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BLOCK-TOEPLITZ/HANKEL STRUCTURED
TOTAL LEAST SQUARES*
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Abstract. A structured total least squares problem is considered in which the extended data
matrix is partitioned into blocks and each of the blocks is block-Toeplitz/Hankel structured, unstruc-
tured, or exact. An equivalent optimization problem is derived and its properties are established.
The special structure of the equivalent problem enables us to improve the computational efficiency
of the numerical solution methods. By exploiting the structure, the computational complexity of the
algorithms (local optimization methods) per iteration is linear in the sample size. Application of the
method for system identification and for model reduction is illustrated by simulation examples.
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1. Introduction. The total least squares (TLS) problem

. 2 .
(1.1) A H [AA AB] HF subject to (A — AA)X = B— AB,

where A € R™*" B € R™*4 (C := [A B] is the data matrix, and X € R"*¢
is the parameter of interest, proved to be a useful parameter estimation technique.
It became especially popular since the early eighties due to the development [8] of
reliable solution methods based on singular value decomposition. The same technique
is known in the system identification literature as the Koopmans—Levin method [12]
and in the statistical literature as orthogonal regression [7]. For a comprehensive
introduction to the theory, algorithms, and applications of the TLS method, see [25].

With the increased interest in the TLS technique, more and more researchers
started to apply it in various applications. In some cases, however, important assump-
tions of the method are not satisfied, which resulted in the development of appropri-
ate extensions of the original TLS method. We mention the mized LS-TLS method
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[25, sect. 3.5], where some of the columns of A are exact (noise free), and the so-
called generalized total least squares method [24], where the cost function of TLS
problem (1.1) is generalized to || [AA AB] V|3, with V > 0. The latest develop-
ments in the field are collected in the proceedings books [22, 23].

In the early nineties, a powerful generalization of the TLS method was put for-
ward [1, 4, 20]. The so-called structured total least squares (STLS) problem,

[AA AB] Hi subject to (A—AA)X =B—-AB and
[AA AB] has the same structure as [A B],

defined in the same way as the TLS problem (1.1) but with the additional structure
constraint, includes as special cases many of the presently known TLS variations. The
structure occurs naturally in, e.g., applications dealing with discrete-time dynamic
phenomena [6], where the Hankel and Toeplitz matrices are fundamental.

Although the STLS problem is very general, it is still not widely accepted due
to the lack of reliable solution methods for its computation, the main difficulty being
that, as an optimization problem, it is nonconvex and there is no guarantee that a
global minimum point will be found. Still, under certain conditions [10] for highly
overdetermined systems (m < nd) the solution of the problem is unique and the main
difficulty—the presence of multiple local minima—tends to disappear for large sample
sizes (i.e., for m — o). In addition, due to the consistency results of [10], such an
assumption guarantees accurate estimation and makes the problem meaningful from
a statistical point of view.

However, the currently used numerical algorithms for solving the STLS problem
can hardly deal with large sample sizes. The original methods of [1, 4, 20] have
computational costs that increase quadratically or even cubically as a function of m.
In [11, 17], methods with computational cost linear in m are developed using the
generalized Schur algorithm. These methods, however, are developed for a particular
structure of the data matrix C' (in [11] C is Hankel, and in [17] A € R™*™ is Toeplitz
and B € R™*! is unstructured) and modifications for other structures are nontrivial.

In [13], based on the insight from [10], we have proposed a new approach with
computational cost linear in m and dealing with a flexible structure specification. The
data matrix C' can be partitioned into blocks C' = [C(l) e C’(Q)}, where each of the
blocks CW, for I =1,...,q, is Hankel, Toeplitz, unstructured, or exact.

In this paper, we consider an extension of the results of [13] to the case of block-
Hankel and block-Toeplitz structured matrices. Thus the data matrix is now a block
matrix, of which the blocks are themselves structured with one of the four possible
structures: block-Hankel, block-Toeplitz, unstructured, or exact. The need for such
an extension comes from applications dealing with multi-input and/or multi-output
dynamical systems. The proposed algorithms are implemented in C (see [15]), and
the software is available.

Standard notation used in the paper is as follows: R for the set of the real
numbers, N for the set of the natural numbers, | - || for the Euclidean norm, and || - ||¢
for the Frobenius norm. The operator that vectorizes columnwise a matrix is denoted
by vec(-), the expectation operator by E, and the covariance matrix of a random
vector by cov(-). The pseudoinverse of a matrix A is denoted by Af.

2. The STLS problem. In this section, we define the STLS problem, con-
sidered in the paper, and derive an equivalent optimization problem. Consider a
function S : R™ — R™*("+d) that defines the structure of the data as follows: a ma-
trix C' € R™*("+4) i5 said to have the structure defined by S if there exists a p € R"»,

min H
AA,AB,X
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such that C = S(p). The vector p is called a parameter vector for the structured
matrix C.
PROBLEM 2.1 (STLS problem). Given a data vector p € R™ and a structure
specification S : R — R™*("+d) solye the optimization problem
(2.1) min HAp||2 subject to S(p — Ap) X- 0.
X,Ap —1q4
The interpretation of (2.1) is the following: Find the smallest correction Ap,

measured in 2-norm, that makes the structured matrix S(p — Ap) rank deficient with
rank at most n. Define

Xext 1= [ )§ } , and [A B} .= C :=S(p), where A € R™*" and B € R™*%
—1Iy

CXext = 0 is shorthand notation for the structured system of equations AX = B.
The STLS problem is said to be affine structured if the function S is affine, i.e.,

(2.2) S(p) = S0+ Z Sip; for all p € R™ and for some S;, i =1,...,n,.
i=1

In an affine STLS problem, the constraint S(p — Ap)Xext = 0 becomes bilinear in the
decision variables X and Ap.
LEMMA 2.2. Let S : R — R™*(+d) be qn affine function. Then

Slp—Ap)Xext =0 —= G(X)Ap =r(X),

where
(2.3) G(X) = [vec((S1Xeat) ") -+ vee((Sn,Xear)T)] € RMXM
and
r(X) i= vee((S(p) Xear) ) € R™
Proof.

8(]7 - Ap)Xext =0 < Z SiApiXext = S(p)Xext

i=1
= ivec((SiXext)T)Api = VQC((S(p)Xext)T)
i=1
— G(X)Ap=r(X). O
Using Lemma 2.2, we rewrite the affine STLS problem as follows:

(2.4) m)}n (rrAlipn HApH2 subject to G(X)Ap = T(X)).

The inner minimization problem has an analytic solution, which allows us to derive
an equivalent optimization problem.
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THEOREM 2.3 (equivalent optimization problem for affine STLS). Assuming that
n, > md, the affine STLS problem (2.4) is equivalent to

(2.5)  min fo(X), where fo(X) := T (X)THX)r(X) and T(X):=G(X)GT(X).

Proof. Under the assumption n, > md, the inner minimization problem of (2.4)
is a least norm problem. Its minimum point (as a function of X) is

Apmin(X) = GT(X)(G(X)GT (X)) 'r(x),
so that
Fo(X) = ApinX) Apuin(X) = (X)) (G(XN)GT (X)) 'r(X) =+ TCOTT (X)r(X). D

The significance of Theorem 2.3 is that the constraint and the decision variable Ap
in problem (2.4) are eliminated. Note that typically the number of elements nd in X
is much smaller than the number of elements n, in the correction Ap. Thus the
reduction in the complexity is significant.

The equivalent optimization problem (2.5) is a nonlinear least squares problem,
so that classical optimization methods can be used for its solution. The optimization
methods require a cost function and first derivative evaluation. In order to evaluate
the cost function fj for a given value of the argument X, we need to form the weight
matrix I'(X) and to solve the system of equations I'(X)y(X) = r(X). This straight-
forward implementation requires O(m3) floating point operation (flops). For large m
(the applications that we aim at) this computational complexity becomes prohibitive.

It turns out, however, that for a special case of affine structures S, the weight
matrix I'(X) is nonsingular and has a block-Toeplitz and block-banded structure,
which can be exploited for efficient cost function and first derivative evaluations. The
set of structures of S, for which we establish the special properties of T'(X), is

S(p) = [C(l) C(q)} for all p € R™, where C, forl=1,...,q, is

(2.6) block-Toeplitz, block-Hankel, exact, or unstructured
and all block-Toeplitz/Hankel structured blocks C'
have equal row dimension K of the blocks.

Assumption (2.6) says that S(p) is composed of blocks, each of which is block-Toeplitz,
block-Hankel, exact, or unstructured. A block C¥) that is exact is not modified in the
solution €' := S(p — Ap), i.e., C® = O, Assumption 2.6 is the essential structural
assumption that we impose on problem (2.1). As shown in section 6, it is fairly general
and covers many applications.

Ezxample 1. Consider the block-Toeplitz matrix

© | o Oy Ut
o S ot = W
O Ut = W N =

—
o
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with row dimension of the block K = 2. Next we specify the matrices S; that define
via (2.2) an affine function S, such that C' = S(p) for a certain parameter vector p.
Let == be an elementwise comparison operator. Acting on matrices of the same
size, it gives as a result a matrix with the same size as the arguments, of which the
(i,7)th element is 1 if the corresponding elements of the arguments are equal, and 0
otherwise. (Think of MATLAB’s == operator.) Let E be the 6 x 3 matrix with all
elements equal to 1 and define Sy := Ogx3 and S; := (C ==iFE) fori=1,...,10. We
have

10

10
C=Y Si=5+Y Sp=38(p), withp=[1 2 - 10] .
i=1 =1

The matrix C' considered in the example is special; it allowed us to easily write down
a corresponding affine function S. Clearly with the constructed S, any 6 x 3 block-
Toeplitz matrix C' with row dimension of the block K = 2 can be written as C = S(p)
for certain p € R'C.

We will use the notation n; for the number of block columns of the block C'®.
For unstructured and exact blocks, n; := 1.

3. Properties of the weight matrix I'. For the evaluation of the cost func-
tion fy of the equivalent optimization problem (2.5), we have to solve the system of
equations I'(X)y(X) = r(X), where T'(X) € R™¥*"™ with both m and n, large. In
this section, we investigate the structure of the matrix I'(X). Occasionally we drop
the explicit dependence of r and I" on X.

THEOREM 3.1 (structure of the weight matrix I'). Consider the equivalent op-
timization problem (2.5) from Theorem 2.3. If, in addition to the assumptions of
Theorem 2.3, the structure S is such that (2.6) holds, then the weight matriz I'(X)
has the block-banded Toeplitz structure

Ty Ty - TI7T 07
Iy
(3.1) NXx)= €R )
FS S, o, S, o, .
_0 Fs Fl I‘0_
where Ty, € RIEXIE | for | =0,1,...,s, and s = maxj—1__4(n; — 1), where n; is the

number of block columns in the block CV) of the data matriz S(p).

The proof is developed in a series of lemmas. First we reduce the original problem
with multiple blocks C'V (see (2.6)) to three independent problems—one for the
unstructured case, one for the block-Hankel case, and one for the block-Toeplitz case.

LEMMA 3.2. Consider a structure specification of the form

q
Sp) = [SWpW) ... s@pEp@)], — pbe R, S al) =i n,
=1

D ,
wherep” =: [pWT ... p@T] and S(pV) := Sél)—i-zlv:’”l Si(l)pz(-l) for all p®) € R
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l=1,...,q. Then

q
(3.2) r(x) =S r0(x),
1=1
where TW .= GOGOT GO .= [vec((S(l)Xéi)t) ) e vec((ST(Ll()DXg?t) )], and
X ‘
Xege=:| ¢ |, with Xéz)t € Rmx4, = coldim(C'¥), Z =n+d.
X(Q) =1

ext

Proof. The result is a refinement of Lemma 2.2. Let Ap' =: [Ap(l)T e Ap(‘J)T] ,
where Ap() € R™ for | = 1,...,q9. We have

q
S(p—Ap)Xext =0 <— Zs(l)(p(l) _ Ap(l )X(l) -0

ext
=1

— ZZS”)Ap” X = 8(p) Xext
=1 i=1
q

S ZG(l)Ap(l) =r(X)
=1

G(X)

sothat I = GGT =Y1_ gOGOT =37 1O, DO

Next we establish the structure of I’ for an STLS problem with an unstructured
data matrix.

LEMMA 3.3. Let

b1 b2 T Pn+td
S(p) :: pn—Q—'d—&-l pn-l-‘d+2 T p2(7?+d) c Rmx(n+d);
Pim—1)(n+d)+1 Pim-1)(n+d)+2 ~°° Pm(n+d)
then
(33) I'= (XemtXezt);

i.e., the matriz T has the structure (3.1) with s =0 and Ty = Ix ® (X ;X eat)-
Proof. We have

S(p— Ap)Xext =0 <= vec(XJtST(Ap)) = Vec((S(p)Xext)T)
= (I ®cht)vec(ST(Ap)) =r(X).

G(X) Ap

Therefore, I' = GG = (I, ® XL ) Ln @ X2 )T = I ® (X Xext). O

Next we establish the structure of T for an STLS problem with a block-Hankel
data matrix.
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LEMMA 3.4. Let

Cy Cy e Ca ho— n+d
S(p) == GG Gl R (), b
. . . m
C’m Cerl e C’m+n71 m: E7

where C; are K x L unstructured blocks, parameterized by p® € REL as follows:

nooom o n
C, = pL.-i-l pL'+2 p2'L c REXL.
@ i )
Pk-1yL+1 Pk-1)L+2 PkrL
Define a partitioning of X as follows: X/, =: [Xl Xn], where X; € R¥*L,
Then T' has the block-banded Toeplitz structure (3.1) with s =n — 1 and with
n—k
(3.4) I = Z X; X/, where Xy =TIk ® Xy
j=1

Proof. Define the residual R := S(Ap) Xeyx; and the partitioning R =: [Rl e Rm} ,
where Ry € R™>*K . Let AC := S(Ap), with blocks AC;. We have

S(p - Ap)Xext =0 < S(Ap)Xext = S(p)Xext

(X1 Xo - Xy ACT R]
X; X - X ACY Ry
— . . = .
I X1 Xo o+ Xnl| |[ACHin 1 R
[X; X, -0 X, vec(AC]) vec(R])
X; Xy oo Xy vec(ACy ) vec(Rg )
— . . = .
| Xy Xp oo Xy [vee(AChin_1) vec(R)
G(X) Ap r(X)

Therefore, I' = GG has the structure (3.1), with IT';’s given by (3.4). 0

The derivation of the I' matrix for an STLS problem with block-Toeplitz data
matrix is analogous to the one for an STLS problem with block-Hankel data matrix.
We state the result in the next lemma.

LEMMA 3.5. Let

Cm+n—1 C’m+n—2 Tt Om
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with the blocks C; defined as in Lemma 3.4. Then I has the block-banded Toeplitz
structure (3.1) with s =n — 1 and with

(3.5) Te= Y X;X[,

j=k+1
Proof. Following the same derivation as in the proof of Lemma 3.4, we find that

)(n )(n—l o }(1
)(n )(n—l e )(1

>(n }(nfl o )(1
Therefore, I' = GG has the structure (3.1), with I';’s given by (3.5). 0
Proof of Theorem 3.1. Lemmas 3.2-3.5 show that the weight matrix I' for the origi-
nal problem has the block-banded Toeplitz structure (3.1) with s = max;—; . 4(n;—1),
where n; is the number of block columns in the {th block of the data matrix. |

Apart from revealing the structure of I', the proof of Theorem 3.1 gives an algo-
rithm for the construction of the blocks I'g, ..., I's that define I":

2;” o ?)X?) if O is block-Toeplitz,
O~ 0T . OF ~
(3.6) Ty = ZF . where Fg) _ Z X Xtk Tf C l ?s block-Hankel,
OdK it W is exact, or
(

Okl ® (Xe(,l()tTXéQt) if C® is unstructured,

where 6 is the Kronecker delta function: 6p =1 and 6 = 0 for k # 0.

COROLLARY 3.6 (positive definiteness of the weight matrix I'). Assume that the
structure of S is given by (2.6) with the block CD being block-Toeplitz, block-Hankel,
or unstructured and having at least d columns. Then the matriz T'(X) is positive
definite for all X € R™"*<,

Proof. We will show that T'9(X) > 0 for all X € R"*¢, From (3.2), it follows
that I' has the same property. By the assumption col dim(C(?) > d, it follows that

Xé)‘g [ _7,], where the * denotes a block (possibly empty) depending on X. In the
unstructured case, I'9 = I, ® (Xe(xz X(q))' see (3.6). But rank(X(q)TXext) = d,

ext ext

so that T'(@) is nonsingular. In the block- Hankel/Toeplitz case, G is block-Toeplitz
and block-banded; see Lemmas 3.4 and 3.5. One can verify by inspection that in-
dependent of X, G(@(X) has full row rank due to its row echelon form. Then
' = gOg@T > . 0

The positive definiteness of T' is studied in a statistical setting in [10, sect. 4],
where more general conditions are given. The restriction of (2.6) that ensures I" > 0
is fairly minor, so that in what follows we will consider STLS problems of this type
and replace the pseudoinverse in (2.5) with the inverse.

In the next section, we give an interpretation of Theorem 3.1 from a statistical
point of view, and in section 5 we consider in more detail the algorithmic side of the
problem.

4. Stochastic interpretation. Our work on the STLS problem has its origin in
the field of estimation theory. A linear multivariate errors-in-variables (EIV) model
is defined as follows:

(4.1) AX ~ B, where A=A+ A B=B+B, and AX = B.
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The observations A and B are obtained from (nonstochastic) true values A and B
with measurement errors A and B that are zero mean random matrices. Define the
extended matrix C' := [[l B} and the vector ¢ := Vec(C'T) of the measurement
errors. It is well known (see [25, Chap. 8]) that the TLS problem (1.1) provides a
consistent estimator for the true value of the parameter X in the EIV model (4.1)
if cov(¢) = oI (and additional technical conditions are satisfied). If, in addition to
cov(é) = 0?1, ¢ is normally distributed, i.e., ¢ ~ N(0,21), then the solution Xy of
the TLS problem is the maximum likelihood estimate of X.

The EIV model (4.1) is called the structured errors-in-variables model if the ob-
served data C and the true value C' := [A B] have a structure defined by a func-
tion §. Therefore,

C=8(p) and C=38(p),

where p € R™ is a (nonstochastic) true value of the parameter p. As a consequence
the matrix of measurement errors is also structured. Let S be affine (2.2). Then

p
C=3 Sp and p=p+p
i=1

where the random vector p represents the measurement error on the structure pa-
rameter p. In [10], it is proven that the STLS problem (2.1) provides a consistent
estimator for the true value of the parameter X if cov(p) = o2l (and additional
technical conditions are satisfied). If p ~ N(0,52I), then a solution X of the STLS
problem is a maximum likelihood estimate of X.

Let #(X) := vec(S(p)Xext) be the random part of the residual r. In the stochastic
setting, the weight matrix I' is up to the scale factor o2 equal to the covariance
matrix Vi := cov(7). Indeed, 7 = Gp, so that

Vi=E#" =GE(@pp')G" =’GGT = oT.

Next we show that the structure of I'" is in a one-to-one correspondence with
the structure of Vz := cov(é). Let I';; € RUX4K he the (i,7)th block of T' and
let Vz,; € R KX (n+d)K he the (i,4)th block of Vi Define also the following
partitionings of the vectors 7 and ¢:

r C1
F= ||, HeR® and é=|: |, & eRNTDE

I'm Cm

where m := m/K. Using r; = XextC;, where Xeyx := (Ix ® xXT

ot )y We have

(4.2) 0°Ti; = ERT,] = X E (€8] )X L = Xext Va,ij X e -
The one-to-one relation between the structures of I and V; allows us to relate the
structural properties of I', established in Theorem 3.1, with statistical properties of
the measurement errors. Define stationarity and s-dependence of a centered sequence
of random vectors & := {€;,€s,...}, & € ROTDE a5 follows:
e C is stationary if the covariance matrix Vz is block-Toeplitz with block size
(n+d)K x (n+d)K.
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e C is s-dependent if the covariance matrix V; is block-banded with block size
(n+ d)K x (n+ d)K and block bandwidth 2s + 1.
The sequence of measurement errors € being stationary and s-dependent corresponds
to I' being block-Toeplitz and block-banded.

The statistical setting gives an insight into the relation between the structure
of the weight matrix I' and the structure of the data matrix C'. It can be verified
that the structure specification (2.6) implies stationarity and s-dependence for €. This
indicates an alternative (statistical) proof of Theorem 3.1; see the technical report [14].

The blocks of ' are quadratic functions of X, T';;(X) = XextWE,in;;ty where
We,ij i= Ve,ij/0?; see (4.2). Moreover, by Theorem 3.1, we have that under assump-
tion (2.6), Wz i = We |i—;| for certain matrices Wz, & =1,...,m, and Wg ;; = 0 for
|i — j| > s, where s is defined in Theorem 3.1. Therefore,

1
Th(X) = XexiWer XL, for k=0,1,...,s, where Wzy := —5 Ve

In (3.6) we show how the matrices {I';};_, can be determined from the structure
specification (2.6). Similar expressions can be written for the matrices {We 1 };_,-

In the computational algorithm described in section 5, we use the partitioning of
the matrix T' into blocks of size d x d. Let I';; € R%*? be the (4, j)th block of I and
let Vz;; € ROFAx(n+d) he the (4, j)th block of Vz. Define the following partitionings
of the vectors 7 and ¢:

1 C1
F=l 0, r; € R? and c=:|:1, ¢; € R,

Tm Cm

< = XT ¢
Using 7; = X i, we have

ext 9 ext

1. 1 . 1
Ty = pEij = ;XT E (6] ) Xext = ;XT Vaii Xext = Xoea Wi Xext-

5. Efficient cost function and first derivative evaluation. We consider an
efficient numerical method for solving the STLS problem (2.1) by applying standard
local optimization algorithms to the equivalent problem (2.5). With this approach,
the main computational effort is in the cost function and its first derivative evaluation.

First, we describe the evaluation of the cost function: given X, compute fo(X).
For given X, and with {T'x};_, constructed as described in the proof of Theo-
rem 3.1, the weight matrix I'(X) is specified. Then from the solution of the sys-
tem I'(X)y,(X) = r(X), the cost function is found as fo(X) =" (X)y,(X).

The properties of T'(X) can be exploited in the solution of the system Ty, = r.
The subroutine MBO2GD from the SLICOT library [2] exploits both the block-Toeplitz
and the banded structure to compute a Cholesky factor of T' in O((dK)?sm) flops.
In combination with the LAPACK subroutine DPBTRS that solves block-banded tri-
angular systems of equations, the cost function is evaluated in O(m) flops. Thus an
algorithm for local optimization that uses only cost function evaluations has com-
putational complexity O(m) flops per iteration, because the computations needed
internally for the optimization algorithm do not depend on m.

Next, we describe the evaluation of the derivative. The derivative of the cost
function fy is (see the appendix)

B AE =2 Y el COMy() -2 3 1 0 Wey | | o)

i,j=1 i,5=1
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where AT =: [al am], with a; € R™,
M(X):=T"1(X), N(X) :=T"1(X)r(X)r" (X))l }(X),

and M;; € R¥4 N;; € R4 are the (i, j)th blocks of M and N, respectively.
Consider the two partitionings of y, € R™?,

Yr,1 Yri
(5.2) Yr =: N R? and Yr =: . Yri € RIK
Yr.m Yrm

where m :=m/K. The first sum in (5.1) becomes

m
(5.3) Z ajriTMij = AT}/,., where Y.| := [yﬁl yﬁm} .

s
ij=1

Define the sequence of matrices

m—k

Nk = Z YT,iJrk:y;r,p Nk :Njk, kZO,...,S.
i=1

The second sum in (5.1) can be written as

m s K
X
ST 0] Way, [I} Nig= > > (WanijX = Wap 1 )NLij,

i,j=1 k=—s ij=1

where Wz i, ;; € ROFD>X(+d) ig the (7, j)th block of W, € RE(M+dxKn+d) [yy7, e
R™™ ™ and W 4 i € R™*4 are defined as blocks of W k5 as
We kij =: [Wé’k’ij Wéf”k’ij} )
w Wiakii Wokij
and Ny ;5 € R?¥4 is the (i,7)th block of N € R¥UxdK,
Thus the evaluation of the derivative f§(X) uses the solution of I'y, = r, already
computed for the cost function evaluation and additional operations of O(m) flops.
The steps described above are summarized in Algorithm 1.

Algorithm 1. Cost function and first derivative evaluation.
Input: A, B, X, {Wsr}ti_o-

Iy = (IK X X;t)W@k(IK ® XeTxt)T for k=0,1,...,s,

r=vec((AX —B)T),

solve (via MB0O2GD and DPBTRS) I'y, = r, where T is given in (3.1),

fO = rTyr-

If only the cost function evaluation is required, output fy and stop.

Ny = Z?;;k YritkYo; for k=0,1,... s, where y; is defined in (5.2).
fo=2ATY, -2, | Zi(j:l(Wé’kﬂ;jX — Wé&k’ij)NLj, where Y, is defined
in (5.3).

9: Output fo, fj) and stop.
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The flops per step for Algorithm 1 are as follows:

2. (n+d)(n+2d)dK>.
m(n+ 1)d.
msd?K?2.
md.
msd’K — s(s + 1)d*K? /2.

8. mnd+ (2s + 1)(nd +n + 1)dK?.

Thus in total O(md(sdK? + n) + n2dK? + 3nd*K? + 2d*K3 + 2snd>K?) flops are
required for cost function and first derivative evaluation. Note that the flop counts
depend on the structure through s.

Using the computation of the cost function and its first derivative, as outlined
above, we can apply the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-
Newton method. A more efficient alternative, however, is to apply a nonlinear least
squares optimization algorithm, such as the Levenberg—Marquardt algorithm. Let
I' = UTU be the Cholesky factorization of I'. Then f = FTF, with F := U~!r.
(Note that the evaluation of F(X) is cheaper than that of f(X).) We do not know
an analytic expression for the Jacobian matrix J(X) = [0F;/0z;|, but instead we use
the so-called pseudo-Jacobian J proposed in [9]. The evaluation of J; can be done
efficiently, using the approach described above for f'(X).

Moreover, by using the nonlinear least squares approach and the pseudo-Jacobian
J4, we have as a byproduct of the optimization algorithm an estimate of the covariance
matrix V; = E (Vec(X)vecT(X)). As shown in [19, Chap. 17.4.7, eqns. (17)—(35)],
Vi (J] (X)J+(X))7l. Using V3, we can compute statistical confidence bounds for
the estimate X.

ot w

6. Applications and simulation examples. Under assumption (2.6), the
specification of S is given by K and the array D € {(T,H,U,E) x N x N} that de-
scribes the structure of the blocks {C(l)}?zl; D, specifies the block CY) by giving its
type D;(1) (T = block-Toeplitz, H = block-Hankel, U = unstructured, and E = exact),
the number of columns n; = D;(2), and, for block-Toeplitz/Hankel blocks, the column
dimension D;(3) of the block. The following well-known problems are special cases of
the block-Toeplitz/Hankel STLS problem of this paper for particular choices of the
structure description D. (If not specified, K and the third element of D; are equal
to one.)

1. Least squares problem: AX ~ B, A € R™*" exact, B € R™*? noisy and
unstructured is achieved by D = [[E n], [U d]].

2. TLS problem: AX ~ B, C = [A B] € R™*("+4) noisy and unstructured is
achieved by D = [U n + d].

3. Data least squares problem [3]: AX ~ B, A € R™*™ noisy and unstructured,
and B € R™*4 exact is achieved by D = [[U n], [E d]].

4. Mized LS-TLS problem [25, sect. 3.5]: AX ~ B, A = [Anoisy Aexact]s Anoisy €
R™*™ and B € R™*9 noisy and unstructured, Aexact € R™*™2 exact is achieved by
D = [[U n4], [E na], [U d]].

5. Hankel low-rank approzimation problem [4, sect. 4.5], [21]:

(6.1) n&in |Ap||? subject to H(p — Ap) has given rank n,
P

where H is a mapping from the parameter space R to the set of the m x (n + d)
block-Hankel matrices, with block size n, x n,. If the rank constraint is expressed as
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H(p) [ 5] =0, with X € R"*? an additional variable, then (6.1) becomes an STLS
problem with K =n, and D = {[H n +d n,]}.

6. Deconvolution problem: For a description of the problem and its formulation
as an STLS problem, see [17]. In [17] a finite impulse response (FIR) filter identi-
fication problem is considered, which is an application of deconvolution for system
identification. The structure in this case is D = [[T n], [U 1]], where n is the number
of lags of the FIR filter.

7. Transfer function estimation: For a description of the problem and its for-
mulation as an STLS problem, see [4, sect. 4.6]. The structure arising in this problem
is D = [[H np + 1], [H ng + 1]], where ny, is the order of the numerator and n, is the
order of the denominator of the estimated transfer function.

The last three problems have system theoretic interpretation—the Hankel-low-
rank approximation problem is a noisy realization problem [5] or alternatively a model
reduction problem (see section 6.2), and the deconvolution and the transfer function
estimation problems are system identification problems (see section 6.1). For multi-
input, multi-output (MIMO) systems, these problems result in block-Toeplitz/Hankel
structured matrices.

Next we show simulation examples for the system identification and model reduc-
tion applications. They aim to illustrate the applicability of the derived algorithm for
real-life problems. More details on the application of STLS for these problems and
more realistic identification examples can be found in [16].

6.1. Improvement of the subspace identification estimate. Maximum
likelihood SISO transfer function identification from noisy input/output data can
be formulated as an STLS problem with a data matrix composed of two Hankel or
Toeplitz structured blocks next to each other; see [4, sect. 4.6]. The STLS method,
however, needs a good initial approximation. On the other hand, the popular subspace
identification methods [26] do not need initial approximation but do not minimize a
particular cost function. As a result, in general, they are statistically not as accurate
as the methods based on the maximum likelihood principle. A natural idea is to use
the subspace method estimate, on a second stage of the estimation problem, as an
initial approximation for the STLS method. The latter is expected to reduce the
estimation error.

We show a simulation example to illustrate the idea. Consider the linear time-
invariant (LTI) system with a transfer function

_ 14 0.92 4+ 0.4922 + 0.14523
H(z) =0.151 - .
(2) 1—1.22+ 08122 — 02723

This is the “true model” that we aim to identify. Let (@(t), §(t)){~; be an input/output
trajectory of the system, where u is a zero mean, white process with unit variance.
The data available for the identification are (u(t), y(t))i~,, where u = u+1a, y = §+7,
and 1, § are zero mean, normal, white, measurement noise, with variance o = 0.052.
Assuming that the exact system order is known, we apply the state space algorithm
N4SID [26]. The obtained estimate is used as an initial approximation for the STLS
algorithm.

Let vec_par be an operator that stacks the parameters of a transfer function, i.e.,
the coeflicients of the numerator and denominator, in a vector. We define the average
relative error of estimation by

_ 1 & |[vec_par(H) — vec_par(H®)||,
= £

— ||vec_par(H)||2
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Here H® denotes the identified transfer function in the kth repetition of the ex-
periment; N = 100 repetitions of the experiment with different measurement noise
realizations are performed. Figure 6.1 shows the average relative errors ép,, for the
subspace method and for the STLS-based maximum likelihood method as a function
of the time horizon m. The example shows that, for large sample sizes, the two ap-
proaches give close estimates and, for small sample sizes, the subspace estimate can
be improved by the STLS method.

0.3

Epar

Fic. 6.1. Results for the system identification example: Average relative error of estimation
for the subspace and STLS methods.

6.2. MIMO system model reduction. Finite horizon 2-norm optimal model
reduction can be formulated as an STLS problem with a block-Hankel structured data
matrix. On the other hand, balanced model reduction [18], like subspace identifica-
tion, does not require initial approximation but also does not minimize a particular
cost function. Again an improvement can be expected over the balanced model reduc-
tion method when the STLS method is used on a second stage of the approximation.

To illustrate the idea, consider the following example. A 10th order, 2-input,
l-output random system has to be approximated by an rth order system, where
r = 2,4,6,8. First we apply balanced reduction. The obtained solution is used as
an initial approximation for the STLS method. Table 6.1 shows the average relative
‘Ha-errors of approximation over N = 100 repetitions:

The example confirms that the STLS method can be used to improve the result of
the balanced model reduction method.

TABLE 6.1

Results for the model reduction example: Average relative error of estimation €y, for balanced
model reduction (BMR) and STLS.

[Method H r=2 r=4 r==6 r=38 ]

BMR 0.1062122  0.0288455 0.0012585  0.0000259
STLS 0.1034344  0.0276010 0.0012433  0.0000229
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7. Conclusions. We considered an STLS problem with the structure of the
data matrix, specified blockwise. Each of the blocks can be block-Toeplitz/Hankel
structured, unstructured, or exact. It was shown that such a formulation is flexible and
covers as special cases many previously studied structured and unstructured matrix
approximation problems.

The numerical solution method of [13] was extended to the block-Toeplitz/Hankel
case. The approach is based on an equivalent unconstrained optimization problem:
miny r " (X)I'~1(X)r(X). We proved that under assumption (2.6) about the struc-
ture of the data matrix, the weight matrix I' is block-Toeplitz and block-banded.
These properties were used for cost function and first derivative evaluation with com-
putational cost linear in the sample size.

The extension to block-Toeplitz/Hankel structured matrices is motivated by iden-
tification and model reduction problems for MIMO dynamical systems. Useful further
extensions are (i) to consider a weighted quadratic cost function Ap" V Ap, with V > 0
diagonal, and (ii) regularized STLS problems, where the cost function is augmented
with the regularization term vec (X)Qvec(X). These extensions are still computable
in O(m) flops per iteration.

Appendix. Derivation of the first derivative of the cost function fy.
Denote by D the differential operator. It acts on a differentiable function fy : U — R,
where U is an open set in R"*? and gives as a result another function, the differential
of fo, D(fo) : U x R®*4 — R. The differential D(f) is linear in its second argument,
ie.,

(A1) D(fo) == dfo(X, H) = trace(f)(X)H "),
and has the property
Jo(X + H) = fo(X) +dfo(X, H) +o(||Hl|r)

for all X € U and for all H € R"*%. (The notation o(||H||r) has the usual meaning:
g(H) = o(||H||r) if and only if lim) g, —o g(H)/||H|lr = 0.) The function fj: U —
R"*! is the derivative of fo. We compute it by deriving the differential D(fy) and
representing it in the form (A.1), from which f{(X) is extracted.
The differential of the cost function fo(X) = " (X)I'~Y(X)r(X) is (using the
rule for differentiation of an inverse matrix)
HTal
dfo(X,H)y=2r"T7" | : | —r'T7(dl(X,H))T " 'r.
HTa'm

The differential of the weight matrix

XTa, —by
P=V:=E# =E : Al X —b] - anLX-bl],
X Ty, — b
where AT =: [dl am], a; € R", and BT =: [61 bm}, b € R4, is
HTa,
(A.2) dI'(X,H)=E c | FT+EF[ajH -+ a)H].

T~
H'a,,
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With M;; € R¥4 denoting the (i, j)th block of 'L,

m

1 T T T T~ T
54fo(X, H) = Z ri MyH a; — Z ) MyH "E @;¢] Xexe Mjmi
4,j=1 i,5,k,l=1
= trace(( Z ajriTMij — Z [I 0] V%JleXthl’l”lTlTMli)HT),
i,j=1 i,k 1=1
so that
1 m m
§f6(X) = Z a;r Mij — Z [T 0] Vaij Xext Njs,
ij=1 ij=1

where Nj;(X) := 3% Myry - >0 v My;.
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