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ACCURATE EIGENVALUES AND SVDs OF
TOTALLY NONNEGATIVE MATRICES*

PLAMEN KOEVT

Abstract. We consider the class of totally nonnegative (TN) matrices—matrices all of whose
minors are nonnegative. Any nonsingular TN matrix factors as a product of nonnegative bidiagonal
matrices. The entries of the bidiagonal factors parameterize the set of nonsingular TN matrices.

We present new O(n3) algorithms that, given the bidiagonal factors of a nonsingular TN matrix,
compute its eigenvalues and SVD to high relative accuracy in floating point arithmetic, independent
of the conventional condition number. All eigenvalues are guaranteed to be computed to high relative
accuracy despite arbitrary nonnormality in the TN matrix.

We prove that the entries of the bidiagonal factors of a TN matrix determine its eigenvalues and
SVD to high relative accuracy.

We establish necessary and sufficient conditions for computing the entries of the bidiagonal factors
of a TN matrix to high relative accuracy, given the matrix entries.

In particular, our algorithms compute all eigenvalues and the SVD of TN Cauchy, Vandermonde,
Cauchy—Vandermonde, and generalized Vandermonde matrices to high relative accuracy.
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1. Introduction. The matrices with all minors nonnegative are called totally
nonnegative (TN). They appear in a wide area of problems and applications [6, 16,
19, 21, 22, 31] and can be notoriously ill-conditioned—the Hilbert matrix and the
Vandermonde matrix with increasing nonnegative nodes are two examples of many.

When traditional algorithms are used to compute the eigenvalues or the singular
values of an ill-conditioned TN matrix, only the largest eigenvalues and the largest
singular values are computed with guaranteed relative accuracy. The tiny eigenvalues
and singular values may be computed with no relative accuracy at all, even though
they may be the only quantities of practical interest [8]. Their accurate computation
using traditional algorithms is then only possible through an increase in the working
precision, which may lead to a drastic increase in the computational time.

As our first major contribution we present new O(n?) algorithms that compute all
eigenvalues and singular values of a nonsingular TN matrix to high relative accuracy.
In particular, all computed eigenvalues and singular values, including the tiniest ones,
must have correct sign and leading digits:

loi — 6:] < O(e)a; and | A — \i| < O(e)| Al

The error bound for the computed eigenvalues must hold despite arbitrary nonnor-
mality of A.
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In contrast, traditional SVD and symmetric eigenvalue algorithms guarantee only
small absolute errors in the computed singular values and eigenvalues of TN matrices

|o; — 65| < O(€)omax and |A; — 5\Z| < O(€)| Amax|-

Previously proposed nonsymmetric eigenvalue algorithms guarantee only the Perron
root of a TN matrix to be computed to high relative accuracy [15]. The accuracy in
the smaller eigenvalues is also affected by the angle between left and right eigenvectors.

Relative accuracy is lost in the traditional eigenvalue and SVD algorithms because
of certain roundoff errors in floating point arithmetic: cancellation of significant digits
during subtraction of approximate intermediate quantities. On the other side, relative
accuracy is preserved in addition of nonnegative quantities, multiplication, division
and taking of square roots.

The idea in our algorithms is to structure the computations in such a way that
subtractions are avoided.

Throughout this paper we will use the word accurately to mean “to high relative
accuracy.” We consider only nonsingular TN matrices.

The first step in our quest for accuracy is to choose a parameterization of the TN
matrices to work with.

The matrix entries are a poor choice of parameters to represent a TN matrix
because tiny relative perturbations in them can cause enormous relative perturbations
in the eigenvalues and the singular values. For example, a small € relative perturbation
in the (2,2) entry of the 2 x 2 TN matrix

1 1 ] J1 1 11
{1 1+e}_[1 1][ e}[ 1]
from 1+ € to 1+ 2¢ perturbs the smallest eigenvalue from €/2 + O(e?) to e+ O(e?)—a
100% relative change. In other words, errors introduced just from storing a matrix in
the computer may change the small eigenvalues or singular values utterly.
Instead, we will represent any nonsingular TN matrix A uniquely as a product of
nonnegative bidiagonal matrices

A=1Wp@ .. pe-)pyt-Hyr=2) . . g,

where D is diagonal and L(*) and U®) are lower and upper unit bidiagonal matrices,
respectively. We denote this bidiagonal decomposition as BD(A) and discuss its prop-
erties in detail in section 2.2. A total of n? entries in BD(A) are nontrivial. These n?
independent nonnegative entries parameterize the set of TN matrices.

Our second major contribution is to show that BD(A) determines the eigenvalues
and the SVD of A accurately. In particular, the relative condition number of any
eigenvalue with respect to perturbations in the entries of BD(A) is at most 2n? in-
dependent of the angle between the left and right eigenvectors. The same structured
condition number applies for the singular values. This means that our algorithms
compute the eigenvalues and the singular values as accurately as they deserve.

Our algorithms take BD(A) as an input and perform a subtraction-free reduction
of both the eigenvalue and the singular value problems to the bidiagonal singular
value problem. The bidiagonal singular value problem is then solved to high relative
accuracy using known means [12]. The above reduction uses only two types of matrix
transformations, which we call elementary elimination transformations (EETS):

1. subtraction of a positive multiple of a row/column from the next in order to
create a zero;
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2. addition of a positive multiple of a row/column to the previous one, followed
by scaling of both rows/columns.

Rather than performing the EETs directly on the matrix A, we perform them
implicitly on the bidiagonal decomposition BD(A) in such a way that subtractions
are not required; hence the accuracy is preserved.

To solve the eigenvalue problem we use a well-known process (which we discuss
in section 2.3) to implicitly reduce a TN matrix A to a (nonsymmetric) TN tridiag-
onal form 7' using similarity EETs. We then implicitly replace t;_q; and ¢; ;-1 by
(ti_uti,i_l)l/ 2 making T symmetric without changing its eigenvalues. We compute
the eigenvalues of T" as the squares of the singular values of its Cholesky factor.

For the singular value problem we perform an implicit Golub—Kahan bidiagonal-
ization using Givens rotations. The trick in preserving the accuracy is to represent
each Givens rotation as a sequence of two EETs.

It is a natural question to ask whether an accurate bidiagonal decomposition may
be obtained, given the matrix entries. We know of no simple answer for TN matrices,
but for totally positive (TP) matrices (matrices all of whose minors are positive), we
do. In section 3 we prove that if A is TP, then we can compute BD(A) accurately if
and only if we can compute all initial minors of A accurately. The initial minors are
minors that are contiguous and include the first row or the first column.

In particular, since accurate formulas exist for the initial minors of TP Vander-
monde, Cauchy, Cauchy—Vandermonde, and generalized Vandermonde matrices, we
can readily compute the eigenvalues and the singular values of these matrices accu-
rately.

Our algorithms and theory apply with little or no change to TP, oscillatory (some
power is TP), and inverses of TN matrices.

The idea of using bidiagonal decompositions to perform accurate matrix compu-
tations is not new. Such decompositions are used in every Bjorck—Pereyra method
to obtain accurate solutions to structured TN linear systems (see section 2.4). Also,
in [14] Parlett and Dhillon discard the entries of the tridiagonal matrix and choose to
work with the bidiagonal Cholesky factors.

Organization of the paper. We review the properties of TN matrices and their
bidiagonal decompositions in section 2. We present necessary and sufficient conditions
for computing accurate bidiagonal decompositions in section 3. We describe how to
perform EETSs accurately in section 4. We present our new eigenvalue and singular
value algorithms in sections 5 and 6, respectively. The perturbation theory and error
analysis are in section 7. Finally, we present numerical experiments in section 8.

2. Background. In this section we review some well-known properties of TN
matrices, their bidiagonal decompositions, Neville elimination, Bjérck—Pereyra meth-
ods, and the sensitivity of the SVD of a TN matrix to structured perturbations.

2.1. Properties of TN matrices. Excellent references on TN and related ma-
trices are [2, 16, 21, 22, 25, 31]. We mention only some of the relevant properties.

The eigenvalues of a TN matrix are real and positive. The irreducible TN matrices
are called oscillatory, and their eigenvalues are also distinct, as are their singular
values. The product of two TN matrices is TN. A bidiagonal matrix with a positive
diagonal and only one nonnegative off-diagonal entry is TN. All TN matrices are
obtained by forming a product of such simple bidiagonal matrices, as we describe
next.
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2.2. Bidiagonal decomposition of TN matrices. A dense matrix A can be
reduced to an upper triangular form by a variety of elimination methods. A fixed
pivot row is used in Gaussian elimination where at each step an entry (say a;;) is set
to zero, resulting in the decomposition A = K - A’, where agj = 0 and K differs from
the identity matrix only in its (i, j)th entry l;; = a;;/a,;:

1

1

At the end of this elimination process all matrices K are “assembled” in a unit lower
triangular matrix L with subdiagonal entries [;;.

If Ais TN, then a different elimination approach, called Newille elimination, sheds
more light on the structure of A [23, 38]. For completeness of the presentation, we
describe this process in detail following [25].

The main difference between Gaussian and Neville eliminations is that the latter
uses only adjacent rows or columns for elimination. For example the (i, j)th entry
a;j # 0 is eliminated by subtracting a multiple m;; = a;;/a;—1,; of the (i — 1)st row
from the ith. In matrix form this results in the decomposition A = E;(m;;)-A’, where
E; differs from the identity only in its (¢, — 1) entry:

The total nonnegativity is preserved by Neville elimination [23]; thus m;; > 0. Once
A is reduced to upper triangular form U, the same elimination process is applied to
U using only adjacent columns. As a result A is factored as a product of (n? —n)/2
matrices of type (2.1), a diagonal matrix D, and (n? —n)/2 transposes of matrices of
type (2.1).

The reader may have noticed that we bravely divided by a;_1,; in forming m,;.
This will never lead to division by zero because A is TN. Indeed, if a;_1 j is any nonzero
(thus positive) entry in the (i — 1)st row of A, then the 2 x 2 minor of A consisting of
rows ¢ — 1 and ¢ and columns j and k (j < k) must be nonnegative. Therefore a;; > 0
implies a;—1; > 0 and in turn a;—1; = 0 implies a;; = 0. Equivalently, m;; = 0
implies m;y1; = --- = my; = 0, and thus

(2.2) mij =0 implies { ma, =0 for all k > j if i < j.

The matrices E; have the following important properties:

Ez_l(z) = Ei(il‘)v

(2.3) E;(z)E;(y) = E;(y)E;(x), unless |i — j| =1 and zy # 0,
Ei(x)Ei(y) = Ei(z +y).
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If we apply Neville elimination to A, eliminating one subdiagonal at a time,
starting with the (n,1) entry we obtain

A= (En(mn1)) - (Bn—1(mn-11)En(mn2)) - -
- (Ba(ma1)E3(ms2) -+ En(mpn-1))
D (E} (mn_1.n) - E3 (mas) B3 (m2)) - -
’ (Eg(mM)Eg—l(ml,n—l)) ’ (Erj;(mln))

We “assemble” the FE;’s inside the parentheses above into bidiagonal matrices

L® = En—k+1(mn—k+1,1)En—k+2(mn—k+2,2) e En(mnk)

1

My —k+1,1 1
Mp—kt2,2 1 ’

Mmnk 1

where lgf)l = (L(k))m,l = My kti—n. We analogously form unit upper bidiagonal
matrices U*). We know of no universally convenient way to reference the off-diagonal
entries in the bidiagonal matrices L(¥). We will use either lgﬁ)l or myj, depending on
whether the reference is in connection with L*) or the entry (ai;) being eliminated.

We now present a fundamental theorem from [25] which describes the unique
bidiagonal decomposition of a TN matrix (see also [3, 6, 7, 18, 19] for equivalent
combinatorial interpretations).

THEOREM 2.1 (Gasca and Pena [25]). A4 nonsingular matriz A is TN if and only
if it can be uniquely factored as

(2.4) A=1O ... . p.yr-1. .. U(1)7

where D = diag(dy,ds, ... ,d,), and L®) and UK are lower and upper unit bidiagonal
matrices, respectively, such that
1. d; > 0 for all i;
2. lgk) = ugk) =0 fori<n-—k;
3. lgk) >0, ugk) >0 fori>n—k;
4. ll(k) = 0 wmplies ZE_]T_;S) =0fors=1,... ,k—1; and ugk) = 0 implies u
0 fors=1,...,k—1.

The bidiagonal decomposition (2.4) (which we denote by BD(A)) will be the
ultimate unique representation of a TN matrix in this paper. In our algorithms,
EETs will introduce “bulges” in BD(A). The bulges will be chased away to obtain
the unique bidiagonal decomposition of the transformed matrix. We will refer to this

theorem to confirm if a particular bidiagonal decomposition of a TN matrix is its
unique BD(A).

(k—s)
1+s

2.3. Reduction of a (nonsymmetric) matrix to tridiagonal form. In our
eigenvalue algorithm in section 5 we will use similarity EETs to implicitly reduce a
(nonsymmetric) TN matrix to tridiagonal form using this well-known process [26].

We start by introducing a zero in the (n, 1) entry by subtracting a multiple of the
(n — 1)st row from the nth. Then we add the same multiple of the nth column to the
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(n — 1)st to complete the similarity transformation. In the next step, we subtract a
multiple of the (n — 1)st column from the nth to create a zero in position (1,n); then
again, we complete the similarity by adding the same multiple of the nth row to the
(n — 1)st. The zero in position (n, 1) is not disturbed by the last operation. Next, we
introduce zeros in positions (n — 1,1) and (1,n — 1) in a similar manner, which does
not disturb the zeros already created in positions (n, 1) and (1,n). We continue the
same process until all but the first two entries of the first row and column are zero.
Then we apply the same process to the trailing (n — 1) x (n — 1) principal submatrix
and so on until the matrix is reduced to tridiagonal form.

This process may be unstable for general nonsymmetric matrices, but it is our
contribution to show that it is always stable for TN matrices.

Other analogous schemes for reduction to tridiagonal form also exist [37].

2.4. Bjorck—Pereyra methods. In 1970 Bjorck and Pereyra presented an al-
gorithm for computing the solution to a Vandermonde system of equations Vax = b
in O(n?) time [4]. Although rooted in the process of Newton interpolation, their
algorithm, in essence, computes an accurate decomposition of V=1 as a product of
bidiagonal matrices and applies it to b. When the nodes of interpolation are nonneg-
ative and increasing (i.e., when V' is TN) and b has alternating sign pattern, there is
no subtractive cancellation in forming x, and every entry of x is computed accurately.
This phenomenon was first observed by Kahan in 1963 [30]; Higham later proved that
it applies essentially to all Bjorck—Pereyra methods [27, 28].

Bjorck—Pereyra methods were also derived for Cauchy [5], Cauchy—Vandermonde
[34], and generalized Vandermonde [13] matrices.

The decomposition BD(V) is readily and accurately obtainable from this repre-
sentation of V1 using the formulas (2.3) and inverting D (see also [25]). Therefore
by using the algorithms from sections 5 and 6 one can compute accurate eigenvalues
and SVD of any TN matrix for which Bjoérck—Pereyra methods exist.

2.5. If A is TN, then BD(A) determines the SVD of A accurately. By
using the Cauchy—Binet identity, Demmel et al. established in [11, section 9] that all
minors of a TN matrix are determined accurately by the entries of BD(A). Thus so is
its LDU decomposition resulting from Gaussian elimination with complete pivoting
(every element of L, D, and U is a quotient of minors), and in turn so is the SVD.
Using these results and ignoring 62 and higher-order terms, one can conclude that
a & relative perturbation in the n? nontrivial entries of BD(A) can cause a relative
perturbation of at most O(n?8) in any minor (see section 7) and at most O(n?ké)
in any singular value. Here k = max{cond(L),cond(U)} is a bound on the condition
number of L and U, which in practice never exceeds O(n) [39, p. 213]. The angle
0(u;, 4;) between the ith singular vector and its perturbed counterpart is bounded by

O(n?ké)

ming; |o; — oj|/o;

sin O(u;, 0;) <

In section 7 we prove a slightly tighter perturbation bound for the singular values.

3. Necessary and sufficient conditions for computing accurate BD(A).
When can we compute an accurate BD(A), given A? Neville elimination is the obvious
choice, but it involves subtractions, and therefore likely loss of accuracy. On the other
side, if A is TP, the entries of BD(A) are products and quotients of initial minors of
A and can be computed accurately if these minors can be. We recall that a minor is
inatial if it is contiguous and includes the first row or the first column.
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We will use MATLAB [35] notation for submatrices: A(é : j, k : I) will denote the
submatrix of A consisting of rows i through j and columns k& through [.
PROPOSITION 3.1. If A is TP, then the following expressions are valid for BD(A):

(3.1) j0) _ detA(q+1:i—|—1,1:i—q+1)'detA(q:i—l,l:i—q)
det A(g+1:4,1:9—q) det A(g:i,1:i—q+1)’
(3.2) O det A(1:i—q+1,g+1:i+1) . det A(1:i—q,q:i—1)
g det A(1:i—q,q+1:1) det A(l:i—q+1,q:17)

(3.3) d, = det A(1:4,1:14)

det A(1:4—1,1:4—1)’

where g=n—Fk; i >q=n—=Fk in (3.1) and (3.2), and lgk) = ugk) =0 fori<n-—k.

Therefore, being able to compute all n? initial minors of A accurately is a neces-
sary and sufficient condition for computing BD(A) accurately.

Proof. Expressions (3.1), (3.2), and (3.3) follow directly from Lemma 2.6(1)
in [23]. For the second part “sufficiency” is obvious, as is “necessity” for the leading
principal minors: A(1 : 4,1 : i) = did2---d;. Next we write m = ¢ — ¢ in (3.2) to
obtain

(34)det A(1:m+1,q+1:g+m+1)=det Al:m+1,q:q¢+m)
(n,q).detA(lzm,q+1:q+m)

|t det A(1:m,q:q+m—1)

The expression in the brackets involves only initial minors of order m. We now
use (3.4) and induction on m from 0 to n—1 and ¢ from 1 to n—m—1 to conclude that
all initial minors of A that include the first row are computable accurately (since (3.4)
involves only multiplications and divisions) at only three arithmetic operations per
initial minor. Analogously we draw the same conclusion about the initial minors that
include the first column by starting with (3.1). 0

Proposition 3.1 allows us to compute accurate bidiagonal decompositions of TP
structured matrices. For example, the Vandermonde and Cauchy matrices

K2

V= [Ij—lrj ) and C= [a: +yJLJ 1

2,)=

are TP when 0 < 1 < 22 < -+ < @y, and 1 < X2 < -+ < T, Y1 < Yo < -+ <
Yn, 1 + y1 > 0, respectively. For BD(V) we have

i—1 i—1
_ (k) _ Li+1 — Tj+1 (k) _
(35) di= Jl;[l(ffz - z), L= j_l;[k ﬁ, Uy " = Tigpk—nitl,

where lgk) = ugk) =0 for i <n — k and for BD(C') we have

i—1

— k) (Yi — Yk)
d' =
' kl;[l (i + yr) (v +a:k)
i—1 i—ntk—1
(3.6) )8 _ Enzh F Yimntkrt ] “e—fw ] Tty
) ) 7
Tit Yiontk+1 - T Ll oy
n—k =1
1—n+k—1

(k) _ Yn—k T Ti—ntk+1 Yit1 — Yi+1 Yi + X1
u = . —_—
=

Yi + Ti—ntk+1 —Y Yir1 +x

l=n—k =1
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where lgk) = ugk) =0fori<n-—k.

The subtractions in formulas (3.5) and (3.6) involve only initial (thus exact) data
and will not lead to subtractive cancellation. In section 7 we prove that BD(V') and
BD(C), and in turn the eigenvalues and the singular values of V and C, will be
computed accurately. Similar accurate formulas for BD(A) may be obtained when A
is a TP generalized Vandermonde [13] or a Cauchy—Vandermonde [33] matrix.

The formulas (3.1)—(3.3) are not, in general, valid for TN matrices (which are the
closure of TP matrices). We do not know of necessary and sufficient conditions for
being able to compute BD(A) accurately when A is TN, but not TP.

4. Computing with BD(A). In this section we show how to accurately apply an
EET to BD(A). In other words, if A is TN and A’ is obtained from A by applying an
EET, we will show how to compute BD(A’) directly from BD(A) without performing
any subtractions.

It is convenient to store the n? nontrivial entries of BD(A) as an n x n square
array. In position (4, j) we store the multiplier m;; used to eliminate the (¢, j)th entry
in A, and on the diagonal we store D:

. . d;, =7,

(BD(A))i; = di, A equivalently (BD(A));; = l(ﬁ?ﬂ), i> 7,
Mij, 1 F J; ‘n—jti) -

u;_ Y, i< g

From now on we will use BD(A) to refer to either the actual bidiagonal decom-
position (2.4) or the n x n array used for its compact storage, but it should cause no
confusion.

Example 4.1. The bidiagonal decomposition of the 3 x 3 TN matrix

1 2 6
4 13 69
28 131 852
1 i 1 1 1 2 1
= 1 4 1 5 1 6 1 3
71 8 1 9 1 1
is stored as
1 2 6 1 2 3
BD 4 13 69 = 4 5 6
| 28 131 852 7 8 9

We can formally transpose BD(A) to obtain BD(AT):
AT = (UNHT(WHT ... (ur=NT p(L=NT(L=2NT .. (LN

which we write as BD(AT) = (BD(A))".

4.1. Subtracting a positive multiple of a row from the next to create
a zero. We now show that in an elimination process of reducing a matrix to upper
triangular form, subtracting a row from the next in order to create a zero is equivalent
to simply setting an entry in BD(A) to zero and performing no arithmetic.

PROPOSITION 4.2. Let A be a TN matriz such that A(k—1:n,1:1) =0, except
for ag—1; > 0 and ag; > 0, where k > 1. Let A’ be obtained from A by subtracting a
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multiple of the (k — 1)st row from the kth in order to create a zero in position (k,1).
Then BD(A’) is obtained from BD(A) by setting the (k,1)th entry of BD(A) to zero.

Proof. Clearly A’ = Ey (—aki/ar—1,) - A. Because of the zeros in the lower left-
hand corner of A, the only way that the process of Neville elimination on A differs
from the process of Neville elimination on A’ is that the former involves subtracting
a multiple my; = ag;/ag—1, of the (k —1)st row of A from the kth, whereas the latter
does not. Therefore BD(A) equals BD(A’) except for (BD(A))k = ari/ar—1,; = M,
whereas (BD(A)) = 0. O

4.2. Adding a positive multiple of a column/row to the previous one.
Next, we look at how BD(A) changes when we add a positive multiple (z/y) of the
1th column to the (i — 1)st and scale columns ¢ — 1 and ¢ by y and 1/y, respectively.

In matrix form this is equivalent to forming the product AJ;(z,y), where

1

1

is a lower bidiagonal matrix that differs from the identity matrix only in the entries
x, y, and 1/y in positions (4,7 — 1), (i — 1,4 — 1), and (4,%), respectively.

Adding a multiple of a row to the previous one followed by scaling of both rows
is analogous and computed as BD(JI (z,y) - A) = BD(AT - J;(x,y))T.

THEOREM 4.3. Let A be TN. Given x > 0,y > 0, and BD(A), the decomposition
BD(A-J;(x,y)) can be computed in at most 4n+2i+ 12 arithmetic operations without
performing any subtractions.

Proof. We start with

(4.1) AJi(z,y) = LWL - pyhe-1 . @A) . Ji(x,y).

We will consecutively chase the “bulge” J;(x,y) to the left of the decomposition (4.1),
preserving the structure of the bidiagonal factors:

(4.2)AJ; = LW ... =2 G0 @ p=2 pn=1) pyh=1 gy yM) g,

43) = LM.. [EDLED L0 L L) [ ppe=D) L @) 7ty 0)

— W =) =) ) L (=2 p(n=1) prrn=1) 7 (3) 7R)(2)4(1)

(4.4) S SCONUY Al STt DN GO N L(n*Q)L(nfl)D(]i("_l)z,[(nfl) U@y
(45) =rLW... L0200 .. L(”*Q)L(”fl)Ji(”)Du(”*l) e UPDY)
i— i— i n— n— n+1 n— n—
— W =2 =D @) (=3 ( 2)J¢(+1 ) pn=1)pryn=1) .. 142)z4(1)
— W =) =) 6. L(n*?’)Ji(j:f)ﬁ(nﬂ)L(nfl)pu(nfl) Uy

(4.6) — ... L(i—2)L(i—1)JT(LZn—i)ﬁ(H-l) oo L(n=2) pin=1)ppg(n=1) | 74(2)7,(1)
(4.7) = W 6=2) p@=1) p(@) ... p(n=2) p(n=1)ppg(n=1) . 714(2)74(1)
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The factors that are transformed at each step of the above transformations are under-
lined. The matrix J,gf) equals Jy, (zk,yr) for some x and y,. The matrices E(k)ﬂ),
and U®) k = 1,2,... ,n — 1, are unit lower bidiagonal, diagonal and unit upper
diagonal, respectively, with nonzero pattern consistent with Theorem 2.1.

We will now explain how to obtain (4.3) from (4.2) and so on until we obtain (4.7).
Then we will prove that (4.7) is in fact BD(AJ;(x,y)).

We start with the transformations (4.2)—(4.4). At each step we are given matrices

1
1
U= . ’ u;’ZOa i=12 ,n—1,
1 u;z—l
1
and J;(2',y") such that

By comparing the entries on both sides of (4.8), we obtain

¥ ==,
Y =y +uiaz,
(4.9) U = Ui—2y,
uifl = uzfl/(yy )7
wy =y’

uy =y for j ¢ {i—2,1—1,i}.

The expressions (4.9) involve no subtractions and require only six arithmetic
operations. No division by 0 can occur because y > 0. The inequalities u; > 0, z > 0,
y > 0 imply u; > 0,2" > 0,3 > 0. Also uj = 0 only when u; =0, j =1,2,... ,n— 1.

All transformations (4.2)—(4.4) are performed according to (4.8).

The reader familiar with the LR algorithm may have noticed that the equa-
tion (4.8) is equivalent to one step of LR, performed accurately using differential
quotient-difference recurrences [17, 36, 39].

Now we turn our attention to the transformation from (4.4) to (4.5):

(4.10) Ji(2',1) - D =D Ji(z,y).
This transformation is straightforward and subtraction-free:

D= diag(dl, dg, . ,di_g,di_ly, dl/y, di+1, . ,dn),
(4.11) ¥ =dix/(d;_1y).
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No division by zero can occur in (4.11) because yd;_1 > 0.
In the transformations (4.5)—(4.7) we are given x > 0 and a matrix

1
lh 1

oo 1
a1 ]

We need to compute z’ > 0 and a matrix

1
L1

l;L—Q 1

v, 1

such that
(4.12) Jer1(2',1) - L=L- Jp(z,1).

By convention we set J,+1 = I. The bulge chasing is over once Jiy; = I. This
happens when k = n or possibly earlier if ' becomes zero.
By comparing the entries on both sides of (4.12) we obtain

(4.13) =1 itj ¢ (k- 1k},
(4.14) =l o,

(4.15) U= b/l ifk<n—1,
(4.16) =l )l if k<n-1.

The expressions (4.13)—(4.16) are subtraction-free and require only four arithmetic
operations (we only need compute l;/l;,_, once in (4.15)-(4.16)). The inequalities
x>0 and l; >0 imply 2 > 0 and [}, > 0; thus division by 0 cannot occur.

All transformations (4.5)—(4.7) are performed according to (4.12).

To complete the proof we need to show that (4.7) is the unique BD(A - J;(z,y)).
It suffices to verify that the conditions of Theorem 2.1 are satisfied.

Conditions 1, 2, and 3 clearly are satisfied. The second part of condition 4
(u§-k) = 0 implies uﬁ?) =0 for s = 1,2,... ,k — 1) is also satisfied, because no
zeros or nonzeros are introduced in the upper bidiagonal factors U*) in steps (4.2)
to (4.5).

We will now establish that the first part of condition 4 holds as well. Let l;(m) ] =

1,2,...,n — 1, be the off-diagonal entries in £™) and assume that some l;(m) =0.
We need to prove that l;(_f;_s) =0 for s =1,...,m — 1. It suffices to show that
l;(_ﬁ_l) = 0, since the rest will follow by induction on s.

The entry l;-(m) could not have been computed using (4.14) because z > 0. It

must have been computed using (4.13) or (4.15).
If (4.13) was used, then (4.13) will also be used to compute l;(erl_l) = Z§T1_1)
the next step of (4.12). Condition 4 of Theorem 2.1 along with l;m) = 0 implies

léj_lfl) = 0. Therefore l;(_‘_mfl) —0.

on
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If (4.15) was used to compute /; ™ then 0 = l/(m) ](milj(m)/( (mi + z). Thus

lyﬂ =0or lj( ™) = 0. Condition 4 for BD( ) now implies l( =0or lj(Tl_l) 0.
Either way, on the next step of (4.12), (4.15) gives l/(m D= l(m 1)ZJT1 1)/l/(m Y=o

To complete the proof it remains only to count the number of arlthmetlc oper-
*) — 0 for j < n — k, the matrix .J; commutes with UM U .
Un=i=b), Therefore (4.9) are performed at most 4 times; (4.11) are performed once,
and (4.14)—(4.16) are performed at most n — 4 + 1 times. The total number of arith-
metic operations does not exceed 6i +4+4(n —i+1) =4n+ 2i + 8. ad

ALGORITHM 4.4. Given BD(A), the following algorithm implements the procedure
from Theorem 4.3 and accurately computes BD(A-J;(x,y)) in not more than 4n+2i+8
arithmetic operations.

function B =TNAddToPrevious(B,z,y,1)
n =size(B,1)
if % <n, then
B(1,i+1)=B(1,i+1)y
end
for j=1:1—-1 ... implement (4.8)
z=y+ B(j,i) *
if 7> 1, then
B(j—1,i—1)=B(—1,i—1)*y
end
B(j,1) = B(j,1)/y/ =
if ¢+ <n, then
B(j+1,i+1)=B(+1,i+1)*z
end
y==z
end
Bli—1,i—1)=B(i—1,i—1)y
x=DB(i,i)*x/B(i—1,i—1)
B(i,i) = B(i,1)/y

ations. Since u;

J=1i
while (j <n) and (z >0) ... implement (4.12)

B(jyi—1)=z+=x
y:B(j+1>i)/B(j7i_1)
B(j+1,i)=yx*z
T=Yy*xxT
j=7+1
end
B(n,i—1)=B(n,i—1)+x

4.3. Givens rotations. Let A be TN and G be a Givens rotation intended to
create a zero in the process of Golub—Kahan bidiagonalization of A. We will now
demonstrate how to compute BD(GA), given BD(A).

The trick is to represent G as a sequence of two EETs. Indeed, applying a Givens
rotation to create a zero in position (say (n,1)) is equivalent to (1) subtracting a
(positive) multiple of the (n—1)st row from the nth in order to create a zero in position
(n, 1), followed by (2) adding a positive multiple of the nth row to the (n — 1)st, and
finally (3) scaling the last two rows.
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G:{ c S}’
—S C

where s2+¢? = 1, be a Givens rotation used to set the (n, 1) entry of A to zero. Then

Let

(1) (1)
Ap-11 Qp_12

1
0 a9

G- An—-1,1 Gn—-1,2 } - { c S } . { An—-1,1 Q@n—1,2 } o

Gnl An2 -5 C anl An2

A simple calculation shows that ¢ = 1/v/1+ 22 and s = 2/+/1 + 22, where
T = anl/an—l,l = lgll_)l - (BD(A))nl

is the only nonzero off-diagonal entry in L) of BD(A). Now write G as

1/c cx 1 0
-l 7L
Therefore applying a Givens rotation to the last two rows of A in order to create a
zero in position (n, 1) is equivalent to the multiplication

AWM = JT(cx,1/c) - By(—x) - A.

Forming A’ = E,(—x) - A is equivalent to subtracting a positive multiple of the
(n — 1)st row from the nth in order to create a zero in position (n,1). Therefore
we obtain BD(A’) from BD(A) by setting (BD(A)),1 to zero. The multiplication
AW = JT(cx,1/c) - A" is performed using Algorithm 4.4 to compute

BD(AW) = (BD((A)T - Ju(cx, 1/c)))" .

Applying a Givens rotation on the right is analogous, as is the application of
subsequent Givens rotations in the reduction of A to bidiagonal form.

5. The eigenvalue problem. In this section we present our algorithm for com-
puting accurate eigenvalues of a TN matrix A, given BD(A).

We first implicitly reduce A to tridiagonal form by using similarity EETs as
described in section 2.3. We preserve the accuracy in this reduction by applying the
EETSs to BD(A) as described in section 4. We obtain the decomposition BD(T') of a
tridiagonal matrix 7', which has only three nontrivial factors:

T=7r""D.p.yr-1,

The matrix T need not be symmetric and may not have a full set of eigenvectors.
It does, however, have the same eigenvalues as the symmetric tridiagonal matrix
T = L=V DU™ D where

l%nfl)

{ a " =\ JI Y =12, e — 1L

(T and T have the same characteristic polynomial; they are, however, only similar if

lgn_l) = 0 whenever ugn_l) = 0 and vice versa.) The eigenvalues of T are computed

accurately as the squares of the singular values of its Cholesky factor C' = D'/2{g ("1
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using the LAPACK [1] routine DLASQ1 [12, 17]. (C' is accurately obtained from BD(T)
at the cost of 2n — 2 multiplications and 2n — 1 square roots.)

The matrix C' is thus formed without performing any subtractions at the cost of
at most

n—2 n
. 16
23 Y (n+2j+8)+4n-3= §n3+0(n2)
i=1 j=i+2

arithmetic operations. The routine DLASQ1 costs an additional O(n?) operations; thus
the cost of Algorithm 5.1 is at most 12n® 4+ O(n?).
In section 7 we prove that all eigenvalues of A are computed accurately indepen-
dent of the angle between the left and right eigenvectors.
The eigenvectors (when they all exist) may certainly be accumulated, although
questions remain about their accuracy in the nonsymmetric case—see section 7.
ALGORITHM 5.1 (accurate eigenvalues of a TN matrix). Given B = BD(A) of a
TN matriz A, the following algorithm computes the eigenvalues of A accurately.
function TNEigenvalues(B)
n =size(B,1)
for i=1:n-2
for j=n:—-1:142

L= B(]a Z)

B(j,i) =0

B =TNAddToPrevious(B, z,1,j)

= B(i.j)

B(i,j) =0

B = (TNAddToPrevious(BT, x,1,5))T
end

end
C = diag(sqrt(diag(B)))
fori=1:n-1
C(i,i+1) =sqrt(B(i,i+ 1) * B(i + 1,1) % B(1, 1))
end
TNEigenvalues = (DLASQ1(C'))?

6. The singular value problem. In this section we present our algorithm for
computing accurate singular values of a TN matrix A, given BD(A).

We first perform an implicit Golub—Kahan bidiagonalization on A by starting with
BD(A) and performing Givens rotations as described in section 4.3. We implicitly
introduce zeros in the first column of A below the main diagonal, then in the first
row to the right of the (1,2) entry. We then proceed by induction until BD(A) is
reduced to BD(F'), where F' is bidiagonal. The decomposition BD(F') contains only
two nontrivial factors: D and U™~V so we recover F from BD(F) at the cost of n—1
multiplications. The computation so far is subtraction-free. Finally, we compute the
singular values of F' accurately using the LAPACK [1] routine DLASQ1.

By performing complexity analysis similar to that of section 5, we conclude that
Algorithm 6.1 costs at most 12n® + O(n?) arithmetic operations for the reduction to
bidiagonal form F and O(n?) operations for DLASQ1.

The singular vectors can be computed by accumulating the Givens rotations on
the left and the right with the singular vector matrices of F'.
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In section 7 we prove that the computed singular values and singular vectors are
accurate.

ALGORITHM 6.1 (accurate singular values of a TN matrix). Given B = BD(A) of
a TN matrix A, the following algorithm computes the singular values of A accurately.

function TNSingularValues(B)
n =size(B,1)
for i=1:n-1
for j=n:—-1:1+1
B(j,i) =0
c=vV1+2x?

B = (TNAddToPrevious(BT,z/c, ¢, j))T

end

for j=n:—-1:142
z = B(i, j)
B(Z’J) =0

c=vV1+a?
B =TNAddToPrevious(B,z/c, ¢, j)
end
end
F = diag(diag(B))
for i=1:n—-1
F(i,i+1) = F(i,i) * B(i,i + 1)
end
TNSingularValues = DLASQ1(F)

7. Perturbation theory and error analysis. In this section we prove that if
a TN matrix A is represented as a product of nonnegative bidiagonal matrices, then
small relative perturbations in the entries of the bidiagonal factors cause only small
relative perturbations in the eigenvalues and the SVD of A.

In particular, BD(A) determines the eigenvalues and the SVD of A accurately,
which justifies computing them accurately. We believe that the perturbation result for
the eigenvalues is new; the result for the SVD is known (see section 2.5 and Demmel
et al. [11, section 9]), but we improve the perturbation bounds for the singular values.

We then use these perturbation results to prove that Algorithms 5.1 and 6.1
compute the eigenvalues and the singular values of a TN matrix accurately in floating
point arithmetic; the singular vectors that may be accumulated by Algorithm 6.1 will
also be accurate in the appropriate sense. The eigenvector problem remains open in
the nonsymmetric case.

We finish the section with the perturbation theory and error analysis for the
eigenvalue and singular value problems for TP Vandermonde and TP Cauchy matrices.

For our error analysis we use the standard model of floating point arithmetic [29,
section 2.2]:

fllz©y) = (0 y)(1+6)*", where [§| <e, and ® € {+,—,x,/}.
We will accumulate relative errors or relative perturbations in the style of Higham [29]:
If |6;] < 6 « 1 and p; = %1, then
k

[Ta+8) -1

i=1

ké

< .
—1-ké
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Also, if 81| < mé/(1 — mé) and |82] < k8/(1 — k6), then

(m+ k)o

Eigenvalues and singular values. We will extract information about the per-
turbation of the eigenvalues and the singular values of a TN matrix A from its kth
compound or associated matrix A®) [20, 21]. The entries of A®) are all kth order
minors of A. The eigenvalues of A%) are all possible products of k eigenvalues of
A [21, Thm. 23, p. 65]. We will now prove that the same is true for the singular
values.

LEMMA 7.1. Let o1 > 09 > -+ > o, > 0 be the singular values of a matriz A.
Then the singular values of the kth compound matriz A*) are all possible products of
the numbers o1,09,... ,0, taken k at a time.

Proof. Let A =USVT be the SVD of A, where S = diag(c1,02,...,0,). The kth
compound matrix of a product of matrices equals the product of the kth compound
matrices of the factors [21, p. 64]. Therefore U*) and V*) are orthogonal (UTU = I
implies (U*)TU®) = 7)) and the SVD of A®) is

AR — u(k)g(k)(y(k))T.

Finally, the matrix S*) is diagonal, and its diagonal entries are all possible products
of the numbers o1, 09,... ,0, taken k at a time. ]

THEOREM 7.2. Let B, Bs, ..., Bs be nonnegative nonsingular bidiagonal matri-
ces, and let A = B1By---Bs. Let x be an entry in some B.,1 < r <'s, and A be
obtained from A by replacing x in B, by & = x(1 + ), where |6] < 1. Let the eigen-
values and the singular values of A and A be AMZ>X> >N, 01 200> >0,
and5\1 > 5\2 > > ;\n, g1 > Gg > -+ > by, respectively. Then for allk =1,2,...,n

2|6
1— 2|6

200l
1—20 ™

‘Xk_)\k‘ < A, and |&k—0'k| <

Proof. The values of s and r are of no importance in this theorem; we introduce
them only for clarity. Also, any B; may be upper or lower bidiagonal, or simply
diagonal.

The matrix A is TN since it is a product of TN bidiagonal matrices. We will first
prove the theorem by assuming that A is TP and then extend the result to the TN
case by continuity.

Since A = B1Bsy--- B, the Cauchy-Binet identity [20, p. 9] implies that any
(f) = ax + b for some a,b > 0. Similarly,

i

entry ag’;) of A®) is a linear function of z: a
dz(-f) =ax(1l+ 6) +b. Then for all 7, j

— (k)
= |6az < [6]az;”.

NG k
(7.1) agj) — agj)

The matrix A®) is positive with Perron root A1 Az - - - A\ and two-norm o105 - - - 0.
Since small perturbations in the entries of a positive matrix cause small perturbations
in its Perron root [15, Thm. 1] and two-norm [9, Cor. 5.1] the inequality (7.1) implies

(72) 5\15\2“'5\16:(1—"_61))\1)\2'.')\]67 6’15’2'--6};:(1+52)0’102~-~0’k7
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and by analogy

(7.3)
MAg A1 = (L +83)MAe- - A1, G102+ -0p—1 = (1 + ba)o102 - - 0p—1,

where |6;] < 6 for i = 1,2,3,4. The claim now follows directly by substituting (7.3)
into (7.2) and using that |(1 4 61)/(1 + 63) — 1] < 2|6]/(1 — 2|4]).

Let A and A now be TN. Let the TP matrices Ay and Ay be obtained from A and
A by replacing the zero entries in BD(A) and BD(A), respectively, by a tiny quantity
6 > 0. Since the eigenvalues of a matrix are continuous functions of the matrix entries,
by taking the limit as 8 — 0 we conclude that the claim of this theorem is true when
A'is TN as well.

We considered the TP and TN cases separately because we needed A®*) to be
nonnegative and irreducible in order to invoke Theorem 1 from [15]. a0

If k entries in the factors of the product A = B;--- B, are perturbed and the
relative perturbation in each entry is bounded by 0 < 6 < 1, then we can apply
Theorem 7.2 repeatedly and accumulate the relative perturbations to conclude that
the relative perturbation in each eigenvalue and each singular value of the perturbed
product is bounded by 2k6/(1 — 2k6).

COROLLARY 7.3. Let A,A be TN matrices with eigenvalues )\1-,5\1- and singular
values 0;,0;,1=1,2,... ,n, respectively. If B’D(A) s a small componentwise relative
perturbation of BD(A): |(BD(A))i; — (BD(A))i;| < 6(BD(A))ij, where 0 < § < 1,
then

226 2n26

Ai — n25)\i and |6, — ¢7,|_71 57,257

In other words BD(A) determines the eigenvalues and the singular values of A
accurately, and the appropriate structured condition number of each eigenvalue and/or
singular value with respect to perturbations in BD(A) is at most 2n?.

We will now use Theorem 7.2 for the error analysis of our eigenvalue and singular
value algorithms, Algorithms 5.1 and 6.1. These algorithms reduce the eigenvalue
and the singular value problem of a TN matrix to the singular value problem of a
bidiagonal matrix. In this reduction the only source of error is in computing the
entries of a certain representation of an intermediate TN matrix A as a product of
nonnegative bidiagonal matrices A = B; - -+ By (e.g., any of the representations (4.2)

o0 (4.7)). All arithmetic is subtraction-free; thus every single floating point operation
will cause at most € relative perturbation in at most one entry of some B;. In turn,
the relative perturbation of any eigenvalue and singular value of A will be at most
2¢/(1 — 2¢). Accumulating the error in each eigenvalue and singular value in the
style of Higham as described above, we conclude that the relative perturbation in
each eigenvalue and singular value of A after at most 1—36713 + O(n?) such arithmetic
operations (which is a bound on the cost of reduction to the bidiagonal singular value
problem for both algorithms) will not exceed (22n? + O(n?))e/(1 — (32n3 4+ O(n?))e).

COROLLARY 7.4. Let \; and o; be the eigenvalues and the singular values of a
TN matriz A. Let 7; and 6; be the (exact) singular values of the bidiagonal matrices C
and F' as computed by Algorithms 5.1 and 6.1, respectively, in floating point arithmetic
with machine precision €. Then

(32n® + O(n?))e
Ai =il < 1— (3Zn3 + 0(n?))e

n3 4+ 0(n?))e
%n3+0(n2))e !

Ai and |0‘i—9i|<

(Fn®
—(
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The final step of computing the singular values of the bidiagonal matrix using
DLASQ1 is known to introduce only a small additional relative error [17, 36].

COROLLARY 7.5. Under the assumption that the LAPACK routine DLASQLl com-
putes each singular value of a bidiagonal matriz with a relative error not exceeding
O(n?)e, the relative error in each eigenvalue or singular value of A, as computed by
Algorithms 5.1 or 6.1, respectively, does not exceed %n‘g + O(n?) units in the last
place.

Singular vectors. The singular vectors of a TN matrix A are accurately de-
termined by BD(A) and may be computed accurately by accumulating all Givens
rotations in Algorithm 6.1.

PROPOSITION 7.6. Let A= UXVT be the SVD of a TN matriz A and let USVT
be the SVD of A as computed by Algorithm 6.1 with accumulation of the singular
vector matrices. Then the acute angle 0(u;,G;) between the right singular vectors and
their computed counterparts is bounded by

O(n3ke)

(7.4) sin O(u;, 4;) < — ,
( ming; (o — 0i) /o4

where k is a bound on the condition number of L and U in the LDU decomposition
of A resulting from Gaussian elimination with complete pivoting. A similar result is
true for the right singular vectors.

The modest constant hidden in the above big-O notation can be found in [11].

We conjecture that a slightly stronger result is true, namely we can omit the
factor k from the bound (7.4).

Proof. The result follows directly from [11] (see also the discussion in section 2.5).
First consider the effect of a single ¢ relative perturbation in any one entry of BD(A).
As in the proof of Theorem 7.2, from the Cauchy—Binet identity we know that the
relative perturbation in any minor of A will be at most §. The relative perturbation
in any entry of L, D, or U will be at most 26, since every entry of L, D, and U is a
quotient of minors of A. Following [11] we obtain the bound

O(k0)

ming; |(0j — i) /03]

(7.5) sin O(u;, ;) <

Accumulating the perturbations in Algorithm 6.1 using (7.5) and using that for small
acute angles sinx + siny ~ sin(z + y), we obtain (7.4). 0

Eigenvectors. In the symmetric case, the eigenvector matrix of a TN matrix A
may be accumulated in Algorithm 5.1 as a product of highly accurate EETSs, a diagonal
matrix, and the right singular vector matrix of a bidiagonal matrix. Alternatively the
eigenvector matrix may be computed using Algorithm 6.1 as the right singular vector
matrix of A. Either way, the computed eigenvectors will satisfy the error bound (7.4).

In the nonsymmetric case, however, we know of no relative perturbation results
for eigenvectors of nonsymmetric TN matrices, and we make no claims as to the
accuracy of the eigenvectors of a nonsymmetric TN matrix that may be computed
using Algorithm 5.1.

A nonsymmetric TN matrix may not even have a complete set of eigenvectors.
For example a Jordan block corresponding to a positive eigenvalue is TN. If a nonsym-
metric TN matrix is irreducible, then it is diagonalizable, and a full set of eigenvectors
exists. Although the factors of the eigenvector matrix—EETS, a diagonal matrix, and
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the right singular vector of a bidiagonal matrix—are very accurate in the appropri-
ate sense, forming the product will likely involve subtractive cancellation and loss of
accuracy in the individual eigenvector components.

The eigenvector matrix of an irreducible TN matrix A is a y-matriz (i.e., it has
an LU decomposition where L and U~! are TN [24]), and the jth eigenvector has
j — 1 sign changes [21, Thm. 6, p. 87].

Finding algorithms that will guarantee accuracy in the computed eigenvectors
and/or the two properties above is still an open problem and a topic of current
research.

Vandermonde and Cauchy matrices. We conclude this section with a re-
sult about the accuracy and stability of the eigenvalues and singular values of TP
Vandermonde and TP Cauchy matrices

n

V(z) = [xg—l}:]:l and Cf(x,y) = [zi-}-y;‘LJZf

where 0 < 21 < -+- < zp,and 21 < -+ < Ty, Y1 < -+ < Yn, and z1 +y1 > 0,
respectively. Define
o wi —

rel_gap, = min ———,
S = Tl + T

o w =yl
L = e J9b
HOE ey =R i Tyl
1
Ry = —/——,
rel_gap,
1 1 1

+ + .
rel gap,  rel.gap, relgap,,

PROPOSITION 7.7. Let V = V(z) and V = V(&) be TP Vandermonde matrices,
and let C = C(x,y) and C= C(&,9) be TP Cauchy matrices. Let A, p;, i, and fi; be
the eigenvalues of V, C, V, and C, respectively. If &; = x;(1+6;) and §; = y;(1 + n;),
where 6;,m;] < 6 < 1, then

(7.6) i = Nl SO@Pry&)N  and | — ps) < OnPked) .

The same condition numbers apply for the singular values of V and C. The quantities
n3ky and n’ko are therefore the appropriate structured condition numbers of the
eigenvalues and singular values of V' and C with respect to perturbations in the data
x; and y;.

Proof. 1t suffices to prove the result for the eigenvalues of C', the rest being
analogous. We have

(& — 25) — (zi — x5)| = |6iz; — 6525] < 6|w; — x| /rel-gap,.
Similarly
(& —95) — (@ — y;)| = 6w — njy;] < Slwi — yj|/rel_gap,,,.

Accumulating the perturbations in BD(C') and BD(C) using the formulas (3.6) we
obtain
nkcd

(BD(C))s; = (BD(C))ss| < 5
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Corollary 7.3 now implies (7.6). a

ProposiTIiON 7.8. Let V and C be TP Vandermonde and TP Cauchy matrices
with eitgenvalues \; and p;, respectively. Let S\i,ﬂi be the eigenvalues of V. and C
computed in floating point arithmetic, by first computing BD(V') and BD(C) according
to (3.5) and (3.6) and then running Algorithm 5.1. Then

(12n34+0(n?))e
— (12n3+0(n?))e

(18n3+0(n?))e ‘
=1 (183 +0(n2))e "

The same error bounds apply for the singular values computed by Algorithm 6.1.

Proof. The decompositions BD(V) and BD(C) can be computed using formu-
las (3.5) and (3.6) in 2n®+O(n?) and §n3+O(n?) arithmetic operations, respectively.
Every floating point operation in evaluating (3.5) or (3.6) can cause at most € relative
perturbation in an entry of BD(V') or BD(C'), respectively. By applying Theorem 7.2
repeatedly, we conclude that the relative perturbations in the eigenvalues and/or sin-
gular values of V' and C resulting from rounding errors in just computing BD(V') and
BD(C) will not exceed

(%n?’ +0(n?))e and (%ng’ +0(n?))e

(7:8) 1— (31 +0(n?))e 1— (¥n?+ 0(n?))e’

respectively. According to Corollary 7.5, Algorithms 5.1 and 6.1 will introduce at
most

(%n3 +0(n?))e
1—(2n3 4+ 0(n?))e

(7.9)

additional relative error in each eigenvalue and singular value of V' and C. Combin-
ing (7.8) and (7.9), we obtain (7.7). d

The n? factor in the error bounds above is only the worst case error bound, which
does not appear in numerical experiments we conducted.

8. Numerical results. We performed extensive numerical tests and confirmed
the correctness and cost of our algorithms. To confirm the correctness we chose
various TN structured matrices (Cauchy, Vandermonde, generalized Vandermonde,
etc.) with random nodes and compared the output to the output of other O(n?)
accurate algorithms (for the SVD [10, 11]) and to the output from Mathematica [40]
in extended precision arithmetic. Most test matrices had condition numbers well
in excess of 10'®, so conventional algorithms failed to get any correct digits in the
smallest singular values and eigenvalues, whereas Algorithms 5.1 and 6.1 always agreed
with the output from Mathematica to at least 14 digits in all singular values and
eigenvalues, even the tiniest ones. We present a couple of our test results here.

The Hilbert matrix. In our first numerical example we computed the singular
values of the 20 x 20 Hilbert matrix
I { . }20
RS Py e
which is also Cauchy and its bidiagonal decomposition is easily and accurately com-
puted in O(n?) time using (3.6). The Hilbert matrix is an attractive example because
it is a very ill-conditioned TN matrix for which other accurate O(n?) SVD algorithms

exist [10, Alg. 2], which we can compare against.
We computed the singular values of H using the following algorithms:
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Fic. 8.1. Plots of the singular values of the 20 X 20 Hilbert matriz and the eigenvalues of a
20 x 20 generalized Vandermonde matriz; “+” = accurate, “x” = traditional. Data below the dotted
lines may be inaccurate for the traditional algorithms.

Mathematica [40] with 60-digit arithmetic;

Algorithm 6.1;

Algorithm 2 from [10];

traditional SVD algorithm as implemented in MATLAB’s function svd.
Since k(H) ~ 103°, Mathematica with 60-digit arithmetic computed all singular

values with about 30 significant digits of accuracy. Algorithm 2 from [10] guarantees

high relative accuracy (close to 16 digits since we are using double precision) in the

computed singular values, and its output agreed with the output from Algorithm 6.1

and the output from Mathematica to at least 14 decimal places. In contrast, the

traditional algorithm—MATLAB’s function svd—returned only the largest singular

values accurately with the accuracy gradually decreasing until the singular values

smaller than O(e)o; &~ 10716 were computed with no correct digits at all. All these

results are in the left plot of Figure 8.1.

Generalized Vandermonde matrix. Next, consider the eigenvalue problem
for a 20 x 20 generalized Vandermonde matrix

N A & P R} 20
with nodes z; = 4, i = 1,2,...,20, and corresponding to partition A = (6, 3,2, 1).
This Vandermonde matrix is generalized in the sense that the exponents increase
nonlinearly—the ith row of G is (1,z;,2%,..., 2%z}, 2% 22! 225). Tt is typical
for the generalized Vandermonde matrices to be described in terms of corresponding
partitions A [13, 32].

We chose this example of a generalized Vandermonde matrix because it incorpo-
rates both our technique for computing an accurate bidiagonal decomposition of such
a matrix [13] and the eigenvalue algorithm described in this paper. The bidiagonal
decomposition of the inverse G~' is computable accurately and efficiently using a
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Bjorck-Pereyra method [13], and we permute the elements in the L®) and U® and
invert D in the bidiagonal decomposition of G~! in order to obtain BD(G) [25]. As
a benchmark we again used Mathematica. Since G is nonsymmetric, the accuracy of
the computed eigenvalues is also affected by the angle between the left (y;) and right
(x;) eigenvectors. The relative error in each eigenvalue A; is bounded by

macheps - w
Ailyl @il

where macheps is the machine precision in Mathematica. Running Mathematica’s
Eigenvalues routine in 60-digit arithmetic (macheps = 107%°) ensured that each
eigenvalue is computed with at least 16 correct leading digits (because Apin ~ 1075,
min; (\;|ylz;|) = 1077, and ||A2 ~ 1032). The results from Algorithm 5.1 agreed
with the results from Mathematica to at least 14 decimal digits, even in the tiniest
eigenvalues. We also compared our results to the results of the traditional eigenvalue
algorithm QR as implemented by MATLAB’s routine eig. As expected only the
largest eigenvalues are computed accurately. MATLAB also returned some negative
eigenvalues and eigenvalues with nonzero imaginary part, so in Figure 8.1 we have
plotted only their magnitudes.

9. Conclusions and open problems. We have presented new O(n?) algo-
rithms for computing accurate eigenvalues and SVD of a TN matrix A, given its
bidiagonal decomposition BD(A). With this we settle an open question from [11] not
only for the singular value problem but for the eigenvalue problem as well. To the best
of our knowledge Algorithm 5.1 is the first algorithm to compute all eigenvalues of a
nonsymmetric matrix to high relative accuracy. The question of computing accurate
eigenvectors of nonsymmetric TN matrices remains open.

We excluded the class of singular TN matrices because they no longer possess a
unique bidiagonal decomposition; the requirement for nonsingularity in Theorem 2.1
is important. The problem of finding accurate eigenvalue and SVD algorithms for
singular TN matrices also remains open.
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