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BREAKDOWN-FREE GMRES FOR SINGULAR SYSTEMS∗

LOTHAR REICHEL† AND QIANG YE‡

Abstract. GMRES is a popular iterative method for the solution of large linear systems of
equations with a square nonsingular matrix. When the matrix is singular, GMRES may break down
before an acceptable approximate solution has been determined. This paper discusses properties of
GMRES solutions at breakdown and presents a modification of GMRES to overcome the breakdown.
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1. Introduction. GMRES by Saad and Schultz [17] is one of the most popular
methods for the iterative solution of large nonsymmetric linear systems of equations

Ax = b, A ∈ R
n×n, x, b ∈ R

n.(1.1)

The performance of the method is well understood when A is nonsingular, but the
method also can be applied when A is singular. This paper focuses on the latter case.
For notational simplicity, we choose the initial approximate solution of (1.1) to be
x0 := 0 and assume that the right-hand side vector b in (1.1) is normalized so that
‖b‖ = 1. Here and throughout this paper ‖ · ‖ denotes the Euclidean vector norm or
the associated induced matrix norm.

The standard implementation of GMRES is based on the Arnoldi process. Ap-
plication of k steps of the Arnoldi process to the matrix A with initial vector b yields
the Arnoldi decomposition

AVk = VkHk + fke
T
k ,(1.2)

where Hk ∈ R
k×k is an upper Hessenberg matrix, Vk ∈ R

n×k, Vke1 = b, V T
k Vk = Ik,

V T
k fk = 0, Ik denotes the identity matrix of order k, and ek is the kth axis vector.

When fk �= 0, it is convenient to define the matrices

Vk+1 :=

[
Vk,

fk
‖fk‖

]
∈ R

n×(k+1), Ĥk :=

[
Hk

‖fk‖ eTk

]
∈ R

(k+1)×k(1.3)

and express (1.2) in the form

AVk = Vk+1Ĥk.(1.4)

Note that V T
k+1Vk+1 = Ik+1. We assume that k is small enough so that at least one

of the Arnoldi decompositions (1.2) or (1.4) exists. We will comment on the size of k
below.
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It follows from (1.2) and the orthonormality of the columns of Vk that the latter
form an orthonormal basis of the Krylov subspace

Kk(A, b) := span{b, Ab, . . . , Ak−1b}.

We will write Kk instead of Kk(A, b) when there is no ambiguity.
The kth iterate, xk, determined by GMRES satisfies

‖b−Axk‖ = min
z∈Kk

‖b−Az‖, xk ∈ Kk.

Assuming that fk �= 0, the iterate xk is computed by first solving the minimization
problem in the right-hand side of

min
z∈Kk

‖b−Az‖ = min
y∈Rk

‖b−AVky‖ = min
y∈Rk

‖e1 − Ĥky‖(1.5)

for yk ∈ R
k. Then xk is given by

xk := Vkyk.(1.6)

Since the subdiagonal entries of Ĥk are nonvanishing, the matrix Ĥk is of full rank,
and therefore yk is uniquely determined. We refer to Saad [16] and Saad and Schultz
[17] for implementation details.

We say that the Arnoldi process (1.2) breaks down at step k if fk = 0. Then the
minimization problem (1.5) can be expressed as

min
z∈Kk

‖b−Az‖ = min
y∈Rk

‖b−AVky‖ = min
y∈Rk

‖e1 −Hky‖,(1.7)

and the solution yk of the minimization problem in the right-hand side yields the
solution x := Vkyk of (1.1). In this case, it is easy to show that if A is nonsingular,
then Hk is nonsingular and yk is uniquely determined.

When the matrix A is singular, the Arnoldi process may break down at step k
with the upper Hessenberg matrix Hk in the decomposition (1.2) being singular. Let
yk denote the least-squares solution of minimal Euclidean norm of the minimization
problem on the right-hand side of (1.7). The vector xk := Vkyk is not guaranteed to
solve the linear system of equations (1.1). The investigations [4, 5, 8] shed light on the
properties of xk, specifically on the question of whether xk is a least-squares solution
of (1.1). Related results also can be found in the review [14]. Several Krylov subspace
methods for nonsymmetric singular systems are described in [1, 10, 11, 12, 18]. The
present paper focuses on GMRES. Singular systems, several generalized inverses, and
their applications are discussed in [2, 9].

We say that GMRES breaks down at step k if the Arnoldi process breaks down
at step k. In this paper, we first discuss various properties of GMRES at breakdown,
such as whether a solution is contained in the Krylov subspace and hence found
by GMRES, and if not, what subspace contains a solution. Both consistent and
inconsistent systems are considered. We then introduce a generalization of the Arnoldi
decomposition that can be used when the (standard) Arnoldi process breaks down.
We refer to GMRES based on the generalized Arnoldi decomposition as breakdown-free
GMRES or simply BFGMRES. We also describe a breakdown-free variant of range
restricted GMRES, which we refer to as BFRRGMRES. The (standard) RRGMRES
method was introduced in [5]. Our interest in RRGMRES stems from the fact that
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the method can determine more accurate approximations of the desired solution of
large-scale discrete ill-posed problems than GMRES can; see [6] for illustrations. We
remark that our approach to overcome breakdown of the Arnoldi process is related
to but quite different from the technique described in [19] for avoiding breakdown of
the nonsymmetric Lanczos process.

This paper is organized as follows. Section 2 discusses properties of approximate
solutions determined by GMRES at breakdown when applied to the solution of con-
sistent and inconsistent linear systems of equations with a singular matrix. Section 3
presents an algorithm for BFGMRES and discusses the minor modification required
to obtain an algorithm for BFRRGMRES. Some properties of (BF)RRGMRES are
also discussed. A few numerical examples are presented in section 4.

We remark that linear systems of equations with a numerically singular matrix
arise, for instance, in the context of ill-posed problems (see [6, 7]) and when computing
the steady state distribution of finite Markov chains; see, e.g., [15]. Furthermore,
overdetermined systems of equations with n rows and m columns, where n > m, can
be brought into the form (1.1) by appending n−m zero columns to the matrix. The
matrix A so obtained is singular, and the linear system of equations can be solved
by BFGMRES or BFRRGMRES. A comparison of this approach with application
of the conjugate gradient method to the normal equations is presented in section 4.
Underdetermined linear systems of equations can also be solved by BFGMRES or
BFRRGMRES by first appending an appropriate number of zero rows to the matrix.

2. Breakdown of GMRES. We first discuss breakdown of the (standard)
Arnoldi process in some detail and introduce the notions of benign and hard break-
downs. There is a positive integer N , such that

dim (Kk) =

{
k, 1 ≤ k ≤ N,
N, k ≥ N + 1.

This easily can be seen by using the Jordan form of A. Clearly, N ≤ n.
For k ≤ N , the Arnoldi decomposition (1.2) exists. We distinguish two cases:
1. If Avk /∈ Kk, then fk �= 0 in (1.2). It follows that the decomposition (1.4)

exists, and the columns of the matrix Vk+1 form an orthonormal basis of
Kk+1, the matrix Ĥk is of full rank, and the minimization problem in the
right-hand side of (1.5) has a unique solution yk, which by (1.6) determines
xk, the kth iterate generated by GMRES. It follows from dim (Kk+1) = k+1
that Axk �= b.

2. If Avk ∈ Kk, then fk = 0 in the Arnoldi decomposition (1.2). We have
dim (Kk+1) = k, and therefore k = N . The Arnoldi process and GMRES
break down. Again, we distinguish two cases:
(a) If dim (AKN ) = N , then rank(HN ) = N , and the Nth iterate, xN ,

generated by GMRES is determined by first solving the minimization
problem in the right-hand side of (1.7), with k replaced by N , for yN ,
and then computing xN from (1.6) with k replaced by N . Since

span{b} + AKN = KN+1, dim (KN+1) = N,

we have that b ∈ AKN . Thus, AxN = b. Therefore, this is referred to as
a benign breakdown; the solution has been found when the breakdown
occurs, just like when the matrix A is nonsingular.

(b) If dim (AKN ) < N , then rank(HN ) < N . Let yN be the solution of
minimal norm of the least-squares problem in the right-hand side of
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(1.7), and determine the iterate xN by (1.6) with k replaced by N . Note
that AxN �= b because b /∈ AKN . We refer to this as a hard breakdown.

We remark that our classification of breakdowns is slightly different from that of
Brown and Walker [4].

Next, we characterize the approximate solutions of (1.1) that can be determined
by GMRES when a hard breakdown occurs. Throughout this paper N (M) denotes
the null space and R(M) denotes the range of the matrix M . We consider consistent
and inconsistent systems separately.

2.1. Consistent systems. Ipsen and Meyer [14] showed that Krylov subspace
iterative methods, such as GMRES, are able to determine a solution of the linear
system of equations (1.1) if and only if b ∈ R(AD), where AD denotes the Drazin
inverse of A; see (2.10) below for a definition. The following theorem complements
this result; it discusses the form of the solution when the right-hand side b is a general
vector in R(A).

Theorem 2.1. Let the matrix A be singular and assume that the linear system of
equations (1.1) is consistent. Apply GMRES with initial approximate solution x0 := 0
to the solution of (1.1) and assume that a hard breakdown occurs at step N . If ANb �=
0, then any solution x of (1.1) can be expressed as

x = x̂ + u,(2.1)

where x̂ ∈ KN−1 and u ∈ N (A�)\{0} for some integer � with 2 ≤ � ≤ N . If instead
ANb = 0, then any solution of (1.1) belongs to N (AN+1).

Proof. We first consider the case when ANb �= 0. Since dim (KN ) = N and
dim (AKN ) < N , the vector ANb is a linear combination of the vectors {Ajb}N−1

j=1 .
Let � be the largest integer with 2 ≤ � ≤ N , such that

α�−1A
�−1b + α�A

�b + · · · + αN−1A
N−1b + ANb = 0(2.2)

for some coefficients α�−1, α�, . . . , αN−1. Clearly, α�−1 �= 0.
Let x be a solution of (1.1). Then (2.2) yields

A�x +
α�

α�−1
A�b + · · · + αN−1

α�−1
AN−1b +

1

α�−1
ANb = 0

or, equivalently,

A�

(
x +

α�

α�−1
b + · · · + αN−1

α�−1
AN−�−1b +

1

α�−1
AN−�b

)
= 0.(2.3)

Let

x̂ := − α�

α�−1
b− · · · − αN−1

α�−1
AN−�−1b− 1

α�−1
AN−�b, u := x− x̂.

Clearly, x̂ ∈ KN−�+1 ⊂ KN−1, and it follows from (2.3) that u ∈ N (A�). Since
Ax̂ �= b, we have u �= 0.

We turn to the case when ANb = 0. With b = Ax, we have AN+1x = 0, which
shows that x ∈ N (AN+1).

The matrix A is said to have index p if its largest Jordan block associated with the
eigenvalue zero is of order p. It follows that if A has index p, then N (Aj) = N (Ap)
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for all integers j ≥ p. Then by Theorem 2.1 any solution x belongs to a subspace
extended from the Krylov subspace, i.e.,

x ∈ KN−1 + N (Ap).(2.4)

We note that only the Krylov subspace KN−1 is needed. This is different from the
situation of benign breakdown, where the solution of (1.1) belongs to KN . This fact
will be used in our extension of GMRES described in section 3.

Brown and Walker [4, Theorem 2.6] show that if the linear system of equations
(1.1) is consistent and

N (A) ∩R(A) = {0},(2.5)

then GMRES applied to (1.1) with initial approximate solution x0 := 0 determines a
solution. This result is a corollary to the theorem above. Note that condition (2.5) is
equivalent to A having index one.

Corollary 2.2. Let A be a singular matrix of index one, and assume that the
linear system of equations (1.1) is consistent. Then hard breakdown cannot occur.

Proof. We use the notation of Theorem 2.1 and its proof. Assume that a hard
breakdown occurs at step N of GMRES. First consider the situation when ANb �= 0.
Theorem 2.1 shows that x̂ = x − u with u ∈ N (A�) = N (A). Therefore, Ax̂ =
Ax−Au = b, which is a contradiction.

We turn to the case when ANb = 0 and b �= 0. Then x ∈ N (AN+1) = N (A).
Hence, Ax = 0, which is a contradiction.

We consider an application of Corollary 2.2.
Example 2.1. Let Ã ∈ R

n×�, with � < n, and assume that the leading �×� principal
submatrix of Ã is nonsingular. Let b ∈ R(Ã). We are interested in computing the
solution of the consistent linear system of equations

Ãx̃ = b.(2.6)

Assume that a function for the evaluation of matrix-vector products with the matrix
Ã is available, but that the entries of the matrix are not explicitly known. It then may
be attractive to solve (2.6) by an iterative method. The standard iterative method for
this task is the conjugate gradient method applied to the normal equations associated
with (2.6), using the CGLS or LSQR algorithms; see, e.g., [3]. These algorithms
require the evaluation of matrix-vector products with both the matrices Ã and ÃT . If
only a function for the evaluation of matrix-vector products with Ã is available, but
not with ÃT , then we may consider using GMRES, which does not require ÃT . We
note that the cost per iteration for GMRES increases rapidly with the iteration and
restarts are needed in practical implementations. The fact that the matrix Ã is not
square can be overcome by padding Ã with n − � trailing zero columns. This yields
an n × n matrix, which we denote by A, and we obtain a linear system of equations
of the form (1.1). GMRES then is applied to compute an approximate solution of
this system. Note that zero is an eigenvalue of A of algebraic multiplicity n− �; this
can be seen from the Schur form. Moreover, the axis vectors e�+1, e�+2, . . . , en are in
N (A). It follows that A has index one, and by Corollary 2.2, GMRES cannot suffer
from a hard breakdown.

Let xk ∈ R
n denote the kth iterate determined by GMRES. The first � entries of

xk yield an approximate solution of (2.6). The zero columns of A, of course, do not
have to be stored.
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We remark that the requirement that Ã have a nonsingular �×� leading principal
submatrix secures that the matrix is of full rank. Conversely, if Ã is of full rank,
then there is a row-permutation such that the leading principal � × � submatrix is
nonsingular. We also observe that different row permutations could lead to a very
different performance of GMRES, because the spectrum of A may change as the
rows are interchanged. A comparison of the convergence behavior of CGLS and
GMRES when applied to the solution of linear systems of equations of the form (2.6)
is presented in section 4.

We also consider the special case when a breakdown occurs when the dimension
of the Krylov subspace N is equal to the rank of A. This should be compared with
Theorem 2.7 below where interestingly a much stronger result exists for inconsistent
systems.

Theorem 2.3. Let the matrix A ∈ R
n×n be of rank N < n and assume that the

linear system of equations (1.1) is consistent. Apply GMRES with initial approximate
solution x0 := 0 to the solution of (1.1). Assume that GMRES breaks down at step
N . If dim (AKN ) = N , then GMRES determines a solution of (1.1) at breakdown.
If, instead, dim (AKN ) < N , then (1.1) has a solution in KN + R(AT ).

Proof. The Arnoldi process breaks down at step N and yields the decomposition

AVN = VNHN , VNe1 = b.(2.7)

If dim (AKN ) = N , then the breakdown is benign and GMRES determines a solution
of (1.1).

We turn to the case when dim (AKN ) < N . Then the upper Hessenberg matrix
HN in the decomposition (2.7) is singular. Since HN has positive subdiagonal entries,
rank(HN ) = N − 1. Let u ∈ N (HT

N ) be of unit length and introduce v := A†VNu,
where A† denotes the Moore–Penrose pseudoinverse of A. Note that v ∈ R(AT ).
Since b ∈ R(A), we have that R(VN ) ⊂ R(A). Therefore, Av = VNu and it follows
that V T

N Av = u. We seek a solution of (1.1) of the form

x = VNy + vη, y ∈ R
N , η ∈ R.

Substituting this expression into (1.1) yields the equation AVNy + Avη = b, which,
using (2.7), can be seen to be equivalent to

[HN , u]

[
y
η

]
= e1.(2.8)

Since the matrix [HN , u] ∈ R
N×(N+1) is of full rank, (2.8) has a solution {ŷ, η̂}, which

gives the solution x̂ := VN ŷ + vη̂ of (1.1).
In the second case of the theorem, i.e., when dim (AKN ) < N , a solution of (1.1)

can be determined by a modification of GMRES that minimizes the residual error
over KN + R(AT ).

2.2. Inconsistent systems. First, we note that, for inconsistent systems, HN

in the Arnoldi decomposition determined at breakdown must be singular, because
otherwise a solution to (1.1) would be obtained. Therefore, only hard breakdown can
occur. We consider the computation of a least-squares solution of (1.1) and formulate
our results in terms of the Drazin inverse of A. Let A have the representation

A = C

[
J0 0
0 J1

]
C−1,(2.9)
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where the matrix C ∈ C
n×n is invertible, the matrix J0 consists of all Jordan blocks

associated with the eigenvalue zero, and the matrix J1 consists of all Jordan blocks
associated with nonvanishing eigenvalues. The Drazin inverse of A is given by

AD := C

[
0 0
0 J−1

1

]
C−1.(2.10)

See [9, Chapter 7] for properties of this generalized inverse. We note that if A has
index p, then

N (Ap) = N (AD).

Theorem 2.4. Let the singular matrix A have index p. Assume that a hard
breakdown occurs at step N when GMRES is applied to (1.1) with initial approximate
solution x0 := 0, and that ANb �= 0. Then any least-squares solution x of (1.1) can
be written in the form

x = x̂ + u−ADr,(2.11)

where x̂ ∈ KN−1, u ∈ N (AD) = N (Ap), and r := b − Ax ∈ N (AT ) is the residual
vector associated with x.

Proof. Similarly as in the proof of Theorem 2.1, let � be the largest integer with
2 ≤ � ≤ N , such that (2.2) holds. It follows that

A�−1

(
b +

α�

α�−1
Ab + · · · + αN−1

α�−1
AN−�b +

1

α�−1
AN−�+1b

)
= 0.

Since N (A�−1) ⊂ N (Ap), we also have

Ap

(
b +

α�

α�−1
Ab + · · · + αN−1

α�−1
AN−�b +

1

α�−1
AN−�+1b

)
= 0.(2.12)

Let x be a least-squares solution of (1.1) and introduce the associated residual vector
r := b−Ax. Substituting b = r + Ax into (2.12) yields

Ap

(
Ax +

α�

α�−1
Ab + · · · + αN−1

α�−1
AN−�b +

1

α�−1
AN−�+1b

)
= −Apr,

and, therefore,

Ap+1

(
x +

α�

α�−1
b + · · · + αN−1

α�−1
AN−�−1b +

1

α�−1
AN−�b

)
= −Apr.(2.13)

Let

x̂ := − α�

α�−1
b− · · · − αN−1

α�−1
AN−�−1b− 1

α�−1
AN−�b, w := x− x̂.

Then x̂ ∈ KN−�+1 ⊂ KN−1 and

Ap+1w = −Apr.(2.14)

The linear system of equations (2.14) is consistent, and any solution can be expressed
as w = −ADr + u, where AD denotes the Drazin inverse of A and u ∈ N (Ap). We
remark that R(AD) + N (AD) makes up all of the n-space.
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The following corollary considers the situation when, in addition to the conditions
of Theorem 2.4,

N (AT ) ⊂ N (AD).(2.15)

In this case, the following result, which is similar to our result for the consistent case,
holds.

Corollary 2.5. Let the singular matrix A have index p and assume that a hard
breakdown occurs at step N when GMRES is applied to (1.1) with initial approximate
solution x0 := 0. Let x be a least-squares solution of (1.1) and assume that (2.15)
holds. If ANb �= 0, then x can be written in the form

x = x̂ + u,(2.16)

where x̂ ∈ KN−1 and u ∈ N (AD) = N (Ap). If, instead, ANb = 0, then x ∈ N (AD).

Proof. First assume that ANb �= 0. Let r := b − Ax denote the residual vector
associated with the least-squares solution x of (1.1). Then r ∈ N (AT ) and (2.15)
yields ADr = 0. Equation (2.16) now follows from (2.11).

If ANb = 0, then Apb = 0. Therefore,

0 = Apb = Ap(r + Ax) = Apr + Ap+1x = Ap+1x,

and x ∈ N (AD) follows from N (Ap+1) = N (AD).

Let

A = QSQ∗(2.17)

be a Schur decomposition; i.e., S ∈ C
n×n is upper triangular, Q ∈ C

n×n is unitary,
and the superscript ∗ denotes transposition and complex conjugation. Order the
eigenvalues and partition

S =

[
S11 S12

0 S22

]
(2.18)

so that all diagonal entries of S11 are zero and the diagonal entries of S22 are nonva-
nishing. Using N (Ap) = N (An) and Sn

11 = 0, we can show that S11 J1 in Sp
11 = 0.

N (AT ) ⊂ N (Ap) is equivalent to N (ST
11) ⊂ N (ST

12).

The following result by Brown and Walker [4, Theorem 2.4] can be shown in a
similar manner as Theorem 2.4 above. We include a proof for completeness.

Corollary 2.6. Let A be a singular matrix, such that N (A) = N (AT ). Apply
GMRES to (1.1) with initial approximate solution x0 := 0. Then GMRES determines
a least-squares solution at breakdown.

Proof. Using the Schur decomposition (2.17) of A and the partitioning (2.18), it
can be shown that the condition N (AT ) = N (A) implies that S11 = 0 and S12 = 0.
Hence, A has index p = 1. Thus, (2.15) holds, and therefore the conditions of Corollary
2.5 are satisfied. Assume that GMRES breaks down at step N . If ANb �= 0, then
Corollary 2.5 shows that a least-squares solution x can be expressed as x = x̂+u, where
x̂ ∈ KN−1 and u ∈ N (Ap) = N (A). It follows that b−Ax̂ = b−Ax and, therefore, x̂
is a least-squares solution of (1.1). Since GMRES minimizes the Euclidean norm of
the residual error over KN , GMRES will determine a least-squares solution.
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If, instead, ANb = 0, then Ab = 0, and therefore AT b = 0. Hence, x = 0 is a
least-squares solution and so is any multiple of b. GMRES breaks down at step one
and yields the least-squares problem

min
y∈R

|H1y − 1|(2.19)

with H1 = 0, where we have used that ‖b‖ = 1. The minimal-norm least-squares
solution y := 0 gives the least-squares solution x := 0 of (1.1). A least-squares
solution y �= 0 of (2.19) yields the least-squares solution x := yb of (1.1).

Corollary 2.6 holds for any right-hand side vector b in (1.1) but requires that
N (A) = N (AT ). We remark that GMRES often can find a least-squares solution
even when this condition does not hold (see Example 4.1 below). The following
result, first stated in [5, Theorem 2.2], explains this observed behavior. It deals with
the most typical situation of breakdown, i.e., a breakdown at step rank(A)+1, which
is the upper bound of the dimension of the Krylov subspace as Kk+1 = span{b}+AKk

and b /∈ R(A).
Theorem 2.7. Let the matrix A ∈ R

n×n be of rank N < n and apply GMRES
with initial approximate solution x0 := 0 to the solution of (1.1). If GMRES breaks
down at step N + 1, then GMRES determines a least-squares solution.

Proof. An index is incorrect in the proof in [5]; the index is not consistent with
the definition of breakdown in [5], which is different from the definition in the present
paper. We therefore provide a proof here.

The Arnoldi process generates an orthonormal basis of the Krylov subspace
KN+1 = span{b}+AKN before breakdown. It follows that dim (AKN ) = N . Suppose
that GMRES does not determine a least-squares solution of (1.1); i.e., there is no
x ∈ KN+1 that satisfies the normal equations ATAx = AT b. In other words,

AT b �∈ ATAKN+1.(2.20)

By Lemma 2.1 in [5], or by [4, pp. 40–41], dim (ATAKN+1) = dim (AKN+1), and
since dim (AKN+1) ≥ dim (AKN ) = N , we obtain that dim (ATAKN+1) ≥ N . It now
follows from (2.20) that ATKN+2 = span{AT b} + ATAKN+1 is of dimension at least
N + 1. However, rank(AT ) = rank(A) = N . Therefore, dim (ATKN+2) ≤ N . This
contradiction shows that KN+1 does contain a least-squares solution of the normal
equation. Hence, GMRES determines a least-squares solution.

The conditions of Theorem 2.7 hold if p(A)b �= 0 for any polynomial p of de-
gree less than or equal to N . This is the case, for example, when A has distinct
nonzero eigenvalues, at most one zero eigenvalue with a nontrivial Jordan block, and
each eigenvector and its associated Jordan chain have a nonzero component in b. We
also note that the conditions can be satisfied only if the linear system (1.1) is incon-
sistent, because otherwise R(VN+1) ⊂ R(A). But this inclusion cannot hold since
dim (R(A)) = N .

Example 2.2. Let Ã be a matrix of the same kind as in Example 2.1, and assume
that b ∈ R

n is not in R(A). We are interested in computing the solution of the
least-squares problem

min
x̃∈R�

‖Ãx̃− b‖.(2.21)

Similarly as in Example 2.1, we define the matrix A ∈ R
n×n by padding Ã with n− �

trailing zero columns. We obtain a linear system of equations of the form (1.1). If
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GMRES applied to this system with initial approximate solution x0 := 0 does not
break down until step � + 1, then according to Theorem 2.7 a least-squares solution
of (1.1) has been determined. The first � components of the computed solution make
up a least-squares solution of (1.1).

This example illustrates that it may be possible to determine a solution of (2.21)
by (standard) GMRES. The breakdown-free GMRES method of the following section
is useful when (standard) GMRES breaks down before step � + 1.

3. Breakdown-free GMRES. This section presents an extension of GMRES
to overcome breakdown. We comment on a breakdown-free variant of RRGMRES at
the end of the section.

From our discussions in section 2, when GMRES suffers a hard breakdown at step
N , the Krylov subspace KN does not contain a solution of the linear system (1.1);
however, as Theorem 2.1 shows, any solution belongs to KN−1+N (Ap). This suggests
that, to compute a solution, the Krylov subspace KN−1 has to be extended to capture
the component of the solution in N (Ap), which is an eigenvector of Ap corresponding
to the eigenvalue zero. This eigenvector can be approximated from a Krylov subspace
generated by a new vector. Therefore, at every breakdown of the Arnoldi process, we
generate a new Krylov subspace and add it to the available one(s). Then we seek an
approximation from the extended subspace. An implementation is presented below.

We remark that our approach for avoiding breakdown is related to but different
from the technique for the nonsymmetric Lanczos algorithm presented in [19]. In [19]
a new Krylov subspace is appended to the existing Krylov subspace KN and both
subspaces are expanded after breakdown. In the present paper, we instead append
a new Krylov subspace to KN−1 without further expanding KN−1 as follows. Let vj
denote the jth column of the matrix Vk in (1.2); i.e., Vk = [v1, v2, . . . , vk]. It follows
from (1.3) that if fk �= 0, then vk+1 = fk/‖fk‖. Moreover, let hi,j denote the entry

in position (i, j) of the matrices Hk in (1.2) or Ĥk in (1.4). It follows from (1.3) that
hk+1,k = ‖fk‖. Identifying the kth column of the right-hand and left-hand sides of
(1.4) yields

Avk = h1,kv1 + · · · + hk,kvk + hk+1,kvk+1.(3.1)

Assume that GMRES breaks down at step N . Then the Arnoldi decomposition
(1.2) holds with k = N and fN = 0. If HN is nonsingular, then GMRES finds the
solution of (1.1) at this step. On the other hand, if HN is singular, then GMRES
cannot determine the solution of (1.1).

We remark that an exact breakdown is rare in actual computations in floating-
point arithmetic. However, we have to be concerned about near-breakdown when
the orthogonal projection of the vector AvN into the complement of KN is nonvan-
ishing but “tiny.” In this situation, we can still determine the last column vN+1 =
fN+1/‖fN+1‖ of the matrix VN+1 in the Arnoldi decomposition (1.4), but the entry
hN+1,N of ĤN is tiny. If the matrix ĤN is well conditioned, then this is a benign
near-breakdown, and the computations can be continued with (standard) GMRES.
On the other hand, if ĤN is severely ill conditioned, then we are suffering from a
hard near-breakdown, and standard GMRES will have difficulties finding a solution.
Theorem 2.1 shows that in case of a hard breakdown at step N , with ANb �= 0, a
component of the solution belongs to span{v1, v2, . . . , vN−1} = KN−1, but the column
vN of VN is not required to represent the solution. We therefore replace this column
by a unit vector, say, v̂, which is orthogonal to the columns v1, v2, . . . , vN of VN . Such
a vector can be generated, for example, by orthogonalizing a random vector against
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v1, v2, . . . , vN . We also report numerical experiments in which we determine the vec-
tor v̂ by orthogonalizing AT rN−1 against v1, v2, . . . , vN , where rN−1 := b − AxN−1

denotes the residual vector associated with the approximate solution xN−1 of (1.1).
There are two reasons for the latter choice of v̂. The vector AT rN−1 is parallel to the
steepest descent direction for the functional

z → ‖Az − rN−1‖2,

and, therefore, we expect v̂ to give rapid decrease of the norm of the residual error.
Moreover, AT rN−1 is the residual error for the normal equations associated with (1.1).
It may be pertinent to evaluate the residual error for the normal equations regularly
when the linear system of equations (1.1) is inconsistent, because when this error is
small, an acceptable approximate solution of (1.1) may have been found. The main
disadvantage of this choice of v̂ is that it requires a matrix-vector product evaluation
with AT . We therefore also present numerical examples when v̂ is determined by
orthogonalization of a random vector.

When we replace the last column of VN by v̂, i.e., vN := v̂, we create a new matrix
U1 and put the old vN there. Specifically, we let vN be the first column, denoted by
u1, of the matrix U1, i.e., U1 = [u1]. Thus, analogously to (3.1), we obtain

AvN−1 = h1,N−1v1 + · · · + hN−1,N−1vN−1 + hN,N−1u1.

We can now compute a generalized Arnoldi decomposition, where, for k := N,N +
1, N + 2, . . ., until the next breakdown occurs, we require the columns Vk to be or-
thonormal, as well as orthogonal to U1. Thus, we obtain, for k := N,N +1, N +2, . . .,
until another breakdown occurs,

Avk − Vk(V
T
k Avk) − U1(U

T
1 Avk) = fk.

If a new near-breakdown occurs, say, if the entry hk+1,k = ‖fk‖ of Ĥk is tiny, then
the vector vk is appended to the matrix U1; i.e., we define U2 := [U1, vk], and a
new unit vector, denoted by v̂, which is orthogonal to all the columns of Vk−1 and
U2, is generated. We replace the last column of Vk by v̂, and the computations
are continued in a similar fashion as after the first near-breakdown. The following
algorithm implements this process. The right-hand side vector b of (1.1) is not required
to be of unit length in the algorithm. The vector hk denotes the last column of the
upper Hessenberg matrix Hk in (1.2). Further, Ĥk−1(k, :) denotes the kth row of the

matrix Ĥk−1. The function cond(Ĥk) evaluates the condition number ‖Ĥk‖‖Ĥ†
k‖ of

the matrix Ĥk. The condition number is defined to be infinite if Ĥk is not of full rank.
Algorithm 1 (Breakdown-Free GMRES (BFGMRES)).
1 Input: A ∈ R

n×n, b ∈ R
n (b �= 0); tol (threshold for breakdown)

2 Initialize: v1 := b/‖b‖; p := 0; V1 := [v1]; U0 := [ ]; Ĥ0 := [ ]; G0 := [ ];
3 for k := 1, 2, · · · until convergence
4 w := Avk;
5 hk := V T

k w; gk := UT
p w;

6 w := w − Vkhk − Upgk;
7 hk+1,k := ‖w‖;

8 Ĥk :=

[
Ĥk−1 hk

0 hk+1,k

]
;

9 if cond(Ĥk) > 1/tol then
10 Up+1 := [Up, vk];
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11 Gk−1 :=

[
Gk−1

Ĥk−1(k, :)

]
; Ĥk−1(k, :) := 0;

12 Let v̂ be a unit vector, such that V T
k−1v̂ = 0, UT

p+1v̂ = 0;
13 Replace the last column vk of Vk by v̂, i.e., let vk := v̂;
14 w := Avk;
15 hk := V T

k w; gk := UT
p+1w;

16 w := w − Vkhk − Up+1gk;
17 hk+1,k := ‖w‖;

18 Ĥk :=

[
Ĥk−1 hk

0 hk+1,k

]
;

19 if cond(Ĥk) > 1/tol then goto line 12;
20 p := p + 1;
21 endif
22 vk+1 := w/hk+1,k;
23 Vk+1 := [Vk, vk+1];
24 if p > 0 then Gk := [Gk−1, gk] else Gk := Gk−1 endif

25 Solve min
y∈Rk

∥∥∥∥
[

Ĥk

Gk

]
y − ‖b‖e1

∥∥∥∥ for yk;

26 xk := Vkyk;
27 endfor
The following remarks provide some detailed explanations of the algorithm:
• Lines 4–7 and 22 describe the generalized Arnoldi process for generating the

vector vk+1. We orthogonalize w against the columns of Vk and, when the
matrix Up is not empty, against the columns of Up as well. Lines 5–6 describe
classical Gram–Schmidt orthogonalization; however, our implementation em-
ploys the modified Gram–Schmidt procedure. When a hard near-breakdown
is detected in line 9, vk, the last column of Vk, is appended to the matrix Up

to yield Up+1. The matrices Ĥk−1 and Gk−1 are updated in line 11 to yield
the generalized Arnoldi decomposition

AVk−1 = VkĤk−1 + Up+1Gk−1.

A new vector v̂, which replaces the column vk of Vk, is generated in line 12.
After one step of the generalized Arnoldi process (lines 14–18), we check in
line 19 whether the vector v̂ yields a hard near-breakdown, in which case it is
replaced. Otherwise, lines 22–24 yield the generalized Arnoldi decomposition

AVk = Vk+1Ĥk + UpGk = [Vk+1, Up]H̃k,

where

H̃k :=

[
Ĥk

Gk

]
.

It is clear that the matrix [Vk+1, Up] has orthogonal columns.
• Lines 25–26 determine a solution that minimizes the residual error from
R(Vk), analogously as in standard GMRES. Writing x = Vky, we have

‖Ax− b‖ = ‖[Vk+1, Up]H̃ky − β0[Vk+1, Up]e1‖
= ‖Ĥky − β0e1‖,
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where β0 := ‖b‖. Thus,

min
x∈R(Vk)

‖Ax− b‖ = min
y∈Rk

‖Ĥky − β0e1‖.

• Line 9 shows a simple criterion for a hard near-breakdown. We consider
having reached a hard near-breakdown when the condition number cond(Ĥk)
is larger than the threshold 1/tol. Since Ĥk−1 is a submatrix of Ĥk, the
condition number is an increasing function of k. This criterion works well
when cond(Ĥk) increases slowly for small values of k and then for some larger
values of k increases rapidly. However, it is not always suitable when the
condition number increases steadily to a large value as k increases, because
then when cond(Ĥk) > 1/tol, also cond(Ĥj) ≈ 1/tol for j ≈ k, and this
can result in several consecutive near-breakdowns. To avoid this undesirable
situation, we propose to reduce tol by a factor, say, 10−2, when a near-
breakdown is encountered; i.e., we replace line 9 by

if cond(Ĥk) > 102p/tol then,(3.2)

where p is the number of hard near-breakdowns encountered so far during the
computations. A further modification of line 9 is discussed below.

• What we have presented is a version of full GMRES in which the memory
and computational cost increase quickly with the iteration. In practice, a
restarted version, where the algorithm is restarted after a certain number of
iterations, should be used.

Algorithm 1 searches for a solution outside the Krylov subspace KN−1 by intro-
ducing a new vector v̂ when a hard near-breakdown is detected. For singular matrices
A with a null space of small dimension, hard near-breakdowns often do not occur until
N ≈ n steps of the generalized Arnoldi process have been carried out. However, the
component of the solution x of (1.1) in the Krylov subspace KN−1 (i.e., x̂ in Theorem
2.1) sometimes can be approximated well by a vector xk in a Krylov subspace Kk of
dimension k � N − 1, and then it would be desirable to introduce the new vector
v̂ already after k steps of the generalized Arnoldi process. This situation may be
difficult to detect, because the residual vector rk := b−Axk associated with xk might
not be of small norm. We have found that it can be advantageous to generate a new
vector v̂ when the iterates xk converge very slowly. This can be achieved by replacing
line 9 of Algorithm 1 by

if (cond(Ĥk) > 102p/tol) or (‖xk − xk−1‖ ≤ η‖xk‖) then,(3.3)

where η is a small positive constant of the order of the stopping tolerance and p is
the number of hard near-breakdowns encountered during the computations so far; cf.
(3.2).

We conclude this section with some comments on RRGMRES. The kth iterate,
xk, determined by RRGMRES, satisfies

‖b−Axk‖ = min
z∈AKk

‖b−Az‖, xk ∈ AKk.

Thus, the iterate belongs to the range of A. Computed examples in [6] illustrate
that RRGMRES sometimes can yield computed solutions of higher quality than GM-
RES. We are therefore interested in an algorithm for BFRRGMRES, a breakdown-free
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variant of RRGMRES. Such an algorithm can be obtained by a very minor modifi-
cation of Algorithm 1: The initialization v1 := b/‖b‖ in line 2 should be replaced by
v1 := Ab/‖Ab‖ and the vector ‖b‖e1 in line 25 has to be replaced by [Vk+1, Up]

T b.
The following theorem discusses the behavior of RRGMRES. We remark that the

formulation of Theorem 3.3 in [5], which discusses related results, is incomplete. This
has recently been pointed out by Cao and Wang [8].

Theorem 3.1. Let the matrix A ∈ R
n×n be of rank N < n and apply RRGM-

RES with initial approximate solution x0 := 0 to the solution of (1.1). Assume that
RRGMRES breaks down at step N . If dim (A2KN ) = N , then RRGMRES deter-
mines a least-squares solution of (1.1). If, instead, dim (A2KN ) < N , then (1.1) has
a solution in AKN + R(AT ).

Proof. Assume that dim (A2KN ) = N . This case is discussed by Cao and Wang
[8]. Our proof is similar to the proof of Theorem 2.3 of section 2 and we use the same
notation.

The Arnoldi process applied by RRGMRES breaks down at step N and yields
the decomposition

AVN = VNHN , VNe1 = Ab/‖Ab‖.(3.4)

It follows from (3.4) and dim (A2KN ) = N that the matrix AVN is of full rank and,
therefore, that HN is nonsingular. Moreover, R(VN ) ⊂ R(A), and since rank(VN ) =
rank(A), it follows that R(VN ) = R(A). The vector x̂ ∈ R

n is a least-squares solution
of (1.1) if and only if the associated residual error is orthogonal to R(A), i.e., if and
only if

0 = V T
N (Ax̂− b).(3.5)

The linear system of equations

HNy = V T
N b(3.6)

has a unique solution ŷ. It follows from (3.4) that x̂ := VN ŷ satisfies (3.5). Thus,
x̂ is a least-squares solution of (1.1). RRGMRES determines this solution. This is a
benign breakdown.

We turn to the case when dim (A2KN ) < N . It follows from this inequality and
(3.4) that the upper Hessenberg HN is singular. Similarly as above, R(VN ) = R(A)
and, therefore, x̂ ∈ R

n is a least-squares solution of (1.1) if and only if x̂ satisfies (3.5).
However, differently from the situation above, the system of equations (3.6) might not
have a solution, since HN is singular. We circumvent this problem by appending a
column to HN as follows. Since HN has positive subdiagonal entries, rank(HN ) =
N − 1. Let u ∈ N (HT

N ) be of unit length and define v := A†VNu ∈ R(AT ). It
follows from R(VN ) = R(A) that Av = VNu and, therefore, V T

N Av = u. We seek a
least-squares solution of the form

x = VNy + vη, y ∈ R
N , η ∈ R.(3.7)

Substituting this expression into (3.5) yields

0 = V T
N (AVNy + Avη − b) = HNy + uη − V T

N b = [HN , u]

[
y
η

]
− e1.(3.8)

Since the matrix [HN , u] ∈ R
N×(N+1) is of full rank, (3.8) has a solution {ŷ, η̂}.

Substituting y := ŷ and η := η̂ into (3.7) yields a least-squares solution of (1.1).
Theorem 3.1 implies that RRGMRES can be applied to solve inconsistent linear

least-squares problems of the form (2.21).
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4. Numerical examples. This section presents a few computed examples. All
computations were carried out on an HP UNIX workstation using MATLAB with
about 15 significant decimal digits. The initial approximate solution in all examples
is chosen to be x0 := 0.

Example 4.1. Consider a rectangular matrix of the form

Ã =

[
Ã11 0

Ã21 Ã22

]
∈ R

n×�,(4.1)

where Ã11 ∈ R
(n−k)×(�−k) is the sum of a random lower triangular matrix and 10I,

and Ã21 ∈ R
k×(�−k) and Ã22 ∈ R

k×k are random matrices generated by the MATLAB
function rand.

We use GMRES and BFGMRES to solve the column-padded linear system of
equations

Ax = b, A := [Ã, 0] ∈ R
n×n, x :=

[
x̃
0

]
∈ R

n,(4.2)

where Ã is defined by (4.1). It is easy to see that if Ã22 is nonsingular and n− � ≥ k,
then A has k zero eigenvalues associated with Jordan blocks of size at least 2. We
also apply the conjugate gradient method, using the CGLS implementation, to solve
the normal equations,

ATAx = AT b,(4.3)

associated with (1.1).
For ease of notation we use the matrix A in (4.2) instead of Ã. Let xk ∈ R

n

denote the kth iterate determined by any one of the iterative methods considered.
For consistent linear systems of equations (1.1), we plot the norm of the residual
vectors,

rk := b−Axk,(4.4)

relative to the norm of r0 for increasing values of k. When the linear system (1.1) is
inconsistent, we instead plot the norm of the residual error associated with the normal
equations (4.3),

r̂k := AT b−ATAxk,(4.5)

relative to the norm of AT r̂0, because ‖r̂k‖ vanishes when xk is a least-squares solution
of (1.1), while ‖rk‖ does not.

We first consider a consistent linear system of equations (1.1) with A defined by
(4.1) and n := 1000, � := 700, k := 3. Let the solution x̃ ∈ R

� be a vector with
random entries and define the right-hand side by b := Ãx̃.

We use the criterion (3.2) with tol := 10−8 for detecting hard near-breakdowns
in BFGMRES. The vector v̂ chosen in line 12 of Algorithm 1 at every hard near-
breakdown is determined by orthogonalizing a random vector against the columns
of the available matrices Vk−1 and Up+1. Here and throughout, the iterations are
terminated when the relative residual ‖rk‖/‖r0‖ drops below 10−14 (or ‖r̂k‖/‖r̂0‖ <
10−14 for inconsistent systems).

The left-hand side graphs of Figure 4.1 show BFGMRES (solid curve) to reduce
the norm of the residual error (4.4) faster than GMRES (dashed curve). We mark the
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Fig. 4.1. Example 4.1: Convergence histories for overdetermined linear system for BFGMRES
(solid curves with near-breakdowns marked by x), GMRES (dashed curves), and CGLS (dotted
curves).

BFGMRES convergence curve by “x” where hard near-breakdowns occur. Here as well
as in later examples, we see that there is typically significant reduction of the residual
error a few iterations after a new vector is introduced. The nonmonotonic decrease of
the norm of the residual error for BFGMRES near convergence is due to large round-
off errors incurred when solving the reduced least-squares problem in line 25 of the
algorithm. (Note that cond(Ĥk) steadily increases and may become very large at that
stage of iterations.) We also display the norm of the residual errors associated with
iterates determined by CGLS (dotted curve). The latter method is seen to require
more iterations than BFGMRES and GMRES to reduce the relative residual to 10−14,
but CGLS is implemented without reorthogonalization, and therefore requires less
memory and fewer vector operations per iteration. On the other hand, note that
CGLS needs the evaluation of two matrix-vector products in each iteration, one with
A and one with AT , while each iteration of BFGMRES or GMRES requires only the
evaluation of one matrix-vector product with A.

We next illustrate the performance of BFGMRES, GMRES, and CGLS when
applied to the solution of an inconsistent overdetermined linear system of equa-
tions. Such a system of equations is obtained by perturbing the right-hand side
in (4.2). Specifically, we generate the right-hand side with the Matlab instruction
b=A*x+1e-6*rand(n,1), where xT := [x̃T , 0T ] and x̃ ∈ R

� is the same random vector
as above. The right-hand side graphs of Figure 4.1 show the norm of the residual er-
rors (4.5) for the iterates xk determined by GMRES, BFGMRES, and CGLS. GMRES
and BFGMRES reduce the norm of the residual (4.5) by about a factor 10−11, but
thereafter the norm of the residual does not decrease further. BFGMRES converges
somewhat faster than GMRES and gives a smoother reduction of the norm of the
residual error. CGLS converges slower but is able to reduce the norm of the residual
(4.5) by a factor 10−14.

We turn to an underdetermined linear system of equations, obtained by using the
transpose of the matrix A employed in the computations above. Thus, we would like
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Fig. 4.2. Example 4.1: Convergence histories for underdetermined linear system for BFGMRES
(solid curve with near-breakdowns marked by x), GMRES (dashed curve), and CGLS (dotted curve).

to solve

ÃT y = c̃,

where y ∈ R
n is a random vector and the right-hand side is defined by c̃ := ÃT y.

BFGMRES and GMRES are applied to the associated row-padded system

AT y =

[
c̃
0

]
.(4.6)

Figure 4.2 displays the norm of the residual error (4.4) for iterates computed by
BFGMRES (solid curve), GMRES (dashed curve), and CGLS (dotted curve). Due to
the structure of the linear system of equations (4.6), the last n−m components of all
vectors vi determined by GMRES vanish. Therefore, GMRES cannot reduce the norm
of the relative residual error below 5 · 10−4. On the other hand, BFGMRES expands
the subspace in which the computed solution is being sought, and the computed
iterates converge to a solution of the linear system. Figure 4.2 shows BFGMRES
to reduce the norm of the residual error (4.4) faster than any of the other methods
considered.

Finally, we illustrate the finite termination property of Theorem 2.7 by solving
an inconsistent overdetermined linear system of equations of the same form, but of
smaller size, than the overdetermined system considered above. Thus, we solve an
inconsistent system (4.2) with A of the form (4.1) with n := 100, � := 70, k := 1.
The diagonal elements of A11 are 1, 2, . . . , 69. We compare the three methods both
with and without reorthogonalization (for CGLS the residual vectors of the normal
equations (4.5) are reorthogonalized). The graphs on the left-hand side of Figure
4.3 show the norm of the residual error for the normal equations converge for all
three methods when reorthogonalization is carried out. The graphs show the relative
residual norm to drop to 10−15 at step 71 (which is N+1) for GMRES and BFGMRES,
but at step 70 for CGLS. This is consistent with the theory (Theorem 2.7). The graphs
on the right-hand side of Figure 4.3 show the performance of the methods when no
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Fig. 4.3. Example 4.1: Convergence histories for overdetermined linear system for BFGMRES
(solid curves with near-breakdowns marked by x), GMRES (dashed curves), and CGLS (dotted
curves).

reorthogonalization has been carried out. GMRES and BFGMRES can be seen to
behave similarly as with reorthogonalization, while iterates determined by CGLS do
not appear to converge.

The next two examples are taken from Brown and Walker [4].

Example 4.2. Consider the nonsymmetric tridiagonal matrix

A :=

⎡
⎢⎢⎢⎢⎣

0 1

−1
. . .

. . .

. . .
. . . 1
−1 0

⎤
⎥⎥⎥⎥⎦ ∈ R

n×n.(4.7)

For odd values of n, A is singular with index one. In particular, N (A) = N (AT ). Let
n := 49 and b := [1, 0, . . . , 0, 1]T as in [4]. This yields an inconsistent linear system of
equations (1.1). GMRES applied to this system computes a sequence of approximate
solutions. At step 24 a hard near-breakdown is detected. Nevertheless, GMRES is
able to determine a least-squares solution of the linear system of equations. The
criterion used for detecting a near-breakdown is the same as in Example 4.1.

Now replace the right-hand side vector by b := [1, 0, . . . , 0, 1 + 10−10]T . GMRES
applied to (1.1) with this new right-hand side vector decreases the norm of the residual
error of the associated normal equations (4.5) to 10−10 at step 24. However, in the
next step the norm of the residual error increases by about a factor 104 due to high
sensitivity to round-off errors. The residual error stays at this level for the next 25
iterations until it quickly drops to 10−14. Figure 4.4 displays the convergence histories
of the residual errors (4.5) for BFGMRES (solid curve) and GMRES (dashed curve).
We see that BFGMRES yields a smoother decrease of the residual error than GMRES.
The plateau in convergence of BFGMRES after step 24 appears to be due to the matrix
itself as different choices of v̂ result in similar convergence curves.
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Fig. 4.4. Example 4.2: Convergence histories for BFGMRES (solid curve with near-breakdowns
marked by x) and GMRES (dashed curve).
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Fig. 4.5. Example 4.3: Convergence histories for BFGMRES (solid curves with near-
breakdowns marked by x) and GMRES (dashed curves).

Example 4.3. We discretize the partial differential equation

Δu + d
∂u

∂z1
= f, z := [z1, z2] ∈ [0, 1]2,

with Neumann boundary condition using centered finite differences on an m × m
regular mesh; see [4, Experiment 4.3] for a description of the matrix so obtained. We
used m := 63, d := 10, and

f(z) := z1 + z2 + sin(10z1) cos(10z2) + exp(10z1z2).

This yields an inconsistent linear system of equations which is fairly difficult to solve;
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Fig. 4.6. Example 4.4: Convergence histories for BFRRGMRES (solid curves with near-
breakdowns marked by x) and RRGMRES (dashed curves).

in particular, N (AT ) �= N (A). We use the criterion (3.3) with tol := 10−8 and
η := 10−6. The vector v̂ chosen in line 12 of Algorithm 1 at every hard near-breakdown
is determined by orthogonalizing AT rk against the columns of the available matrices
Vk−1 and Up+1, where rk denotes the residual vector (4.4) associated with the present
iterate.

The convergence histories for GMRES and BFGMRES are shown in Figure 4.5.
The condition numbers of the matrices Ĥk determined by GMRES increase steadily
to about 1015 as k increases, while the condition numbers of the analogous matrices
computed by BFGMRES are bounded by about 109. The smaller condition numbers
associated with BFGMRES may help this method to achieve better convergence than
GMRES.

Example 4.4. Our last example is generated by the Matlab function parallax in
Regularization Tools by Hansen [13]. We used parallax to determine a rank-deficient
matrix Ã ∈ R

26×5000 and an associated right-hand side vector b ∈ R
26. According to

the Matlab function rank, the matrix Ã has rank 24.

We apply RRGMRES and BFRRGMRES with full reorthogonalization to solve
the underdetermined least-squares problem after row-padding of Ã. The graphs in
the left-hand side of Figure 4.6 show the convergence histories of the norm of residual
errors (4.4), and the graphs in the right-hand side of the figure display the convergence
histories of the norm of residual errors of the normal equations (4.5) for BFRRGMRES
(solid curves) and RRGMRES (dotted curves). The curves for BFRRGMRES vary
less erratically than the curves for RRGMRES. Moreover, BFRRGMRES reduces the
residual errors to a smaller value than RRGMRES.

In summary, our numerical examples demonstrate BFGMRES and BFRRGM-
RES to have more desirable convergence behavior than GMRES and RRGMRES,
respectively, when applied to the solution of singular systems.

Acknowledgment. We would like to thank Bryan Lewis for discussions and
comments.



BREAKDOWN-FREE GMRES FOR SINGULAR SYSTEMS 1021

REFERENCES

[1] O. Axelsson, Conjugate gradient type methods for unsymmetric and inconsistent systems of
linear equations, Linear Algebra Appl., 29 (1980), pp. 1–16.

[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.
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