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Abstract. Linear Discriminant Analysis (LDA) has been widely used for linear dimension reduction. However,
LDA has some limitations that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered
structure is not easily captured. In order to overcome the problems caused by the singularity of the scatter matrices, a
generalization of LDA based on the generalized singular value decomposition (GSVD) has been developed recently.
In this paper, we propose a nonlinear discriminant analysis based on the kernel method and the generalized singular
value decomposition. The GSVD is applied to solve the generalized eigenvalue problem which is formulated in the
feature space defined by a nonlinear mapping through kernel functions. Our GSVD-based kernel discriminant anal-
ysis is theoretically compared with other kernel-based nonlinear discriminant analysis algorithms. The experimental
results show that our method is an effective nonlinear dimension reduction method.
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1. Introduction. In Linear Discriminant Analysis (LDA), a linear transformation is
found which maximizes the between-class scatter and minimizes the within-class scatter [7,
9]. Although LDA is conceptually simple and has been used in many application areas, it has
some limitations: it requires at least one of the scatter matrices to be nonsingular and it can
not easily capture a nonlinearly clustered structure.

One common situation where all of the scatter matrices are singular is when the number
of data points is smaller than the dimension of the data space, and this situation is often
referred to as an undersampled problem. Numerous methods have been proposed to overcome
this difficulty [8, 4, 19]. Recently, a method called LDA/GSVD has been proposed, which is a
generalization of LDA based on the generalized singular value decomposition (GSVD) [10].
It overcomes the problem caused by the singularity of the scatter matrices in undersampled
problems by applying the GSVD to solve a generalized eigenvalue problem.

In order to make LDA applicable to nonlinearly structured data, kernel-based methods
have been applied. The main idea of kernel-based methods is to map the input data to a feature
space by a nonlinear mapping where inner products in the feature space can be computed by
a kernel function without knowing the nonlinear mapping explicitly. Kernel Principal Com-
ponent Analysis (Kernel PCA) [18], Kernel Fisher Discriminant Analysis (KFD) [12] and
nonlinear Discriminant Analysis [1, 16, 2] are nonlinear extensions of the well known PCA,
Fisher Discriminant Analysis, Linear Discriminant Analysis based on the kernel method, re-
spectively. However, PCA or Kernel PCA may not be appropriate as a dimension reduction
method for clustered data, since the purpose of these methods is an optimal lower dimen-
sional representation rather than discrimination. KFD [12] and the method proposed in [2]
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have been developed to handle the data that consists of two classes only. In Generalized Dis-
criminant Analysis (GDA) [1], centering in the feature space is performed by shifting each
vector by the global average, and then the kernel matrix is computed. Although this kernel
matrix is assumed to be nonsingular, centering in the feature space makes the kernel matrix
singular, even when the kernel function is symmetric positive definite. This makes the theo-
retical development of GDA [1] break down. In addition, when the input space is mapped to
a feature space through a kernel function, the dimension of the feature space often becomes
much larger than that of the original data space, and as a result, the scatter matrices become
singular.

Towards a general nonlinear discriminant analysis, we propose a kernel-based nonlin-
ear extension of LDA using the GSVD. We also show the relationships of our GSVD-based
kernel discriminant analysis with other kernel-based nonlinear discriminant analysis algo-
rithms. After reviewing the linear dimension reduction method LDA/GSVD in Section 2, we
present the new Kernel Discriminant Analysis, KDA/GSVD, in Section 3. The relationships
of KDA/GSVD with other kernel-based methods are discussed in Section 4. Experimental
results are given in Section 5 and we conclude with discussions.

2. Linear Discriminant Analysis. Throughout the paper, a data set of � data vectors in
an �-dimensional space is denoted as

� � ���� � � � � ��� � ���� � � � � ��� � ���� (2.1)

where the data is clustered to � classes and each block �� � ����� has �� data vectors. Let
�� �� � 	 � �� be the set of column indices that belong to the class 	. The between-class
scatter matrix 
� and the within-class scatter matrix 
� are defined as


� �
��
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��	�
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�� and � �
�

�
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���

�� (2.3)

are the centroid of the class 	 and the global centroid, respectively. The separability of classes
in a data set can be measured by using the traces of these scatter matrices.

The goal of Linear Discriminant Analysis (LDA) is to find a transformation matrix � �
���
 for some integer 
 with 
 � � that defines a linear transformation

�� � � � ���� � � � ��� � �
��

and preserves the cluster structure by maximizing the between-class scatter and minimizing
the within-class scatter. In the transformed space by �� , the between-class scatter matrix �
�
and the within-class scatter matrix �
� become

�
� � ��
�� and �
� � ��
���

respectively. A commonly used criterion in LDA for finding an optimal clustered structure
preserving transformation �� is

	
�
�

trace����
���
�����
����� (2.4)
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It is well known [9] that this criterion is satisfied when 
 � ��� where � is the number of the
classes in the data, and the columns of � � �������� are the eigenvectors corresponding to
the � � � largest eigenvalues for the eigenvalue problem


��� 
�� � ��� (2.5)

However, as in many applications such as information retrieval [11] and face recognition [4],
when the number of data items is smaller than the dimension of data space, 
� becomes
singular. Recently, a method which applies the GSVD to solve the generalized eigenvalue
problem


�� � �
�� (2.6)

has been developed [10].
The method in [10] utilizes representations of the scatter matrices as


� � ���
�
� and 
� � ���

�
� (2.7)

where
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By applying the GSVD to the pair ���
� � �

�
� �, we have
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where � and � are orthogonal and � is nonsingular, ��
� �� � ��

��� � �� and ��
� �� and

��
��� are diagonal matrices with nonincreasing and nondecreasing diagonal components

respectively. Then the simultaneous diagonalizations of 
� and 
� can be obtained as

��
�� �
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Let us denote the diagonal elements of ��
� �� and ��

��� as �� and ��, i.e.

��
� �� � diag���� � � � � ���� �� � � � � � �� and

��
��� � diag���� � � � � ���� �� � � � � � ��

and � � ���� � � � � ���. From Eqs. in (2.9), the column vectors �� of � satisfy

��
��� � ��
���� � � 	 � �� (2.10)

For �� � � 	 � �

��� 
��� � 
 and ��� 
��� � 


and they do not convey discriminative information among classes. Hence an optimal dimen-
sion reducing transformation �� can be obtained from the first � � � columns1 of � as

� � ���� � � � � ������
The algorithm for LDA/GSVD can be found in [10, 14].

1When � � rank����, ��� ���� � � and ��� ���� � � for � � � � � � �. Hence one can consider taking only
the first � columns from � . However, in practice the rank of �� is one less than the number of classes, that is, � � �
in most of real data sets.
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3. Nonlinear Discriminant Analysis based on Kernel Functions and the GSVD. In
this section, we present a nonlinear extension of LDA based on kernel functions and the
GSVD. The main idea of the kernel method is that without knowing the nonlinear feature
mapping or the mapped feature space explicitly, we can work on the feature space through
kernel functions, as long as the problem formulation depends only on the inner products be-
tween data points. This is based on the fact that for any kernel function � satisfying Mercer’s
condition [5], there exists a mapping � such that

� ��������� �� ���� �� (3.1)

where � � � is an inner product in the feature space transformed by � [17, 3]. For a finite
data set ���� � � � � ��	, a kernel function � satisfying Mercer’s condition can be rephrased as
the kernel matrix � � ������ �������
��� being positive semi-definite [5]. The polynomial
kernel

���� �� � � ��� � �� �  ��
�� ! � 
 and  ��  � � � (3.2)

and the Gaussian kernel

���� �� � �����
�� �
�"#�� # � � (3.3)

are two of the most widely used kernel functions. The feature map � can be either linear or
nonlinear depending on kernel functions used. If the inner product kernel function ���� �� �
� �� is used, the feature map is an identity map. In the kernel methods neither the feature map
nor the feature space needs to be formed explicitly due to the relation (3.1) once the kernel
function � is known.

We apply the kernel method to perform LDA in the feature space instead of the original
input space. Given a kernel function �, let � be a mapping satisfying (3.1) and define � �
�	 to be the feature space from the mapping �. As in (2.7), scatter matrices 
� and 
� in
the feature space � can be expressed as


� � ����
� and 
� � ����

� (3.4)

where

�� � �
�
������ � ���� � � � �������� � ���� � �	��� (3.5)
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� � � � � ������� ����
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� � � �	���
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�
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�
��	�

������ �� �
�

�

��
���

����� and �� � ��� � � � � ��� � ������

The notations ����� are used to denote ����� � � � � � ���� � ������� � � � �������. Then the
LDA in � finds a transformation matrix

� � �$�� � � � � $���� � �	������

where the columns of � are the generalized eigenvectors corresponding to the � � � largest
eigenvalues of


�$ � �
�$� (3.6)

Now we show how to solve the problem (3.6) without knowing the explicit representation
of the mapping � and the feature space � , therefore without forming 
� and 
� explicitly.
Note that any vector $ � �	�� can be represented as

$ � $� � $�
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where $� � span�����	 and $� � span�����	�, and 
�$� � 
 and 
�$� � 
 for any
$� � span�����	�. Therefore, for any vector $ satisfying (3.6),


�$� � 
��$� � $�� � �
��$� � $�� � �
�$��

Hence we can restrict the solution space for (3.6) to span�����	. One may refer to [13] for
an alternative explanation.

Let $ be represented as a linear combination of �����, 	 � �� � � � � �,

$ �
��
���

%������ and % � �%�� � � � � %��� � (3.7)

The following theorem gives a formula by which 
� can be expressed through the kernel
function.

THEOREM 3.1. Let

�� � � ��� �������
������ � ��� �
�
��
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 � (3.8)

Then

��
� $ � ��

� %� (3.9)

Proof. From (3.5) and (3.7),

��
� $ (3.10)
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������ � ����
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���
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��
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��	�

������ �
�

��

���������
�

�
�� � ������ � � � � �����

� ��� %�
...
%�

�
��

� ��
� %� (3.11)

Similarly to Theorem 3.1 , we can obtain

��
�$ � ��

�% (3.12)

where

�� � �&�� �������
������ � (3.13)

&�� � ����� ���� �

�


�
��	�

����� ��� when �� belongs to the class 
�

THEOREM 3.2. The generalized eigenvalue problem


�$ � �
�$
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FIG. 3.1. The problem formulations of LDA in the original data space and the feature space defined by a
nonlinear mapping � through a kernel function, � ��	��
��	�� �� ��	�
 	��. In the kernel matrix 
, ���
 	��
denotes a column vector ���	�
 	��
 � � � 
 ��	�
 	��	� .

is equivalent to

����
� % � �����

�% (3.14)

where $ �
��

��� %������ and % � �%�� � � � � %��� .
Proof. From (3.9) and (3.12),


�$ � �
�$ � '�����
� $ � �'�����

�$ (3.15)

� (�����
� % � �(�����

�%

� ����
� % � �����

�%

for any ' �
��

��� (������ and ( � �(�� � � � � (��� �
Note that ����

� and ����
� can be viewed as the between-class scatter matrix and

within-class scatter matrix of the kernel matrix

� � ������ ��� �������
������

when each column in � is considered as a data point in the n-dimensional space. It can be
observed by comparing the structures of�� and�� with those of�� and�� in (3.5). Figure
3.1 illustrates the corresponding relations in the original data space and the feature space.

Note that ����
� and ����

� are both singular and the classical LDA can not be applied.
Now we apply the GSVD to the pair ���

� ���
�� in order to solve (3.14), and as in (2.9) we

have

� �����
� � �

�
��� �� 


 


�
� � �����

�� �

�
����� 


 


�
(3.16)

where the columns of � solves (3.14). Let � be the matrix obtained by the first ��� columns
of � as

� � �%���� � � � � %������ �

�
�� %� � � � � %� ���

...
...

%� � � � � %� ���

�
�� �

Defining

$� �
��

���

%� ������� � � 	 � � � ��
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Algorithm 1 KDA/GSVD

Given a data matrix � � ���� � � � � ��� � ���� with � classes and a kernel function �, it
computes the � � � dimensional representation of any input vector ) � �� by applying
the GSVD in the feature space defined by the feature mapping � such that ����� ��� ��
����������� �.

1. Compute �� � ���� and �� � ���� according to Eqs. (3.8) and (3.13).
2. Apply the GSVD to the pair ���

� ���
�� :

����
� � � ��� 
� and ����

�� � ��� 
��

3. Assign the first � � � columns of � to � :
4. For any input vector ) � ����, a dimension reduced representation is computed as

��
�
�� ����� )�

...
����� )�

�
�� � ���������

by Theorem 3.2, $� satisfies


�$� � ��
�$�

and �$�� � � � � $���� gives a linear transformation by the LDA in the feature space. Hence, for
any input vector ) � ����, the dimension reduced representation of ) is given by

�$�� � � � � $�������)�

�

�
� ��
���

%� ������
���)�� � � � �

��
���

%� ��������
���)�

�
� � ��

�
�� ����� )�

...
����� )�

�
�� �

This method, called KDA/GSVD, is summarized in Algorithm 1.

4. Comparison of Kernel-based Nonlinear Discriminant Analysis Algorithms. In
Section 3, we showed that KDA/GSVD finds the solution by solving

����
� % � �����

�% (4.1)

using the GSVD. In this section, we compare our GSVD-based approach with two other
methods, the regularization based method [8] and the one based on the minimum squared
error function [6, 7], and derive the relationships of KDA/GSVD with other kernel-based
nonlinear discriminant analysis algorithms.

4.1. A Relationship to Kernel Fisher Discriminant Analysis (KFD). Mika et al. [12]
developed a nonlinear extension of Fisher Discriminant Analysis, Kernel Fisher Discriminant
Analysis (KFD), using the regularization and kernel methods. KFD is a method for finding a
dimension reducing transformation specifically when the data set has only two classes. In a
two-class problem, the between-class scatter matrix 
� is expressed as


� � ����
�

���� � �������� � ����
� �
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where ���, 	 � �� �, denote the class centroids. Hence the KFD criterion, maximization of

$� ���� � �������� � ����
�$

$�
�$ � (4.2)

is equivalent to maximization of

$�
�$
$�
�$ �

%�����
� %

%�����
�%

� � (4.3)

where $ �
��

��� %������, % � �%�� � � � � %��� . Setting the derivative of (4.3) with respect
to % as 
 gives the eigenvalue problem

����
� % � �����

�%� (4.4)

The KFD in [12] solves the problem (4.2), that is, the eigenvalue problem (4.4) by the regular-
ization method where a positive diagonal matrix ! � is added to����

� to make it nonsingular.
However, regularization parameter should be determined experimentally and this procedure
can be expensive. The performances by the regularization method and KDA/GSVD are com-
pared in our experiments.

4.2. Using the Minimum Squared Error Function. The Minimum Squared Error
(MSE) formulation in a two-class problem (i.e., � � �) seeks a linear discriminant function

*�)� � &� � &� )

where

*���� � &� � &� �� �

�
��� if 	 � ��

��� if 	 � ��
(4.5)

and �� is the prespecified number for each class. For the data set � given in (2.1), the problem
(4.5) can be reformulated as a problem of minimizing the squared error�������

�
�� � ���

...
...

� ���

�
��� &�

&

�
�

�
�� ��

...
��

�
��
�������
�

�

�
����+

�
&�

&

�
� �

�����
�

(4.6)

where �� � �� if 	 � �� and �� � �� if 	 � ��. Note that the matrix + is � � �� � �� and
the linear system involved in (4.6) is underdetermined when � � �� � and overdetermined
when � � �� �. In either case, the solution which minimizes the squared error (4.6) can be
computed using the pseudoinverse +� of + as�

&�

&

�
� +��� (4.7)

When �� � �"�� and �� � ��"��, the MSE solution is related with Fisher Discriminant
Analysis (FDA) [6, 7]. The vector & in (4.7) is same as the solution of FDA except for a
scaling factor and

&� � �&� �

where � is the global centroid defined in (2.3). For a new data item, it is assigned to the class
� if

&� ) � &� � &� �) � �� � 
� (4.8)
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otherwise it is assigned to the class �.
Now (4.6) can be extended to the squared error function in the feature space by a mapping

� through a kernel function �. By substituting �� with ����� and & with
��

��� %������ as
in (3.7), we obtain�������

�
�� � ����� ��� � � � ����� ���

...
...

� ����� ��� � � � ����� ���

�
��� &�

%

�
�

�
�� ��

...
��

�
��
�������
�

�

� 
�, � �
�� (4.9)

where % � �%�� � � � � %��� . The matrix � in (4.9) is �� ��� �� and therefore �, � � is an
underdetermined linear system. Choosing the solution , � ���, a data item ) is assigned to
the class 1 if �

� ��)� ��� � � � ��)� ���
� � &�

%

�
� 
 (4.10)

While the MSE solution in (4.6) is related to Fisher Discriminant Analysis (FDA) when
the within-class scatter matrix is nonsingular [6, 7], it can be shown that the MSE solution in
(4.6) is related to LDA/GSVD in the case of the singular scatter matrix. The relation between
the MSE solution of (4.6) and LDA/GSVD for two-class problems and the corresponding
relation between the kernel MSE solution of (4.9) and KDA/GSVD are presented in the Ap-
pendix.

4.3. Generalized Discriminant Analysis (GDA). In Generalized Discriminant Analy-
sis (GDA) [1], centering of the data in the feature space is performed by shifting each feature
vector by the global centroid

�� �
�

�

��
���

�����

and then the kernel matrix is computed. This kernel matrix

�� � � -�
� ����
��� where -�
� � ������� ���� ������� ���

is assumed to be nonsingular. However, �� is always singular since

�� �

�
�� ������� ����

...
������� ����

�
�� � ������ ��� � � � � ������ ��

�
and

rank�
�
������ ��� � � � ������� ��

�
� � �� ��

This makes the theoretical development in [1] break down. In numerical experiments, �� may
only be detected as being very ill-conditioned since �� is symmetric positive semidefinite and
zero eigenvalues may appear to be extremely small positive numbers due to rounding errors.

In solving the generalized eigenvalue problem (4.1), the GSVD is applied to��
� and��

�

instead of����
� and����

�, hence the products in����
� and����

� do not need to be com-
puted explicitly. Moreover, the GSVD does not require any parameter optimization such as a
regularization parameter. When the regularization method is used for the problem (4.1), the
inverse of the matrix����

��! � should be computed in addition to the eigenvalue decompo-
sition or singular value decomposition which is also required in the GSVD approach or MSE
solution. In the next section, experimental comparisons of the performances of KDA/GSVD
and other kernel based methods are presented.
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TABLE 5.1
The description of datasets.

dataset Musk Isolet Car Mfeature
no. of classes 2 26 4 10

dim 166 617 6 649
no. of data 6599 7797 1728 2000

5. Experimental Results. We demonstrate that our proposed method KDA/GSVD is
an effective nonlinear extension of LDA by comparing the performances of KDA/GSVD
and other kernel-based nonlinear discriminant analysis algorithms as well as kernel-based
Principal Component Analysis (Kernel PCA) [18].

For the first experiment, data sets were collected from UCI machine learning repository2.
The detailed description of data sets is shown in Table 5.1. After randomly splitting the data
to the training and test sets of equal size, cross-validation is used with the training set in order
to determine the optimal value for # in Gaussian kernel function

���� �� � ���

�
�
�� �
�

�#�

	
� (5.1)

In cross-validation, first, the average of pairwise distances in the training data is computed.
Then based on the average distance �.*�, an optimal value / in

# � / � �.*� (5.2)

which gives the highest prediction accuracy is searched. In our experiments, we found that
�
��� ��
� is a reasonable range for /.

For the generalized eigenvalue problem (4.1), the regularization method is applied for
the comparison with KDA/GSVD. A regularization parameter ! (! � 
) is used to make the
matrix ����

� nonsingular and then the eigenvalue problem

�����
� � !��������

� % � �%

is solved. In our experiments, while the regularization parameter ! was set as 1, the optimal
value # in the Gaussian kernel function was searched by cross-validation. In Kernel PCA,
the reduced dimension was one less than the number of classes as in other methods. After
dimension reduction, --nearest neighbor (--NN) classifiers were used for the --values of 1,
15, 29.

Figure 5.1 compares the performances of KDA/GSVD, KFD and Kernel PCA for the
Musk data which has two classes. The top figures in Figure 5.1 show the prediction accura-
cies by 10 cross-validation in the training set of the Musk data, where the �-axis corresponds
to the values / in (5.2) which ranged from 0.1 to 1.5 with an interval 0.1. In the second row
in Figure 5.1, the prediction accuracies for the various / values in the test data are also shown
for the comparison with those obtained by cross-validation. Table 5.2 shows the results in the
test sets using the parameters chosen by cross-validation. It also shows the prediction accu-
racies obtained by the LDA in the original data space. The experimental results demonstrate
that the GSVD-based nonlinear discriminant analysis, KDA/GSVD, obtained the competent
prediction accuracies over the compared methods, while it does not require any additional
parameter optimization as in the regularization method and it can naturally handle the multi-
class problems.

2http://www.ics.uci.edu/�mlearn/MLRepository.html
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FIG. 5.1. The Prediction accuracies in the Musk data. The top figures were obtained by the cross-validation
with the training data and the bottom figures show the prediction accuracies in the test data. The �-axis corresponds
to the values � in � � � � 	��� where 	��� denotes the average of pairwise distances in the training dataset.

TABLE 5.2
The prediction accuracies (
) in the multi-class problems

Dataset �-NN LDA KDA/GSVD Regularization Kernel PCA

� � � 91.0 ���� 97.3 81.7
Musk 15 93.5 ���� 97.4 85.9

29 93.7 ���� 97.4 86.2
1 94.1 ���� 95.8 84.0

Isolet 15 94.1 ���� 96.1 85.7
29 93.9 ���� 96.2 85.0
1 87.5 94.2 ���� 64.9

Car 15 88.8 94.2 ���� 71.3
29 87.2 94.2 ���� 72.8
1 98.2 ���� 93.6 87.5

Mfeature 15 97.9 ���� 94.4 85.6
29 97.8 ���� 94.5 82.8

In the next experiment, the purpose is to evaluate the performance of KDA/GSVD for an
undersampled problem. The data set was constructed by randomly selecting 500 documents
from each of five categories from the MEDLINE data set. The documents were preprocessed
with stemming, stop-list and rare term removal and encoded using the term frequency and
inverse document frequency [11], resulting in a total of 22095 terms. Equally splitting doc-
uments in each category into training and test data sets, each of them has 1250 documents.
Support Vector Machine (SVM) classifiers as well as --nearest neighbors and centroid-based
classification method were applied both in the original data space and in the reduced dimen-
sional space. Since the SVM classifier is for binary class problem and our data set has 5
classes, we used a DAG scheme for multi-class classification [15]. Table 5.3 shows the pre-
diction accuracies. After both linear and nonlinear SVMs were applied in the original data
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TABLE 5.3
Prediction accuracy (
) on MEDLINE data.

�-NN Centroid-
dimension 30 45 60 based SVM

Original data 22095�1250 83.5 84.0 83.8 84.8 89.5
KDA/GSVD 4 �1250 89.4 89.4 89.4 89.4 89.7

space, the best accuracy was obtained with a linear soft margin SVM. On the other hand, we
obtained a competitive result by a linear SVM in the dimension reduced space by KDA/GSVD
using the Gaussian kernel. Since the dimension was reduced dramatically from 22095 down
to 4 and it was trained with only a linear classifier in the reduced dimension, the training
process was much faster than in the full dimension. Even with --NN and centroid-based clas-
sification methods, prediction results that were as good as with SVM were obtained. The high
prediction accuracies by --NN or centroid-based classifiers in the reduced dimensional space
by KDA/GSVD show that the difficulty of applying a binary classifier as SVM to multi-class
problem can be overcome effectively.

6. Discussion. We have introduced KDA/GSVD which is a nonlinear extension of LDA
based on kernel functions and the generalized singular value decomposition. One advantage
of KDA/GSVD is that it can be applied regardless of singularity of the scatter matrices both
in the original space and in the feature space by a nonlinear mapping. It is also shown that
in two-class problem KDA/GSVD is related to the kernel version of the MSE solution. The
comparison with other methods in solving the generalized eigenvalue problem demonstrates
that KDA/GSVD is an effective dimension reduction method for multi-class problems.
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Appendix. In this appendix, a relationship between the MSE solution of (4.6) and the
LDA/GSVD solution for two-class problems is first presented. It is an extension of the rela-
tion between the MSE and FDA [7, 6] to the case of the singular scatter matrices. From the
relation between the MSE solution of (4.6) and the LDA/GSVD, the relationship between the
kernel MSE solution of (4.9) and the KDA/GSVD solution is also derived.

The problem (4.6) can be solved by the normal equations

�
� � � � �
�� � � � ��
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where ���
is the ��� � column vector with only 1’s as its components. From (6.1), we obtain�
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The first equation in (6.2) gives

&� � ���&

and by substituting it in the second equation and using the alternative expressions3 of 
� and

�
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we obtain

�
� � 
��& � ���� � ���� (6.4)

On the other hand, since rank�
�� � � in the two-class case we have

�� � �� � � � � � �� � 
 in ��
��� � ��
���

by LDA/GSVD. Since �� � �� � � and ��
��� � ��
���,

���
� � 
���� � ��� � ���
��� � 
��� �
����
�

��� � ������ � ���
���� (6.5)

3In fact, �� can also be represented as �� �
����
�

��� � ������ � ���� which will be used in Eq. (6.5) later.
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Denoting

0 � ��
��

������� � ������
� (6.6)

Eq. (6.5) becomes

�
� � 
��0�� � ���� � ���� (6.7)

Hence from Eqs. (6.4) and (6.7), we have
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where
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is the total scatter matrix.
Let the symmetric eigenvalue decomposition (EVD) of 
� be
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where 2 � rank�
��, 1 is orthogonal and �� is a diagonal matrix with nonincreasing positive
diagonal elements. Then from (6.8),

1���1
�
� & � 1���1

�
� 0�� and 1 �

� & � 1 �
� 0���

PROPOSITION 6.1. For any � � null�
�� � null�
��, all data items are transformed to
one point by the transformation �� .

Proof. For any � � null�
�� � null�
��, ��
�� � ��
�� � 
. Hence
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Eqs. (6.9) and (6.10) give�
�� �� � �� � for 	 � �� � � � � �
���� � �� �� for all 3 in �� and 	 � �� � � � � ��

and these imply that all data items are transformed to one point by �� .
Since

span�1�	 � null�
�� � null�
�� � null�
���

by Proposition 6.1, 1 �
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, and we obtain
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Eq. (6.11) gives the relation between the MSE solution and the solution of LDA/GSVD for
two-class problem, which holds regardless of the singularity of the scatter matrices.

Now it should be straightforward to derive the corresponding relation between the kernel
MSE solution and KDA/GSVD in two-class case. The formulation (4.9) for the kernel MSE
solution is obtained by substituting the original data ���� � � � � ��� in (4.6) with the kernel
matrix � � ������ ��� �������
������ where each column of the kernel matrix � can be
considered as a data item. On the other hand, as illustrated in Figure 3.1, KDA/GSVD solves
the generalized eigenvalue problem

����
� % � �����

�%�

����
� and ����

� are the scatter matrices of the kernel matrix � when each column of the
kernel matrix � is considered as a data item. Hence the relation between the kernel MSE and
KDA/GSVD corresponding to (6.11) can be derived by substituting the original data �� with
������ ���� � � � � ����� ����� in the proof of the relation between the MSE and LDA/GSVD.


