , AND M. L. OVERTON§

SIAM J. MATRIX ANAL. APPL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 350–361

Abstract. We show that 2-norm pseudospectra of m-by-n matrices have no more than 2m(4m−1)
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of Gu’s recent algorithm, and we show how these may be used to locally maximize the distance to
uncontrollability for a parameterized system.

Key words. pseudospectrum, robust control, distance to uncontrollability, connected compo-
nents, trisection

AMS subject classifications. Primary, 15A18, 93B05; Secondary, 65F15

DOI. 10.1137/S0895479803433313

1. Introduction. For matrices A and B of sizes p-by-p and p-by-q, respectively,
consider the control system defined by

ẋ = Ax + Bu.

Here, x ∈ Rp is the state vector, and u ∈ Rq is the control vector (both depending on
time). This system is controllable if, given any initial and final states x(0) and x(T ),
there exists a control function u(·) giving a trajectory x(·) with the given endpoints.
In practice A and B are usually real.

Classical theory (see, for example, [ZDG96]) provides a simple characterization of
controllability. The above system is controllable exactly when the matrix [A−zI B]
has full row rank for all scalars z ∈ C.

Given any square matrix A, it is well known that the distance to the nearest
singular matrix (measured in the usual operator 2-norm) is given by the smallest
singular value σmin(A) and that the conditioning of linear systems involving A depends
on this quantity. Another important measure is the distance from A to instability,
that is, the distance to the nearest matrix, possibly complex even if A is real, with
an eigenvalue in the closed right half-plane. This distance plays a key role in robust
stability analysis of the dynamical system ẋ = Ax.

The analogous question for controllability asks for the distance from the pair
(A,B) to the nearest pair (A′, B′), possibly complex even if (A,B) is real, corre-
sponding to an uncontrollable system. A small distance to uncontrollability correlates
with various difficulties for the control system, including numerical challenges for as-
sociated “pole placement” problems. A simple argument based on the singular value
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Fig. 1. Pseudospectra for the controllable pair (1.2) with x1 = x2 = 1.

decomposition [Eis84] shows that the distance to uncontrollability is given by

min
z∈C

σmin[A−zI B],(1.1)

a global optimization problem in two real variables. Here σmin of a p-by-p+q matrix C
means the square root of the smallest eigenvalue of CC∗, a positive quantity when C
has rank p.

The function to be minimized in the expression (1.1) has lower level sets of the
form

{z ∈ C : σmin[A−zI B] ≤ ε}

for real ε > 0. These sets, commonly called pseudospectra, have been well studied for
square matrices, when the matrix B is empty; see the Pseudospectra Gateway [ET].
Pseudospectra are less well understood in the rectangular case, but references include
[TT96, WT01, HT02, WT02, BEGM03]. Substantial insight is gained from examples,
so consider the parameterized matrix pair

(A,B)(x1, x2) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 1 2 3
−1 1 4 5
0 x1 1 2
x2 0 −2 1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦
⎞
⎟⎟⎠,(1.2)

where x1 and x2 are real parameters. Figures 1 and 2 show pseudospectra1 for,
respectively, the controllable pair (1.2) when x1 = x2 = 1 and the uncontrollable pair
(1.2) when x1 = x2 = 0 (the latter case being an example from [Gu00]).

The horizontal and vertical axes in the figures show the real and imaginary parts
of z. The legends on the right sides of the figures show the contour heights (values

1All the figures in this paper were produced using T. Wright’s software EigTool [Wri02].
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Fig. 2. Pseudospectra for the uncontrollable pair (1.2) with x1 = x2 = 0.

of ε) on a log 10 scale, with both plots using the same scale. In Figure 1, the “pseu-
dospectral landscape” has three local minimizers and one can estimate that the global
minimum value (by definition, the distance to uncontrollability) is about 10−0.7 (in
fact, it is 0.1872). In Figure 2, there are only two local minimizers (forming a complex
conjugate pair), and one can see that the contours drop to much lower values (in fact,
it is easy to check that the minimum value of (1.1) is zero at the points z = 1 ± 2i).
In Figure 2 it is clear that some pseudospectra contain two connected components.
In Figure 1, it is not clear, without a more detailed analysis, whether there are values
of ε for which the pseudospectra have three connected components (in fact, there do
exist such ε).

Our aim in this work is to find an upper bound on the number of connected
components in the pseudospectra of rectangular matrices. We use a slightly more
general setting than described above, defining

Λ = {z ∈ C : σmin(P + zQ) ≤ ε}(1.3)

for given matrices P and Q in the space Mm,n of m-by-n complex matrices (with
m ≤ n). In the case above we have P = [A B] and Q = [−I 0]. Our goal is to find
an upper bound on the number of components of the set Λ. Specifically, we show
this number is no more than 2m(4m − 1). To our knowledge, this general bound
is the best known, although it is certainly not tight. In particular, it is well known
that pseudospectra of m-by-m matrices have no more than m components, since each
component contains an eigenvalue [Tre97]. Furthermore, in the case of a single row
(m = 1), it is easy to see that each nonempty pseudospectrum is simply a circular disk.
We are not aware of an example of a pseudospectrum with more than m components.

We hope our analysis of pseudospectral components will shed light on the com-
plexity of the problem of computing the distance to uncontrollability, for which we
discuss algorithms in the second half of the paper. We begin by discussing a recent
algorithm due to Gu [Gu00] for estimating the distance to uncontrollability within
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a factor of two, and we show how a trisection variant can be used to obtain any
prescribed accuracy. We then discuss an algorithm that combines repeated local op-
timization with Gu’s algorithm and speculate that techniques similar to those used
in analyzing the number of pseudospectral components might be used to bound the
number of local optimization steps in this process.

Finally, with an effective algorithm in hand to evaluate the distance to uncon-
trollability (and, where defined, its gradient), we consider local maximization of the
distance to uncontrollability for a smoothly varying parameterized pair (A,B) over
a vector of free parameters. For the family (1.2), we find a locally maximizing pair
with pseudospectra having four components.

2. Generic properties of singular values. To prove an upper bound on the
number of components of the set Λ defined by (1.3), we first dispose of some trivial
cases. Clearly we can suppose Q is nonzero, and hence Λ is compact. Furthermore,
only the case ε ≥ 0 is interesting, as otherwise Λ is empty.

When ε = 0, the set Λ either is the whole complex plane or consists of at most
m points, as the following argument shows. Notice Λ is just the set of complex z
for which P + zQ has rank less than m. Assuming Λ is not the whole plane, we
lose no generality in supposing that it does not contain zero or, in other words, that
the matrix P has rank m. Partition the matrices P and Q as [P1 P2] and [Q1 Q2],
respectively, where P1 and Q1 are m-by-m, and, again without loss of generality, P1 is
invertible. Since the function det(P1 + zQ1) is a polynomial of degree at most m, and
is nonzero at zero, it has at most m zeros. But this set of zeros contains Λ, so the
claim follows.

Henceforth we therefore assume ε > 0. In the case m = 1, an easy calculation
shows that Λ is either empty or a circular disk.

Our goal in this section is to show that for a fixed δ > 0 and a “generic” matrix P ,
the singular value σmin(P + zQ) is always either simple or less than δ. The proof is
based on the following classical result in the space of m-by-m Hermitian matrices Hm

(a real vector space of dimension m2), concerning matrices X with a multiple smallest
eigenvalue λmin(X).

Theorem 2.1 (von Neumann and Wigner [vNW29]). For any integer m > 1,
the algebraic set

Ĥm = {X ∈ Hm : λmin(X) multiple}

has real codimension 3.
For example, the space H2 has dimension 4, and the set Ĥ2 consists simply of

real multiples of the identity matrix.
We also need an elementary supporting result.
Proposition 2.2 (surjectivity). A matrix Y ∈ Mm,n has full row rank if and

only if the function X �→ XY ∗ + Y X∗ maps Mm,n onto Hm.
Proof. Denote the given function by Φ : Mm,n → Hm. If Y has full row rank,

then, with no loss of generality, Y = [Y0 Y1], where the matrix Y0 is invertible. Now,
given any matrix E ∈ Hm, we have Φ( 1

2 [EY −∗
0 0]) = E, so Φ is indeed onto.

Conversely, suppose the map Φ is onto, and some x ∈ Cm satisfies Y ∗x = 0.
Choose a matrix X ∈ Hm satisfying Φ(X) = xx∗. Then

‖x‖4 = x∗(XY ∗ + Y X∗)x = 0,

so x = 0, as required.
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We are now ready for the main result of this section.
Theorem 2.3 (generic singular values). For any n ≥ m > 1 and any real δ > 0,

the real semialgebraic set

{Y ∈ Mm,n : σmin(Y ) is both multiple and at least δ}

has real codimension 3.
Proof. Define a map Ψ : Mm,n → Hm by Ψ(Y ) = Y Y ∗. Notice that the given set,

which we denote S, is defined locally by the inverse image Ψ−1(Ĥm). Furthermore,
any Y ∈ S has full row rank, and so Proposition 2.2 shows that the derivative ∇Ψ(Y )

is onto. Since Ĥm has codimension 3 by the result of von Neumann and Wigner
(Theorem 1.1), so does S.

Corollary 2.4. For any n ≥ m > 1, real δ > 0, and matrix Q ∈ Mm,n, the
real semialgebraic set

{P ∈ Mm,n : ∃z ∈ C so σmin(P + zQ) is both multiple and at least δ}

has real codimension at least 1.
It follows from this last corollary that for a generic matrix P , the singular value

σmin(P + zQ) is always either simple or less than δ.

3. The generic case. Our bound on the number of components of pseudospec-
tra relies on the following classical result [Mil64].

Theorem 3.1 (Milnor). For any polynomial p : R2 → R of degree d, the zero
set p−1(0) has no more than d(2d− 1) components.

(In fact Milnor bounds the sum of the Betti numbers of p−1(0): the result above
follows from the fact that the number of components is the zeroth Betti number.)

To apply Milnor’s result, we need to relate the number of components of pseu-
dospectra to their boundaries. We accomplish this with the following elementary
result.

Proposition 3.2 (components and boundaries). Consider any continuous func-
tion f : C → R. If the zero set f−1(0) is nonempty, then it has at least as many
components as the level set f−1(−∞, 0].

Proof. Denote the zero set by E and the level set by L. It suffices to show that
every component of L contains a component of E. If this is not the case, L has a
component L1 contained in the set L′ = f−1((−∞, 0)). By continuity, L is closed and
L′ is open. Hence L1, which is a component of both sets, must be both closed and
open, and hence equal to the whole complex plane. Thus E must be empty, contrary
to assumption.

Using this technique in conjunction with Milnor’s theorem, we can now prove our
basic result.

Theorem 3.3 (generic case). Given any real ε and matrices P,Q ∈ Mm,n (where
m ≤ n), suppose there exists no complex z for which the singular value σmin(P + zQ)
is both multiple and equals ε. Then the set

Λ = {z ∈ C : σmin(P + zQ) ≤ ε}

has no more than 2m(4m− 1) components.
Proof. The case m = 1 is elementary, so we suppose m > 1. For any matrix

A ∈ Mm,n, we write the singular values of A by multiplicity and in decreasing order:
σ1(A) ≥ σ2(A) ≥ · · · ≥ σm(A). In this notation, σmin(A) = σm(A).
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Consider the two disjoint open sets

Γ< = {z ∈ C : (σm + σm−1)(P + zQ) < 2ε},
Γ> = {z ∈ C : (σm + σm−1)(P + zQ) > 2ε}.

By assumption, the set

Λ′ = {z ∈ C : σmin(P + zQ) = ε}

is contained in Γ>, whereas the set

Λ′′ =

m−1⋃
j=1

{z ∈ C : σj(P + zQ) = ε}

is contained in Γ<. Hence Λ′ has no more components than the set

Λ′ ∪ Λ′′ =

m⋃
j=1

{z ∈ C : σj(P + zQ) = ε}

= {z ∈ C : det((P + zQ)(P + zQ)∗ − ε2I) = 0}.

We can suppose that the matrix Q is nonzero and that the set Λ is nonempty. Ap-
plying Proposition 3.2 (components and boundaries) to the function f(z) = σmin(P +
zQ) − ε shows that Λ has no more components than Λ′, and hence no more than
Λ′ ∪ Λ′′.

The function φ : C2 → C defined by

φ(x, y) = det((P + (x + iy)Q)(P + (x + iy)Q)∗ − ε2I)

is clearly a polynomial of degree 2m. Since Hermitian matrices have real determinants,
φ(x, y) is real for all real x and y. Thus the restriction φ|R2 is a polynomial of
degree 2m (whose coefficients we could identify by partial differentiation). The zero
set of this polynomial is

{(x, y) ∈ R2 : x + iy ∈ Λ′ ∪ Λ′′},

and our result now follows by applying Milnor’s theorem (3.1).

4. The general case. We extend our basic result, Theorem 3.3 (generic case),
to the general case by a limiting argument. Recall that a sequence of subsets Sr

of some Euclidean space converges to another set S if the following properties hold
[RW98]:

(i) For any point x ∈ S, there exists a sequence of points xr ∈ Sr whose limit
is x.

(ii) For any subsequence R of N, the limit of any convergent sequence of points
xr ∈ Sr (r ∈ R) lies in S.

We first prove that, with this notion of convergence, the number of components of a
compact set has a lower semicontinuity property.

Proposition 4.1 (lower semicontinuity). Consider a sequence of closed subsets
of Sr of a Euclidean space converging to a compact set S. If S has a finite number of
components, say k, then Sr has at least k components for all large r.
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Proof. We can suppose the set S is nonempty. Denote its components by Sj

(j = 1, 2, . . . , k), and the closed and open unit balls by B and B◦, respectively.
Components of compact sets are compact, so for some real δ > 0, the sets Sj + δB
(j = 1, 2, . . . , k) are disjoint. Choose real M so that S + δB ⊂ MB.

We first claim

Sr ⊂ (S + δB◦) ∪MBc for all large r.

Otherwise there would be a subsequence R of N and points

xr ∈ Sr ∩ (S + δB◦)c ∩MB (r ∈ R).

This bounded sequence has a cluster point in the closed set (S + δB◦)c, contradicting
the fact that the sets Sr converge to S.

Thus for all large r, the set Sr is contained in the disjoint union of open sets

MBc ∪
k⋃

j=1

(Sj + δB◦).

If the result fails, then the number of components of Sr is strictly less than k for all
r in some subsequence R of N. Hence for some index j and a further subsequence R′

of R, we must have

Sr ∩ (Sj + δB◦) = ∅ for all r ∈ R′.

But this contradicts the definition of convergence, since for any point x ∈ Sj there
exists a sequence of points xr ∈ Sr converging to x.

Using this result, we can prove our main result.
Theorem 4.2 (components of pseudospectra). For any matrices P,Q ∈ Mm,n

(where m ≤ n) and any real ε, the set {z ∈ C : σmin(P + zQ) ≤ ε} has no more than
2m(4m− 1) components.

Proof. We can suppose that the given set, which we denote by Λ, is nonempty,
that ε > 0, and that Q is nonzero.

By Corollary 2.4, there exists a sequence of matrices Pr ∈ Mm,n satisfying the
following two conditions:

(i) ‖Pr − P‖ ≤ 1/r.
(ii) For no z ∈ C is σmin(Pr + zQ) both multiple and equal to ε + 1/r.

It follows by Theorem 3.3 (generic case) that the set

Λr =

{
z ∈ C : σmin(Pr + zQ) ≤ ε +

1

r

}

has no more than 2m(4m− 1) components.
Using a well-known property of singular values, any point z ∈ Λ satisfies

σmin(Pr + zQ) ≤ σ1(Pr − P ) + σmin(P + zQ) ≤ 1

r
+ ε,

so Λ ⊂ Λr for all r. On the other hand, the continuity of σmin shows that any cluster
point of a sequence of points zr ∈ Λr must lie in Λ. Thus the compact sets Λr converge
to the compact set Λ.

Finally, notice that Λ, being semialgebraic, has finitely many components. Hence
we can apply Proposition 4.1 (lower semicontinuity) to deduce that, in fact, it has no
more than 2m(4m− 1) components, as required.
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5. Computing the distance to uncontrollability. Let τ(A,B) denote the
distance to uncontrollability for a pair (A,B), defined by (1.1), where A is p-by-p
and B is p-by-q. Thus the problem of computing τ(A,B) is that of minimizing
σmin[A−zI B] over the whole complex plane, a global minimization problem in two
real variables.

It is interesting to compare the difficulty of this problem with that of two others:
computing the distance to singularity and the distance to instability for the p-by-p
matrix A alone. Let us assume that the computation of the minimum singular value
function σmin is an atomic operation. Computing the distance to singularity (dis-
tance to the nearest singular matrix) then requires one evaluation of σmin, while the
distance to instability (distance to the nearest unstable matrix) may be computed by
minimizing σmin(A− zI) over the imaginary axis (equivalently, a global optimization
problem in one real variable). Computation of the distance to instability, say β(A),
is a standard operation in control. The key observation is that checking whether
β(A) is less than a fixed number δ simply requires checking whether an associated
Hamiltonian matrix has any imaginary eigenvalues. This leads immediately to a bi-
section algorithm [Bye88, BS90] that evaluates β(A) to any prescribed accuracy in
exact arithmetic, taking the computation of eigenvalues of 2p-by-2p Hamiltonian ma-
trices as another atomic operation. Higher-order convergent algorithms are also well
known [BB90]. In practice, it is important to compute the eigenvalues of the Hamilto-
nian matrices by a special algorithm that preserves Hamiltonian structure (such as in
[Van84]) in order to avoid numerical blunders that incorrectly identify an eigenvalue
as nonimaginary because of unnecessary rounding errors in its real part. The Hamilto-
nian imaginary eigenvalue test in these algorithms may be replaced by a linear matrix
inequality (LMI) test (see, e.g., [BTN01]). This is computationally more expensive
in practice, but offers the advantage of a complexity analysis that does not require
assumption of eigenvalue and singular value computation as atomic operations.

By contrast, computing the distance to uncontrollability τ(A,B) seems to be a
harder problem, and there are no standard methods in use, though there have been
some recent theoretical advances. In 2000, Gu published an algorithm [Gu00] that
estimates τ(A,B) within a factor of two. Gu’s algorithm is based on a most ingenious
test (“Gu’s test,” for brevity) that compares imaginary eigenvalues of matrix pencils
involving Kronecker products that depend on A and B. Taking the computation of
singular values and eigenvalues as atomic operations that can be performed in time
cubic in the matrix dimension, and assuming that q = O(p) (in practice, typically
q < p), Gu’s test requires O(p6) operations. No other polynomial-time algorithm for
estimating τ(A,B) within a constant factor seems to be known; in particular, it does
not seem to be known whether Gu’s test could be replaced by an LMI-based test.

Gu’s test may be summarized as follows. Given two numbers δ1 and δ2 (known
as δ and δ − η/2, respectively, in [Gu00]), with δ1 > δ2 > 0, Gu’s test returns either
the information that

τ(A,B) ≤ δ1(5.1)

or the information that

τ(A,B) > δ2.(5.2)

At least one of these statements must be true; even if both are true, only one of the
two statements is verified. As already noted, Gu’s test involves comparing imaginary
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eigenvalues of matrix pencils. We note for the record that both the terms Q12 ⊗ A
and I ⊗ (A∗Q12) in the definition of A in [Gu00, p. 996] have incorrect signs.

Gu’s estimation algorithm is then as follows.
Algorithm 5.1 (Gu’s estimation algorithm).

1. Set δ1 = σmin([A B]), done = false.
2. While not done

(a) Set δ2 = δ1/2.
(b) Perform Gu’s test. If (5.1) is verified, set δ1 = δ2; if (5.2) is verified,

set done = true.
In exact arithmetic, this algorithm evaluates a nonzero τ(A,B) within a factor of

two, but does not terminate if τ(A,B) = 0.
It is tempting to try to evaluate τ(A,B) to higher precision by a bisection method.

In order to make this work, one needs to set δ1 and δ2 sufficiently close to each
other (η sufficiently small in the notation of [Gu00]) that (5.1) and (5.2) are almost
mutually exclusive. Unfortunately, this leads to numerical difficulties; the necessary
comparison of imaginary eigenvalues of the relevant pencils cannot be carried out with
any confidence in the presence of rounding errors. However, a trisection variant works
well, as follows.

Algorithm 5.2 (trisection variant of Gu’s algorithm).

1. Set L = 0, U = σmin([A B]), done = false, tol to a positive tolerance.
2. While not done

(a) Set δ1 = L + 2(U − L)/3 and δ2 = L + (U − L)/3.
(b) Perform Gu’s test. If (5.1) is verified, set U = δ1; if (5.2) is verified,

set L = δ2.
(c) If U − L < tol, set done = true.

This trisection algorithm maintains upper and lower bounds U and L on τ(A,B),
reducing the length of the interval [L,U ] by a factor of 2/3 at each step of the iteration,
and thereby computing τ(A,B) to any prescribed absolute accuracy in exact arith-
metic in O(p6) operations. Furthermore, it is effective in practice even in the presence
of rounding errors, running into numerical trouble only when τ(A,B) is determined
at least to a few accurate digits.

An algorithm that runs much faster in practice, but without any complexity guar-
antee, is based on local optimization. This algorithm repeatedly performs local opti-
mization of (1.1) using, for example, the well-known BFGS method. For controllable
pairs, one expects the objective in (1.1) to be differentiable at minimizers, since the
least singular value is being minimized, not maximized. As long as the least singular
value at a local minimizer is simple and nonzero, the objective in (1.1) is continuously
differentiable there. The BFGS algorithm requires the gradient of σmin[A−zI B] with
respect to the real and imaginary parts of z, which is given by

[
Re

(
([I 0]u)

∗
v
)

Im
(
([I 0]u)

∗
v
)
]
,

where u and v are, respectively, the left and right singular vectors corresponding to
σmin[A−zI B]. (One could use Newton’s method instead of BFGS, as the correspond-
ing 2-by-2 Hessian matrix is not hard to derive, but BFGS is so fast that Newton’s
method offers no significant advantage.) Once a local minimizer is obtained, Gu’s
test is used either to (i) verify global optimality within a tolerance or (ii) restart
BFGS. A key point is that when Gu’s test verifies (5.1), it also provides ẑ for which
σmin[A−ẑI B] = δ1.
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Algorithm 5.3 (BFGS/Gu hybrid).

1. Set U = σmin([A B]), z = 0, done = false, tol to a positive tolerance.
2. While not done

(a) Run BFGS starting at z, producing an approximate local minimizer z̃.
Set f̃ = σmin[A−z̃I B].

(b) Set δ1 = f̃(1 − 0.5 tol) and δ2 = f̃(1 − tol).
(c) Perform Gu’s test. If (5.1) is verified, set U = δ1 and z = ẑ, where

σmin[A−ẑI B] = δ1; if (5.2) is verified, set L = δ2 and done = true.

Although the objective function in (1.1) may have infinitely many local minimiz-
ers [GdH99], it has only finitely many locally minimal values (being semialgebraic).
Assuming that an idealized BFGS algorithm always generates an exact local mini-
mizer, in exact arithmetic the BFGS/Gu hybrid is guaranteed to terminate with an
estimate of a nonzero τ(A,B) within any prescribed relative accuracy. A natural
question is: how many local minimizers might be visited before a global optimizer is
obtained? Unfortunately, our bound on the number of connected components does
not immediately yield a bound on the number of locally minimal values. Nonethe-
less, we think that it might be possible to obtain a bound on the latter quantity by
extending the techniques used to bound the former.

Our Matlab implementations of the algorithms described in this section are
freely available.2

6. Maximizing the distance to uncontrollability for a parameterized
matrix pair. Finally, with two effective algorithms to evaluate τ(A,B) available,
namely, the trisection variant of Gu’s algorithm and the BFGS/Gu hybrid, we con-
sider maximization of the distance to uncontrollability for a smoothly varying param-
eterized pair (A,B)(x) over a vector of free parameters x ∈ Rk. There are two reasons
why this might be of interest. The first is that it may well be useful in applications to
be able to find a matrix pair that is optimally far away from uncontrollability with re-
spect to given free parameters. The second reason is that maximizing the distance to
uncontrollability tends to produce pseudospectra with several isolated local minimiz-
ers whose minimal values are equal, and therefore is likely to produce pseudospectra
with more components than would be found by randomly generating matrix pairs.

It is not difficult to see that the function τ(·) is not differentiable on the space
of (real or complex) matrix pairs; furthermore, it is easy to construct parameterized
examples where the composite parameter-dependent function τ((A,B)(·)) is not dif-
ferentiable at its maximizer. Such functions are not amenable to optimization by
standard methods, such as BFGS, so we use a more specialized “gradient sampling”
algorithm [BLO03]. This method exploits the fact that τ(·) is differentiable almost
everywhere, with gradient given by uv∗, where u and v are, respectively, the relevant
left and right singular vectors for the matrix minimizing σmin[A−zI B] over z, as long
as the minimum singular value is simple and nonzero. We omit further details here
and conclude by considering the example in (1.2). Running the gradient sampling
algorithm to locally maximize the distance to uncontrollability over x1 and x2, we
found an approximate local maximizer x̂ given by x̂1 = 1.9787, x̂2 = −1.8667, with
τ̂ = τ((A,B)(x̂)) = 0.4897. The corresponding pseudospectra are shown in Figure 3.
Notice that the lowest points in this “pseudospectral landscape” are higher than those
in Figure 1 and, furthermore, that four local minimizers have the same minimal value
(namely, τ̂). Only two of the local minimizers occur in a complex conjugate pair; the

2http://www.cs.nyu.edu/faculty/overton/software
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Fig. 3. Pseudospectra for a local maximizer of τ over (1.2).

other “ties” occur as a result of optimization over the parameters, with τ((A,B)(·))
not differentiable at its maximizer x̂ as a result. Since there are four isolated local
minimizers with minimal value τ̂ , it follows that the pseudospectra have four compo-
nents for ε in a range above τ̂ . In this example, the row dimension p in fact equals
four. Whether it is possible to produce pseudospectra with more than p components
remains an open question.

Note added in proof. In fact, the bound d(2d − 1) in Milnor’s result (Theo-
rem 3.1) can be replaced by the sharp bound (d2 − d + 2)/2 [BR90, Exercise 4.4.4],
resulting in the improvement of our bound in Theorem 4.2 from 2m(4m − 1) to
2m2 −m + 1. Whether a subquadratic bound holds is still an open question.
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