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TOWARDS A DIVIDE AND CONQUER ALGORITHM FOR THE
REAL NONSYMMETRIC EIGENVALUE PROBLEM

LOYCE ADAMS * AND PETER ARBENZ !

Abstract. Theory is developed that could be used towards developing a divide and conquer
algorithm for the nonsymmetric eigenvalue problem. We discuss the shortcomings of this theory and
discuss its application to the Hessenberg and nonsymmetric tridiagonal problems. We conclude that
the method may not be as promising as the divide and conquer methods for symmetric problems.

Key words. tridiagonal matrix, Hessenberg matrix, modified eigenvalue problem, divide and
conquer algorithm.

AMS(MOS) subject classifications. 15A18, 65F15, 65W05.

1. Introduction. In 1981, Cuppen {7] introduced a divide and conquer algo-
rithm for the computation of the spectral decomposition of real symmetric tridiagonal
matrices. The algorithm which was primarily designed for parallel computers turned
out to be faster than and comparably accurate to the well-known QR-algorithm even
on sequential computers [8]. We will review this algorithm in §2. Similar divide and
conquer algorithms have proven efficient for the bidiagonal singular value problem [16]
and the unitary eigenvalue problem [1].

In this paper we investigate whether it is possible to derive an algorithm similar
to Cuppen’s to solve the eigenvalue problem for real nonsymmetric matrices. More
generally we investigate how far the theory for symmetric low rank modified eigenvalue
problems as developed in [3] carries over to the nonsymmetric case. The theory is
then applied to two special cases of eminent interest: The eigenvalue problem for real
(upper) Hessenberg matrices, and for nonsymmetric tridiagonal matrices is solved
by a divide and conquer algorithm based on rank-1 modified eigenvalue problems.
Jessup [15] has recently investigated the nonsymmetric Hessenberg and tridiagonal
problems by using a rank-2 splitting assuming the matrices are diagonalizable.

The interest for the Hessenberg form stems from the fact that general matrices
are transformed into this form before the QR algorithm is applied. We note here that
the QR algorithm computes a Schur decomposition. In contrast, divide and conquer
algorithms work with eigenvectors. They therefore provide a spectral decomposition
or, in the case of defective matrices, a partial spectral decomposition.

The nonsymmetric tridiagonal eigenvalue problem arises e.g. in connection with
the nonsymmetric Lanczos algorithm [13, p.502]. It is also possible to transform a gen-
eral matrix into a similar tridiagonal matrix by means of (nonorthogonal) Householder
elementary reflectors. This process however is not stable [20, p.403]. Nevertheless, ef-
forts have been made to stabilize it (see [11] and the references therein). . o

The paper is organized as follows. After the review of Cuppen’s algorithm, we
derive in section 3 a general theory for restricted rank modified eigenvalue problems of
the form A = A+ UV7T, where U and V are real n X r matrices of maximal rank. The
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4 LOYCE ADAMS AND PETER ARBENZ

theory shows how eigenvalues together with their geometric and algebraic multiplicity,
eigenvectors and principal vectors of A can be found, if eigenvalues and eigenvectors
of A are known. We also discuss what would have to be done to get Schur vectors.
Tn section 4 we discuss deflation for the general rank-r and the practically important
rank-1 case. In section 5 we rewrite the above theory for a particular representation
of A. In section 6 we apply our theory to the cases where A are tridiagonal and
Hessenberg matrices, respectively. We are able to formulate algorithms to solve these
cases and to estimate their serial as well as parallel complexities. We discuss the
probable behavior of the algorithms in the final section 7.

2. Cuppen’s Divide and Conquer Algorithm. In this section we consider
the problem of determining the spectral decomposition

(2.1) T = XAXT, T, X, A e R™",
of the symmetric tridiagonal matrix
o B,
7= B ag - € ™™,
’ ﬂn«l
Brn-1  an
Cuppen [7] introduced the decomposition
0
Ty 0 ‘
i — 1 . . 8 1
(22) T‘T+D“(o T2>+'Bk 1o
0
0
= 1@ T+ 6fuat,

where u = ey, + fepq with 6 = £1. e; denotes the j-th unit vector. The introduction
of the factor # was-indeed an idea of Dongarra and Sorensen [8] to avoid cancellation
when forming the new diagonal elements of T} and T5.

As the element of T' at position (k, k + 1) vanishes, the computation of its spectral
decomposition amounts to the solution of two independent symmetric tridiagonal ei-
genvalue problems for 77 and T; of order k and n — k, respectively. With the spectral
decompositions T; = X;A; X7, i = 1,2, we get

(2.3) T = X [A+8fen”] X7
where

— — —vT. _ X Tek
X=X19X;, A=MNBAy, v=X"u= ( G.X!gﬁ ) .
Thus, if we know A; and A,, we obtain the eigenvalues and vectors of T by com-
puting the spectral decomposition of the matrix in square brackets i.e. the spectral
decomposition of a diagonal modified by a matrix of rank one.
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_ As the matrices (T — AI)® 1 and (T - M) @(1 +68,uT(T — M)~ w) for A ¢ o(T)

are congruent [2],[3],[4], the eigenvalues and vectors of T can be obtained from the
ones of T' by an investigation of the rational function [2],{5},[7],[8],[12],[14],[20]

)

1+ HﬁkuT(T A" Yu =1+ 80T (A — M)~

_ det(T = AD)

2.4 2
@9 1+ 6Bs Z X=X T aeT=an T {kim -

f is called the (modified) Weinstein determinant [14],[19]. Alternatively, f(A) = 0 is
called the secular equation [12]. By (2.4) one easily obtains the interlacing properties

(2.5) N <A ghjp, 1<i<n,  M<h

for positive 66. (Similar inequalities hold if 84), < 0.) Note that the A; do not appear
ordered in the diagonal of A!

From (2.3) it is seen that the eigenvalue A; persists (with unchanged eigenvectors)
if ; = 0. In this case we can deflate i.e. remove the corresponding j-th row and column
from A + 8BrvvT. Moreover, if A is an eigenvalue of T' of multiplicity m > 1, by an
orthogonal similarity transformation of (2.3) the corresponding eigenvectors can be
rotated such that at least m — 1 of them are orthogonal to  [5]. This choice of ei-
genvectors introduces (at least) m — 1 zero components in the vector v = X7Tu thus
permitting further deflation. Of course, in a numerical context one has to deal with
the problem of ‘almost vanishing’ v;’s and ‘almost equal’ eigenvalues. This issues are
discussed in [8],[16].

The result of the deflation process is a diagonal matrix A’ € R™*™, o/ < n,
which has only simple eigenvalues X} € o(T’) and a vector v’ whose elements are all
nonzero. The eigenvalues of A’+88,v'v'T are the eigenvalues of T which are not at the
same time eigenvalues of T'. The eigenvalues of A’ and A’ + 88,v"v'T strictly interlace, .
i.e. satisfy formulae corresponding to (2.5) but with strict inequality signs.

The deflation process is of great importance for the success of the divide and
conquer algorithm. First the investigation of the Weinstein determinant is simplified
since its poles coincide with the eigenvalues of A’ and second n’ is often considerably
smaller than n [7],[8].

For the computation of the zeros of f a quadratically and monotonically conver-
gent root finder has been proposed by Bunch et al. [5]. As soon as a zero Xof fis
found, a corresponding eigenvector Z of T can be computed by

(2.6) F=(=T) " u=XA-A &3 -A)

For the complexity analyéis for this algorithm we assume that we have no deflation
and that in the average s iteration steps are required to obtain one eigenvalue with
the mentioned zerofinder. f(A)in (2.4) and its derivative are computed by

@.7) ]{,8%

in 6n + O(1) flops. Notice, that after convergence, R(}) is an (unnormalized) ei-
genvector of A + 88;vvT corresponding to the just found eigenvalue A. So, in the
average the computation of one eigenvalue together with its normalized eigenvector

14 8pxvTh, h=h(A) = (A =AD" o,
08hTh,
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costs (6s + L)n + O(1) flops. Due to the special structure of X, the transformation of
an eigenvalue of A + 0B,vv? to one of T needs n? flops. All together it costs

(2.8) Z(n) = 2Z(§)+ n3 + (65 + 1)n® + O(n) = f;-n‘* +2(65 + 1)n* + O(n)

to compute the complete spectral decomposition of T, provided that the split eigen-
value problems are solved with the same divide and conquer algorithm.

It is also possible to compute the eigenvectors of T directly by inverse iteration as
soon as its eigenvalues are known [10]. In this way the expensive back transformation
could be saved and one would get an overall O(n?) algorithm. Unfortunately, inverse
iteration does not yield sets of orthogonal eigenvectors in the presence of close eigen-
values. If the close eigenvalues were not deflated, a further orthogonalization may be
necessary, hence bringing back the potentially O(n®) complexity.

3. Restricted rank modified eigenvalue problems. Let A4 € R™*™ and con-
sider the modified eigenvalue problem

(31) doi=(A+UVDz=Az, UV eR™,rank(V) =rank(V) = r.

A is called a rank-r modification of A.
We first consider the problem of determining the eigenvalues and eigenvectors of
A assuming that we know all the eigenvalues and an orthonormal basis of the corre-
sponding eigenspaces of A. We won’t need to know principal vectors of A. The related
symmetric eigenvalue problem has been dealt with by several authors [2], {31, [4]-
The following propositions are closely related to similar statements for the sym-
metric eigenvalue problem in Arbenz et al. [2]
‘ ProposiTioN 3.1. For A ¢ o(A), the spectrum of A, the matrices

_(r=4 0 [ xr-4 0
(3.2) B:= ( 0o I ) and C = ( 0 2z )
with

(3.3) ; ZN\) =L -VI(A - AU

satisfy the equation
(34) C=MBN

where

— L 0 LU I, U
(352) M= (VT(A—A)-I I ) ( 0 I ) = ( VI(4 - X1 Z() )

- and
(35b) N:= ( I%' g ) (% (A—Iz\r)“lU ) = ( ‘f’} (A—Z(/\)?)—IU )

Proof. By verification. 0
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Because det M = det N =1 for all A, we have
(3.6) det(h — A) = det(A — A)det Z(\), A ¢ o(A).

Thus A ¢ g(A) is an eigenvalue of A if and only if det Z()) = 0. For r = 1 this becomes
the secular equation

ZW =147 - ) u=14+9T(A-N)Ta=0.

Furthermore, as M and N are invertible, the mappings

(3.7a) : Ny : N(C) — N(B) iz~ Nz
and
(3.7b) M|y omy : N(CHY — N(BH) 1y MMy

are bijective. Because A is not an eigenvalue of A,  in (3.7a) must be of the form

0 r
m—<z2>, zp € C7.

| (A=X)"e _ A~A‘1Uz2
;N’”‘( Z(z\)wzz)—(( 3 )

Therefore,

By consequence, the mappings

(3.82) (A=W NEZA) — NA=-X) 2= (A-N)"Uz
and

(3.8b)  (AF =N N(ZF(N) — N(AF = X) iz (A7 - 2)7MV2

are bijective. If det Z()) vanishes, we can by (3.8a) compute a basis of the nullspace
of A— AI which is the right eigenspace of A corresponding to the eigenvalue X as soon
as we know a basis of AN(Z(})). Likewise, using (3.8b) we can compute a basis of the
nullspace of A¥ — XI which is the left eigenspace of A corresponding to the eigenvalue
) as soon as we know a basis of N(Z(\)F).

Note that the geometric multiplicity of an eigenvalue of A which is not at the same
time an eigenvalue of A cannot exceed r, the order of Z()). However, the algebraic
multiplicity can, as is shown by the following example.

Ezample 3.1. Choose

0 1 0

A=|1 ’ and A=
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Then, o(4) = {¥"/",j=0,...,n — 1} and o(A) = {0}. Equation (3.1) holds with

1 0
0 :
U:elz . N V:—enz 6
0 -1

The determinant of the 1 X 1 Weinstein matrix is

_det(A-4) A
IN=q@—A) - T
X = 01is an (algebraically) n-fold eigenvalue of A. Its one-dimensional right eigenspace
is spanned by (cf. (3.8a))

(A-0yU=ATU=¢e,
and its left eigenspace by (cf. (3.8b))
(AF —0) 'V = AV = .0

To also get right principal vectors corresponding to )\ we can proceed in the
following bootstrapping manner: Let us define Aj := ((A— X)Y). Now we construct
recursively bases {q&’), ey qg)} for N; © Nj—1 = Nj NN, such that A is spanned
by {q,g’)[ 1<i<s8,1<5<khk=1,...,¢, where ¢ is the smallest integer for which
Nyt1 = N,. By (3.8a) we have already a means to construct a basis of V. Notice that
s1 = dimAN; = dimM(Z())) and that ZL] s; equals the algebraic multiplicity of the
eigenvalue A of 4. : )

Ifz€Nj416N;,j>1,theny:= (A—-Nz € MO N;-1. Clearly, y € R(A-N),
too. If, on the other hand, y € (A 6 Nj-1)N R(A~ 1), then (A~ Ny € N1 ON;.
In fact, (4 — A)(A - A)* is the orthogonal projector on R(A — A) [13, p.423]. So,
(A = M)(4A = Aty = y. Therefore, -

(A= Nt :(NON;-)NR(A-X) — Nj O N;
is bijective.
Now, taking a maximal set of linearly independent vectors 21,..., Zsj in (M; €
Nj-1) N R(A = X), we get by defining
(3.9) q§j+l) = (A - /\)+Z,', i= 1, BERTE- 755

8j+1 linearly independent vectors spanning A © AVj-1.

Because 7}(1&— A) = N(AF =2yt a vector Qg)w = [q&j), R qg)]w € N;ON;1
is also in R(A — A) if and only of
(3.10) Qg)”qg)w; 0.

Here, the columns of Qg) € €™ form a basis of N(AF - X).




|
|
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Using (3.4) in the form B+ = NCt M, we can reformulate (3.9) as
(3.11) ¥ = (A= AT+ UZONVT(A = A) Y
With (3.10) we see that z; = Q%)w, for some w; € N(Qg}HQg)). So, we obtain the
bijection
" H (s |
(312) (4= NI -T2V (A - NRY  M@QEQF) — M oA

which enables us to compute the principal vectors of grade j > 1.
Ezample 3.1. [Continued] With the above we can set

Qg) e, Q( ) —
As Q(Ll)HQg) = 0, there is a right principal vector of grade 2, obtainable by (3.12)
Q¥ = (A - AT - e10ef (A~ X)MYen = ATen = en-1.
‘We continue as described until we get Qg’ = e;. At this point
H n
QP QR =1#0

and the process breaks down. ]

Left principal vectors can be obtained in a similar way, starting with the columus
of Q) which span M(AH —X). :

Proposition 3.1 can be generalized to the case where X is an eigenvalue of the
unmodified matrix A.

PROPOSITION 3.2. Let A be an eigenvalue of A with geometric multiplicity m.

Let Wi, Wr € C™™ be orthogonal matrices spanning N(A® — }) and N(4 - }),
respectively. Then the matrices

A-A-UVT 0 0
(3.13a) B= 0 I, 0
0 0 Onm
and
A—A 0 0
(3.13b) C= 0 L-VIO-A)tU VIWg
0 wHy O
satisfy the equation
(3.14) C=MBN
where ‘
I, 0 0 I, -wWEYU o
M =t -VIA-4*t I © 0 I 0
0 0 In 0 wHU I,
-WwE 0 WL
(3.15a) 0 I, 0
w§ 0 0

~VIT(A-AYr L-VTQA-AYU 0
wH wEU 0

( L-WWE  (I-Wi WU W )
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ahd, stmilarly,

I, — WaW§ —(A =AU Wr
(3.15b) N=| vT(I, - WRWH) I, ~ VT(A AU vIwg
WR 0

Proof. By Verification. 0
The submatrix
2.0) = ( ZVT(A— AU VTg;VR ) ¢ CrHmx(r4m)

(3.16) WHY

of C is a generalization of Z()) in (3.3). (A — A)* is the Moore-Penrose generalized
inverse of A — A. In the real symmetric case Z()) and Z.()\) are called Weinstein and
extended Weinstein matrix {19].

Let = be a right eigenvector of A corresponding to A. Then % := (:cT, o7, OT)T €
C™++™ i5 in the nullspace of C in (3.13b) and, as IV is nonsingular, z := NZ is in the
nullspace of B. But

T 0
z:=Nz=N| 0 | = 0
0 Wiz

So, z is an eigenvector corresponding to the zero diagonal block of B. If Z.(X) is
singular and ( Z: > € N(Ze(X)), then

0 Ty
zi=N| wp |'= 0 1.
Wo 0
where ‘

(3.17a) 23 =—(A— A)"’U'wl + Wrw,

is an eigenvector of A+ UV 7T corresponding to A. Thus (3.17a) is a bijective map from
N(Z, (/\)) onto N{A— ). In a similar way M¥ yields a mapping from AM(ZH () onto

N(AF = %) :
(3.17b) v = (A — ATV Vuy + Wiug, ( Z; ) e N(ZE(N).

To obtain principal vectors for A € o(4) N o(A) we can proceed in a similar way
as for A ¢ o(A). We have to replace however formula (3.11) by

(318) V= - A m+ [(x;A>+U,WR]ze(A)+[sz(hA)Jr}z;.

This can be derived from (3. 14) Again, z; = Qg)w,' for some w; € N (QS)HQQ).
Therefore, ‘ :

(A= A +[(A = AT, WRIZ.()* [ pa- 4 ] N QP ) — N 0 A



| (3.19)
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is bijective.

Proceedmg in the above way, we get forevery A € o(A) a set of eigen and prmcxpa.l
vectors {q1 - ,qsq } The integer g as well as the s; are of course dependent on A.
By construction, we have (4 ~ /\)q(J ) = it Iq(J D Therefore,

A, a6, 6l
AL, Byixs,
82 Eszxsa

= [aV,.. ,q?), ),dd?)

ES(I-—1 Xsq

9q

Defining by @ the matrix containing the eigen and principal vectors of all eigen-
values of A such that vectors corresponding to the same eigenvalue appear in blocks
as in (3.19), we get

(3.20) AQ=4A
where A is block diagonal with block upper bidiagonal diagonal blocks.

From (3.19) we see that A is upper triangular. Let @ = X R be the QR decom-
position of §. Then

(3.21) AX = X(RAR™)

is a Schur normal form of /i._ RAR™? is upper triangular, having the eigenvalues
arranged in its diagonal as in A.

4. Deflation. In this section we show how the extended matrix Z.(A) can be

' transformed to a simpler matrix, thereby making the calculation of some or all of the

left and right null spaces of A associated with X an easier task.

4.1. The rank-r case. In order to calculate z; and y; in (3.17), we need to
calculate the null spaces of Z.()\) and its conjugate transpose from (3.16). When -
m > r we can deflate the problem by pre and post multiplication of Z.()) to get a
simpler matrix Z.(}),

CE) Ze<A)=(f; é’b) Z%) ({; Q“g), Qr,Qre O™

| %
&

1
Q@

fig

[

) € N(Ze(2)) and ( i ) € N(Z.7(\)) then ( Z{ ) € N(Z:(N)
ug QR’LU2 .

s

and

iy

) € N(ZE (X)), respectively. From (3.17) we see that

(4.2a) 21 = —(A — AT U@ + WrQEw,

is a right eigenvector of 4 corresponding to A and that

(4.2b) g = (M - AR Ve, + wrQFa,
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satisfies yf7 (A - M) = 0. Hence we call y1 aleft eigenvector of A corresponding to \.
Thus the bases used for A’(4 — AI) and A/ (AH — XI) have been changed from W to
WRQE and from Wi, to WLQ¥, respectively.

To find Z.(A), we choose @y, to be a sequence of Householder reflectors so that

QLWHU = I([)’ where I, is an upper triangular » X r matrix. Likewise, Qf is

chosen so that VIWrQE = (&,,0) where &, is an r x r lower triangular matrix. The
new matrix has the form

s @& 0
(4.3) Z0)=|1m o 0
0 0 Oper

where 3, = I, — VT(AI — A)*U and 0y, denotes a square k X k zero matrix. We also
denote the leading 2 x 2 block principal submatrix of (4.3) as Ze,11(}).
Let dimN (Z,'u) = p and W € ©2"%# be a matrix, the columns of which form a

basis of A'(Ze11). Then

R ( Ozrx(m—r) w ) - N(Ze(/\))
m—r O(nu—'r))(u

From (4.22), the columns of the n X (m — r — p) matrix

(4.42) : ( (A=2'TU WaQH ) ( Ogrx(m=r) Warxu )

In—r O(m—r)xu

form a basis of N(A — }). Likewise, from (4.2b), the columns of the n X (m ~ 7 + p)
matrix

3 0 U
4.4b AH X +V wrQH < 27X (m—r) 2rXp >
(4.45) (a=3*v e )| prem g

form a basis of N(AH — X). Here, R(U) = N (ZH,).

If m < r, we choose Qr, = Qr = I. This means Ze(N) = Zo()), where

(45) , Z.(\) = ( Zrar - rxm ) .

me’l‘ Omxm

For this case, the original equations in (3.17) apply. & or Il may be rank deficient. We
do not elaborate this situation in this paper, except for the most interesting special
case r = 1 of the following subsection.

4.2. The rank-1 case. We now show how the results in (4.4a) and (4.4b) are
simplified for the case m > r when U and V' are nx 1 vectors; that is, A is gotten from
A by arank-1 update. This.is an important case, since both nonsymmetric tridiagonal
and Hessenberg matrices can be decoupled in this fashion, (see Section 6).

From (4.4a) and (4.4b) we see that the last m — 1 columns of WrQE and WLQF
are right and left eigenvectors of A corresponding to A, respectively. To see if there
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are any more right and left eigenvectors, we must examine the null spaces of Ze,ll(/\)
and its conjugate transpose, where

(4.6) Zon(V) = (" ‘f’>,

T 0

We have five cases to consider.

1. If m¢ # O then rank Z.11(A) = 2 and we get no more right or left eigenvectors,
and dimA(A - A) =m — 1.

2. ¥ ¢ = 0,7 # 0 then rank Ze11(A) = 1. In this case, (0 1)7 spans N(Zer ()
and z; = WaQE(1 0) the first column of WrQE &, is the m-th right eigenvec-
tor and dimA(A — AT) = m. Likewise, 3y = (A% - AD)'V + wiQf(-2 0T
is the m-th left eigenvector.

3. ¢ # 0and 7 = 0, then the rank of Zo1(A)is 1. z1 = (A—A)TU +
WRQR(——— 0)” is the m-th right eigenvector, and dimA/(4A — AI) = m. Like-
wise, y1 = Wr.Q¥(1 0)7 is the m-th left eigenvector.

4. f¢p=mr=00 %0, Ze,u()\) has rank 1. We easily find that z; =
Wr@Q H(1 0)F and g, = Wi Q¥ (1 0)7 are the m-th right and left eigenvectors
of A, respectively, and dimA(4 — AI) =

5. ¢g=m=0=0, Zc 11 equals the 2 X 2 zero matrix and has a null space
spanned by e; and ey. Hence the m-th eigenvectors are given as in case 4.
The m + 1-st right and left eigenvectors are given by z; = (A — M)t U and
n = (A¥ = AD)TV, respectively, and dimA/(4 ~ AI) = m + 1.

In the case m = r = 1, the original matrix Z(}) is

(4.7) Z.(\) = ( d ‘é’ ) .

This matrix is singular if and only if 7¢ = 0. Hence, the left and right eigenvectors
are given in cases 2-5 with @p = Qr = 1.

After having determined left and right eigenspaces and computed the extended
Weinstein matrix for all A € o(A) one may wonder if this information can be used to
reduce the cost of the search of the remaining eigenvalues A € o(4) \ o:(4). We know
that left and right eigenvectors corresponding to different eigenvalues are orthogenal,
but we see no way to reduce the order of the given matrix eigenvalue problem for the
computation of the remaining eigenvalues as can be done in the symmetric eigenvalue
problem in the deflation process. In order to do so, we have ~ as in the symmetric ei-
genvalue problem - to assuie that we have more information available, more precisely
that we know the spectral decomposition of A.

If Ais diagonalizable, AX = XA, A = diag()1,..., ), We can proceed similarly
as in the symmetric tridiagonal eigenvalue problem. We can deflate in the proper
meaning of the word, i.e. we can transform the original modified eigenvalue problem
into a modified eigenvalue problem of lower order, containing all the information
to compute the new eigenvalues not in o(A) and corresponding eigenvectors. Let
X =[z1,...,2a) and ¥ := (X" = {31,...,a]. Then

(4.8) A=XAY" = Z,\ ziyl .
=1
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Bases for left and right eigenspaces corresponding to an m-fold eigenvalue A, say,
are ‘obtained by selecting those vectors z;; and yi for which Ay, = Ak, j = 1,...,m.
Notice, that diagonalizable matrices have no degenerate eigenvalues.

Using the spectral decomposition (4.8), the modified matrix A becomes

(4.9) A=x(a+ashyyH,  a=YHy, o=XP.
T¢ A + @57 has the spectral decomposition A + @87 = X AYVH  then
(4.10) A=XAVHE, X=xX, Y=YV

So we have to investigate the eigenvalue problem

(4.11) (A+aTyy =My

to get the spectral decomposition of A. As left and right eigenvectors of A correspond-
ing to the above eigenvalue Ay are given by the unit vectors e;, ..., €;,, the extended
Weinstein matrix in A becomes

1= Dotrs 28 By oon Dim
L.
Ze(Ak) = . R

Ui,

We now chose @ = Q(A\x) € €™*™ unitary such that

8 IER <o vy PR POV O T
,'31, =1

m

and replace columns i1, .. .,%m in X and ¥ by

[w51.7"'7w1’m]Q1 [yﬁs"')yim]Q‘

As we transformed left and right eigenvectors by the same @, (4.8) and (4.9) still
hold with the new X and ¥, but now v;; = 0, j = 2,...,m. S0, Zig,. .., Ti,, are
eigenvectors of A corresponding to the eigenvalue Ax. If ¢(Ax) = 0, z; is a further
eigenvector corresponding to this same eigenvalue Ag. )

We can proceed in this way for every eigenvalue of A and finally permute the
columns of X and Y such that 4 in (4.9) has n' leading nonzero elements followed by
n — 7' zeros:

- i A »anH 0
A=[X1,X2]( 1+0’“’ A

) W, %, X1 € O, X, Yy € €.
(4.12) ‘

Note, that Ay has only simple eigenvalues. We can now restrict .ourselves to the
modified eigenvalue problem (4.11) where % has no vanishing element. The vector i
may have zero components however. If 4; = 0, then A;, the i-th diagonal element of
Ay is an eigenvalue of A + #5%. This follows immediately from the fact that e; is a
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left eigenvector of this matrix. A right eigenvector corresponding to A; is obtained by

applying the third of the above 5 cases: If ( :1 > y Jwr1|? + lwr|? # 0, satisfies
2

zoa(2) = (57 ) (%)

- 1+ i %‘_%'\—' By, wy \ _ [0
0 0 wp /] N0 )
then

(4.13) - (A= X —wafwrer =3
J#i
is a right eigenvector corresponding to A;. Notice that we have to form the upper-left
- element of Ze()\,') only in the practically rare situation when 4; = 0.
We cannot deflate (4.11) any further by replacing one of X1’s columns by the
vector in (4.13), as the resulting X would not satisfy (4.8) and (4.9) anymore.
The secular equation for (4.12) is

I

% _/\ T — wa/wre;

(4.14) Z\)=1- '2 Oit

:_1

We search the zeros of Z(A) = 0 to obtain the eigenvalues of A which are not in the
spectrum of A. If Z(A) = 0, by (3.8a)

(A= N4

is a corresponding eigenvector of Ay + @@

It is possible that Z(\) vanishes in a pomt Y€ a(A). T X = )\ € o(Aq) for some
ign then 4%; = 0 and

In this situation we choose wy = 1, and wg = 0 in (4.13). If X € o(4) \ o(A1), then
simply dim (A — }) = dim (A4 - X)+1.

If we are able to find n’ linearly independent eigenvectors y1,..., Ynr of Ay + i oH
in (4.12), A can be diagonalized by means of

= [X1, XY @ In-w), Y =115 0]

If A is not diagonalizable, we still can proceed as described for the nondefective
eigenvalues. If the eigenvalue under consideration, say A, is defective, we can arrange
the corresponding eigen and principal vectors according to (3.19). The transformation
of Zo(X) to Z,(A) can be performed as before. Here, however, we have principal vectors
depending on certain eigenvectors. It may be possible to further rotate the potentially
deflatable vectors @4, . . ., ;, (and eventually z;,) such that zero rows are introduced
into the block B, xs, at position (1,2) in the small matrix on the right-hand side
of (3.19). Vectors corresponding to such rows can be deflated as no principal vector
depends on them. Tt may also be possible to deflate a whole chain of eigenvectors and
principal vectors. Checking this would be an involved procedure. As we doubt its
practical importance, we do not want to elaborate it further.
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5. Alternate Theory. Let us now assume that A has q eigenvalues A1,..., A,
with algebraic multiplicities p1, .. -5 /g and that we know a decomposition of A of the

form
(5'1) AX = XA, A= ®§=1Aj1 Aj € (Bﬂjxpj’

where A is a block-diagonal matrix with blocks Ay, .. .y Ag. The block A; corresponds
to the eigenvalue ;. In section 3 we computed the eigenvectors and principal vectors of
the modified matrix 4 in a way that 2 decomposition of the form (5.1) resulted. In [9],
Fletcher and Sorensen have shown how such a decomposition can be computed from
the Schur normal form. Let’s split X := [X1, ..., X,] corresponding to A, X; € C™*Hi,
Define Y := (X~D)H = [¥i,...,Y], ¥; € €4, Then from YHX = XYH = I, one
immediately sees, that

. . . q
(5.2) yix;= | Qmxen 1ET 0 oSV
‘ ) I#ﬂ =] =1
Furthermore,
q
(5.3) A=XAYH =5 X057
L

When applying Proposition 3.1 we can make use of representation (5.3). The Weinstein
matrix Z(A) of (3.3) then becomes

(5.4) Z(0) = L~ VI(\[ = A0 = L - VA - AT

where V = XHV, U = YHU. This representation is advantageous if Z(X) has to
be formed for many values of . In the symmetric case, A is_ diaggna.liza.ble and
A therefore is diagonal. The cost of forming Z(A) with given V' = U is then only
(2r +1)rn+ O(n) flops. Working with the original form yields in general a complexity
of O(rn? + 72n) flops. In the nonsymmetric case, 4 will in most situations have
g #~ n eigenvalues which results in small diagonal blocks A; and O(r?n) complexity.
But large diagonal blocks are possible. An extreme example with ¢ = 1 is given

by Example 3.1. Using decomposition (5.3) we can formulate a statement similar to -

Proposition 3.2,
ProposITION 5.1. Let A\; be an eigenvalue of A with algebraic multiplicity px

and let A be in a neighborhood N.(Mp) of Ak with Ne(Ax) N o(A) = {Ai}. With the

decomposition (5.1) the relation
(5.5) C =N¥BN
holds where
A-A-UVT 0 0

(5.62) B=1 . 0 L 0 ,
0 0 A=A
A-A 0 0
q
ey c=| 0 E-VISXQ-A)TYOU VIX |
’ J#k
0 ' YHU A=Ay
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and ‘
L-XYe 0 X I, 0 0
N = 0 L. 0 VI(I- XY . VTX,
el 00 0 0 I,
q
L -3 X;(0-0)7Y U o
. g

‘ L 0
5.7
G0 0 0 L

I - XY E C R ANy H
n kg ,_Z; Xi(A— Aj) Y; )4 Xk
J#k
- g .
= VII - XY ) L-VI(L X;(0-A)7 YU VX,
g '
v 0 0
Proof. By Verification. o
Taking determinants in (5.5) ylelds
(5.8) det Zo(A) = (A = Agp)Ps det(X — A)/ det(A — A).
where
' q
. L -VI(L X;(0 =407 vIX
(59) Z.(\)= ( o i7Y) (O
YHRU A=Ay

is a submatrix of C. Clearly, det Z(}) is an analytic function in Ne(Ax). Note that
Tien XAk — Ay )WY = (A — A)* only if geometric and algebraic multiplicity of
M coincide. In this case Z,(A) equals Z.(}) in (3.16).
As eazlier, N maps the nullspace of C on the nullspace of B. If a € C** and
Xka 0
Xra € N(A = Xg) then N( 0 ) = ( 0 | is in the nullspace of B corresponding
o /)

\ @

to the block Ay — Ag. Conversely, a vector ( :l ) e N(Z. (z\k)) is mapped on

q
(5.10) g1 == 3 XM — A Y Uwn + Xpwy € N(A - Xp)
=1

) 1#k

Similarly, a vector < :; ) € N(ZH()\)) is mapped on N(AF — Xg) by

(5.11) Z Y — AN XV + qu2

g
One proceeds as in section 3 to obtain principal vectors. But here one can use repre-
sentation (5.3) in (3.8), and (3.18). -
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6. Application of the Theory. In this section, we apply the theory of the last
sections to two special cases — the nonsymmetric {ridiagonal eigenvalue problem and
the Hessenberg eigenvalue problem.

6.1. The tridiagonal eigenvalue problem. We consider now the eigenvalue
problem

(6.1) Tz = Az,
where T is the nonsymmetric irreducible tridiagonal matrix
a1 B

Y2

=
il

(6.2)
Bn1

In  Qn

We split T into T' and a rank-1-modification. To zero out the elements of T' at
position By and g1 simultaneously we have to choose the splitting vectors u and v
appropriately: -

0

I
. 1
T = T+ e B , w#0

Te+1 WTk41 .

Ty 0 %ﬁl&ek T T\ T
( 0T ) + ( Nesiel (ek,wel) =T+ uv".

In this case, we need to find the eigenvalues, A, of the block diagonal matrix T
and the associated eigenspaces Wg = N(T — AI) and Wy, = N(TH - M). Then the
extended matrix given in (3.16) with V7 = (ef wel), UT = (Apcef qrrel), A=T,
and A = T maust be formed. If this matrix has a nontrivial null space then Ais an
eigenvalue of T and the respective spaces N/ (T — M) and V' (TH — \I) are computed
using the five cases in section 4.2. We will not assume that T is diagonalizable. Hence,
we will not take advantage of the savings in cost that could possibly be obtained by a
reduction to a smaller problem as described in section 4.2. Next, to find the eigenvalues-
) of T that are not eigenvalues of T, we can find the roots of the scalar secular equation

(63)

]

(6.4) 2N Tre1€1

T 1
ek =1 wBkex
1+ ( wey (T~X) ( >
1+ %ef(Tl =N eg +wyppe] (To — A) ey = 0.

Then the associated spaces N(T — AI) and N(TH — AI) for these roots A are given
by (3.8a) and (3.8b), respectively. If the systems (T3 — AL Ve and (Tp — A)'es
can be solved stably by Gaussian elimination with partial pivoting, Z(A) in (6.4)
can be computed in O(n) operations for each A and these systems can be solved
simultaneously. Likewise, Z'(A) = —vT(T — X)"?u is-required for a Newton-type
rootfinder. This can also be evaluated in O(n) operations for each A.
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We now look in more detail how to accomplish the three tasks in the preceding
- paragraph. Let m; denote the geometric multiplicity of A; as an eigenvalue of T, and
let d denote the number of distinct eigenvalues of T. Then, when T is an n X n matrix,
we need to do the following: )
1. Find o(T), Wi = N(T - \;I), Wi = N(T - uDF, 5= 1,..,4d.

o(T): Since T is block diagonal, o(T) = o(Ty) U o(T3). If Ty and T; are the
leaves of the recursion tree, we can compute their eigenvalues by two
calls to some routine, EVALUE, that computes the eigenvalues of a non-
symmetric tridiagonal matrix. If we continue to recurse the algorithm,
these eigenvalues are found instead from the subproblems of Ty and T3.

WR,WL If Ty and T5 are at the leaves of the recursion tree, one way to
find these null spaces is to use the SVD. Let (T} — M;I) = LiZy RY and
(T2 = \I) = LySo RY be SVD’s. Then

L (Iy 0 r{ %1 0 [ RE 0
T—)\,I—( 0 Lz)PP ( 0 22)PP ( 0 Rf)
where P is a permutation matrix that orders the singular values of X3
and ¥ putting all the zeroes in the last m; diagonal positions of & =
r{ T1 0 (L 0 _ RE ¢
P ( P )P. IfL_< 0 Lz)Pa.nd_RH-PT( 01 RE ),
we see that LXRH is a SVD of T — \;I and that W} has as columns the
last m; columns of R. Likewise Wi has as columns the last m; columns
of L. We note that if mj1, the multiplicity of A; as eigenvalue of T1 is
zero, then we do not have to perform the SVD associated with T3 — A;1.
Likewise if mjq, the multiplicity of A; as eigenvalue of T} is zero, then
we do not have to perform the SVD associated with T, — A;I. We also
note that the entire SVD is not needed since we only require the parts
associated with the zero singular values whose geometric multiplicity we
know. An alternative approach calculating a partial SVD is to use inverse
subspace iteration. If Ty and T are not at the leaves of the recursion
tree, these null spaces are determined instead by the theory using the
associated subproblems.

2. Find N(Ze(A)), N(T = A3), and N(T = 3)F L =1,ud.

N(Zo();)): First we must calculate Zo(};). To do this, we need to calcu-
late Wi 7 and vTW’ which can be done from the output of step 1.
Next, we calculate the m — 1 columns of WrQH g and wrQ¥ ¢ which
are the deflated right and left exgenvectors, respectively. Finally, if
or = 0 we must calculate vT(A;] — T)"u. Inspired by the fact that
(I- W§ )(;L, ) - Wi W’H) tends continuously to (A; — T)T
as p — A [6, p.218], we first project v on the range of (A; — T') by
I -wi WJ%H) Then we solve (A; — T)t = (I — WiW} H)u formally by
Gaussian elimination replacing zero pivots by tiny numbers Finally we
project ¢ on the orthogonal complement of the nullspace of T'— ;. Since
we know );j, Wi, and W} this can be done in O(mjn) work.
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)H : We use the five cases from section 4.2.

N(T—Ai)vN(f—Aj

3. Find a(f‘)\atT). We must find the roots of the secular equation (6.4) using
" a Newton-type rootfinder. Then the associated left and right eigenvectors
associated with these roots are calculated by (3.8a) and (3.8b).

The process-described above can be recursed. We now provide a recursive algo-
rithm for the nonsymmetric tridiagonal problem and give the associated costs. From
the costs, it can be seen which difficulties must be overcome in order to have a func-
tional algorithm.

Given an n X n matrix T = T+ uvT, where T = Ty @ T, the following recursive
subroutine DC finds (S\j,ﬁlj,(Wi,Wé) € ¢ =1,2,...,d), the d distinct eigen-
values J; together with their associated left and right eigenspaces. SPLIT calculates u
and v to split the problem T, and COMBINE organizes the results of the two previous
subproblems, T} and T%, to find the eigenvalues, multiplicities, and eigenspaces of T.
FORMZ uses (3.16) to calculate the entries in Z.();) € gAm)x(+mi)  FORMZ
uses (4.1) to calculate the entries in Z();) € @Q(mi)x(+m)) and hence Ze11();) in
(4.6) or {4.7). LEFT and RIGHT calculate the respective eigenspaces using the five
cases given in section 4.2, resulting in Wi, W}Z € C™™ ROOTS finds the s distinct
roots of (6.4) and RIGHTR and LEFTR use (3.82) and (3.8b), respectively, to find
the eigenspaces associated with these roots, resulting in Wi, Wi e ¢nxt.

SUB DC( T, n, (M, g, Wi, Wi = 1,2, . )

If T is still too big
then SPLIT(Ty, T2, 4, ¥, 11,2, 1)

DC(TI, ni, (Ajlv mj1, Wip Wj’gpj = 11 27 ey dl))
DC(T3, a2, (Aj2, M2, Wigs Who § = 1,2, s dg))
COMBINE(Aj,mJ',Wf',Wj’%,j =1,..,d)
(* We now have the d distinct eigenvalues of
T and their respective geometric multiplicities
and left and right cigenspaces. *)

d=0
Forj=1,ddo
FORMZ (Z(%;))
) FORMZ(Z.(;))
If (m; > 1 or 7¢ = 0) then
LEFT(W])
RIGHT(WY) -
d=d+1
End(If)
End(For) .
(* We now have the eigenvalues, associated geometric
multiplicities, and left and right eigenspaces of T
corresponding to the case that these eigenvalues are
also eigenvalues of T'. *) i
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ROOTS(};,j = d+1,....,d+5)
Forj=d+1,d+sdo

LEFTR(W})

RIGHTR(W3)
End(For)
d=d+s

(* We now have all the d distinct eigenvalues of
T and their associated geometric multiplicities,
7h;, and left and right eigenspaces. *)

else EVALUE(T) (* Gives /\17_7 =1,d%)
SVD(T /\ i1 m;n] =1, d)
(*We now ha.ve all the d distinct evalues of
T, the associated geometric multiplicities,
1, and the left and right eigenspaces. We
get to this else clause when T is a leaf of

the recursion tree. This is a partial SVD. *)
End(If)

End(SUB DC)

We now consider the cost of algorithm DC on both sequential and parallel ma-
chines. For simplicity, we will not count the communication cost in the parallel version,
but instead report the best possible that one could do with a reasonable level of gran-
ularity.

We denote by Ny the quantity 2 k. For i levels of recursion, we execute the main
else clause 2¢ times for the T' problems at the leaves of the recursion tree. For the
I-th problem on the i-th recursion level, we must do partial SVD’s (or some other
black box that can find null spaces) on matrices of size Ny'x N; in order to find the dy
left and right null spaces. The j-th SVD for the I-th problem on level 7 finds the null
spaces associated with A; of dimension m;;. Since these Ts are unreduced tridiagonal
matrices mjx = 1. The cost to do one partial SVD includes a reduction to bidiagonal
form which takes O(N?) and the calculation of the partial SVD of this form which
takes O(N?) as well. The cost of one EVALUE problem also requires the same order
of operations. We assume all leaves of the tree can execute in parallel as well as all
SVD’s at each leaf. The total costs are given below:

Sequential: 2! COST(EVALUE, N;) + E Z COST{SVD,N;ym;q) £ c
=iz
Parallel:  COST(EVALUE, N;) + COST(SVD, Nimaxmj) < Xz
Rt
If i = log, N — 1, we find the eigenpairs of 2 x 2 matrices and the above costs become
25log, N and 25, respectively.

On rtecursion level k, the main then clause is executed 2% times for matrices
T of size Ni (k ranges from i — 1 down to 0 with 0 being the root of the tree).
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For each problem on level k, we must combine the results of its two subproblems to
get the associated eigenvalues and eigenspaces of T € CNe*Nk where T = Ty @ T

J
The routine COMBINE executes for free, since | A, Wi )) o = 1., dy, and

0

Ajz2, ( W(')j ,j =1, ..., dg, are right eigenpairs of T. Likewise, a similar statement
R2 .
holds for the left eigenpairs of T

For the I-th problem on level k, we do d FORMZ's on matrices of size Ng.
The j-th FORMZ is for an eigenvalue with geometric multiplicity mju- Since for
each problem 7" is block diagonal consisting of two irreducible tridiagonal matrices as
diagonal blocks, we know mju < 2. COST(FORMZ, Ny, mj) can be split into two
parts. The first part is the cost to form Wf u and vTWg where v and v are seen from
(6.3) to be special N vectors with at most two nonzero elements and Wi, and Wg, are
N x mj ) matrices. Hence, both these multiplications together only require 12 flops.
The second part of the cost is to form 1 — oT(X = T)*u where T is Ny x Ny, consisting
of two diagonal blocks. As described earlier, this can be done with em; Ny work.
The total costs are given below.

Sequential:
i-1 2% dy
T Y 3. COST(FORMZ, Ni, mjx)

k=01=1j=1

i=1 2% dy
<1%N+ 3 5 5 COST(L - vT(A; — T)Fu, Neymyu) < eN?
k=01=17=1

Parallel:

izl '

> COST(FORMZ, N, maxm; )
k=0 2

i=1 .
<12+ 5 COST(1—vT (A - TY*u, Ny, max mip) < cN
k=0 M

We note that the calculation of 1 — T(A — T')"u in the above expression only needs
to be done for problems which satisfy #¢ = 0. Hence, the costs above are most likely
12iN and 121, respectively.

For every FORMZ above, we do a FORMZ . For each FORMZ two reflectors must
be calculated. Hence COST(FORMZ, Ni, mjx) is only em;p, with max Mkl <2
The total costs are given below. :

i

-1 28 4, N
Sequential: 3 3 3 COST(FORMZ, Ny, mju) < c(iN)
=0 /=1 j=1
i-1 N
Parallel: kz COST(FORMZ, Ny, mal.xmj,kl) <c
' =) . Bl

Now, let dj; denote the number of distinct eigenvalues of T' of problem [ on re-
cursion level k that are actually eigenvalues of the associated matrix 7. We need to



DIVIDE AND CONQUER ALGORITHM 23

find COST(LEFT, Ni) and COST(RIGHT, N,). From the 5 cases in section 4.2,
we must form the m columns of WRQII{ and WLQE{ where Wg, Wi, € CVeXMikt and
QRr,Qr € C™xXMik - Together, these calculations cost O(Nkm2 w) work. At this
point, we note that Z7();) and ZF(\ ( ;) are needed in order to find LEFT(W’ ). These
are simply gotten from Z();) and Ze();) free of cost. We observe that the values W’
from RIGHT involving the pseudoinverse are gotten from the five cases in section 4. 2
for free once FORMZ is done since (T — A; ) u must be calculated anyway in order to
do FORMZ. However, (T — X;)"v need not be known in order to calculate ZE(X).

Hence, from the five ca.ses, we see that COST(LEFT, Ny) also involves the calcula.tmn
of at most one (77 — )\) v for a possible m-th or m + 1-st left eigenvector. Since

T € CN+*Ne this takes emju Ny work where miu < 2. The total costs are given
below.

Sequential:
i— k dyy 3
5 $ 5* (COST(LEFT, Ny) + COST(RIGHT, Ny))
k=0l1=1 j=1
< 1;20121 EICOST((TH X500, Ny mig) + Z Z Z e(Ngm? ;)
=1 j= k=0
< eN?
Para.llel

Z(COST(LEFT Ni) + COST(RIGHT, Ny))

i~1
< kz COST(T™ - Xy)*o, Ny maxmsp) + T e(Nimiy) < eN
=0 ks k=0 ! .

From the five cases in section 4.2, we see that the m-th or m+ 1-st left eigenvector only
occurs when m¢ = 0. Hence, most likely the costs for the pseudoinverse calculation
above are negligible but the total costs still have the same complexity.

] We now have sy = dy — Jkl remaining distinct eigenvalues of the [-th T problem
on recursion level k. Using a Newton-type rootfinder and assuming the number of
steps per root is bounded by a constant, the cost to find the sy roots of the I-th
problem on level k is esp Ny on a sequential machine. For the associated parallel cost,
we note that all 2F rootfinding problems on level & can be done simultaneously, and
that each of these problems in turn can utilize py; < sy processors. The total costs
are given below for the case pg = sp.

Sequential: Z E COST(ROOTS, sk, Ni) < eN?

k=01=1

i=1
Parallel: > COST(PROOTS, sk, Nk, pri) < eN
k=0

We now find the associated right and left eigenspaces corresponding to these roots.
COST(RIGHTR,N;) becomes COST((T — X)"*u, N;) and COST(LEFTR,N}) be-
comes COST((TH — X)"“v,N,). Since the matrices T and T¥ are tridiagonal, each
" of these calculations can be done in 17N} flops (adds and multiplies) using Gaussian
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elimination with partial pivoting [17, p.41] assuming they can be done stably. If so,
the total costs are given below.

i-i 2% -1 2k
Sequential: 3 3 sy (COST(LEFTR, Ni)+COST(RIGHTR, Ny)) ~ 64;‘2 N 2 su
k=01=1 . =0 =1

< 64N?

i- i1
Parallel: 3 ((COST(LEFTR, Ny) + COST(RIGHTR, Ny) )~ 64 & Ny < 64
k=0 =0

The above upper bounds of O(N?) in the sequential case and O(N) in the parallel case
may seem surprising, since it is usually reported in the literature that the eigenspaces
are gotten in O(N?) sequential work and O(N 2 parallel work. For the symmetric
tridiagonal problem, these calculations are usually done by first forming the decom-
position (T — A)™* = Q(A— A)QT and then multiplying these three matrices by .
This procedure is perhaps more stable, but indeed results in the higher complexity
because of the sparsity structure of Q. In our nonsymmetric case, if we had the de-
composition (T — A)™* = XAX ! including X ~*, where A is block diagonal, then we
would also report O(IV3) sequential and O(N?2) parallel complexity if the tridiagonal
solve directly with the matrix (T — A)™! could not be done in a stable manner. We
note that if we calculate the principal vectors as well as the eigenspaces, we would
have a decomposition of this form (cf. section 3).

From the above costs, we see that the sequential algorithm requires 0(]7";1 + N?)
time, assuming all the calculations can be done stably. Likewise, our calculations show
the parallel algorithm requires 0(’5";— + N) time. So, for a parallel algorithm of O(N)
to result, we must recurse the problem until i = O(}logyN). )

1t is also interesting to point out that these results are obtained without creating a
smaller problem as.a result of deflation. Hence, if stability is not an issue, there is no
motivation to create a smaller problem since working with the original N x N matrix
T and solving systems with T — X is good enough.

6.2. The Hessenberg eigenvalue problem. In this section we derive formulae
upon which a divide and conquer algorithm for the eigenvalue problem -

(6.5) Az = )z,

could be based. In (6.5) H is an unreduced upper Hessenberg matrix. We define the
matrix H to be

. T
(6.6) H:=fl—hk+l,k(£)<e;> = H + w7, p €R¥, g e R,

where p and g are arbitrary vectors. We thus can consider fI to be a rank-1-modifica-
tion of H! H has a zero entry at position (k + 1,k).
Let :

' H Hy
7 =
67 a < 0 H )
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w}}cerke, Hy € R*¥** and H, € R¥*¥ are unreduced Hessenberg matrices and Hyz €
RF*F,

A divide and conquer algorithm would proceed in such a way that first the eigen-
values, A, of H and associated spaces Wp = N(H — M) and Wi = NM(HZ - \I)
are computed. Then the extended matrix Z.()\) in (3.16) with A = H, A = H,

= (ef ¢7), and UT = hiqr4(p” e) must be calculated. If a nontrivial null space
for Zo()) exists, then we find A(H — AI) and N(HH ~ XI) from the five cases in
section 4.2. Next, a Newton-type root finding scheme can be used to find eigenvalues,
A, of H that are not eigenvalues of H. To this end, the determinant of Z(\) of (3.3)
has to be investigated and the A’s that make this determinant zero must be found.
For Hessenberg matrices, Z(A), A ¢ o(H), is the scalar,

T
Z(A) :1+a(e;) (H—A)_l(‘i), O‘:hk-l-l,k)_
=l4+a [E{(Hl — /\)-lp—- EE(HI - A)-1H12V(H2 - /\)_181
+ 7 (Hz = N e

(6.8)

The associated spaces N(H — AI) and A(HH — XI) for these roots A are given by
(8.8a) and (3.8b).

Note that the complexity to form Z{)) does not increase essentially if p and g are
nonzero, because the vectors (Hf — A\)~lex and (Ha — A\)"le; have to be computed
anyway! Assuming these systems can be stably solved, the computation of Z()) costs
1‘; 4 O(n) flops for each X if one assumes that k£ = k' = %. On a parallel machize,
the solution of these Hessenberg systems can be done simultaneously. Likewise, the
evaluation of 2/(A) = —vT(H — A)"2u can be done in n? + O(n) operations.

We now look in more detail how to accomplish the three tasks in the preceding
paragraph. Let m; denote the geometric multiplicity of A; as an eigenvalue of H,
and let d denote the number of distinct eigenvalues of H Then when HisannXn
matrix, we need to do the following:

1. Find a(H),W’ =N(H - )\I), W’ NEH-MDE, f=1,..,d.

ng Z{? >, o(H) = o(Hy) Uo(Hs). If Hy and Hy are
the leaves of the recursion tree, we can compute these eigenvalues by
two calls to some routine, EVALUE, that computes the eigenvalues of a
Hessenberg matrix.

o(H): Since H =

W)’%,Wi : The first step toward finding these eigenspaces of H is to find
the eigenspaces of Hy and Hp. If Hy and Hj are at the leaves of the
recursion tree, one way to find these null spaces is to find partial SVDs
of (Hy — A;I) and (Hp — A;I). To complete the process, we must devise
the strategy used in the COMBINE routine to find the eigenspaces of
H from those of Hy and ‘Hy. Recall in the tridiagonal case, this was
trivial and required no cost. We proceed as follows. Since we want
(H‘.L Hia n _/\(.7/1

0 & w = w ) we have the equations
2 2 2

(6.9a) Hiys + Higyz = A
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(691)) szg = /\yg

Either y2 = 0 or y, # 0. First suppose y2 = 0. Then from (6.9a) we
see that Hqgy = Ays. That is, (A, %1) is an eigenvalue-tight eigenvector

pair of H. 1 So | A, ‘1’8 is an eigenvalue-right eigenvector pair of H.

Now suppose gz # 0. Then from (6.9b) we see that Hays = Ayz. That
is, (A, y2) must be an eigenvalue-right eigenvector pair of H,. But (6.9a)
must also be satisfied. If Hyzy2 € R(Hy—A) then (6.92) has one or more
solutions. If A is not an eigenvalue of Hy,

w = —(H1— A) " Huzye

(A= H)) " Hizp
Y2

‘right eigenvector pair of H. If X is also an eigenvalie of H then we

can check whether or not we have a solution by seeing if W Hiaya =0

where Wi, spans the left null space of Hy — A. If there are solutions, we

can take the particular solution with smallest 2-norm

n=A- Hl)+1712y2 .

is the unique solution, and (/\ is an eigenvalue-

Then |{ A, - H;)JrHuw
2

of H. The procedure for finding the eigenvalue-left eigenvector pairs

parallels exactly this same procedure.

is an eigenvé.lue-right eigenvector pair

2. Find M(Z.(\)), NI = A), and N(E = Ap)7 5 = 1,y de

N(Ze(A;)): First we must calculate Ze();). To do this, we need to calculate
WI‘? u and vTWx which can be done from the output of step 1. Next, we
must calculate the m — 1 columns of WrQ¥ % and wLQ¥ 7 which are the
deflated right and left eigenvectors, respectively. Finally, if 7¢ = 0, we
maust calculate vT(A;] — H) u. Inspired by the formula lim,, ) (] —~

WJJQH)(M -HyYI - W{'WiH)u = (A\j — H)"u, we first project u
an the range of (Aj — H) by (I — W’W’H) Then we solve (A\; — H)h =
(I- W’ WJ )u formally by Gaussian elimination replacing zero pivots
by tiny numbers Finally we project h on the orthogonal complement
of the nullspace of H — A;. Since we know \;, W}, and Wi we can do
this in O(n?) time, where the dominant time is due to the solution of a
Hessenberg system.

N(H - X), N(H - Aj)H : “Use the five cases from section 4.2.

3. Find o(H)\o(H). We can find the toots of the secular equation (6.8) using
a Newton-type rootfinder. Then the associated left and right eigenvectors
associated with these roots are calculated by (3.8a) and (3.8b).

The process described above can be recursed. In fact, subroutine DC given in
section 6.1 works for Hessenberg matrices with slight modifications. We replace T T,
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Ty, and T3 by H, H, Hy, and Ha, respectively. The SPLIT routine also produces Hyz
which in turn must be taken into account in the COMBINE routine as described in
the previous paragraphs. ROOTS and PROOTS use (6.8), the secular equation for
the Hessenberg problem.

Following the previous discussion for the tridiagonal problem, we now give the
cost of subroutine DC on both sequential and parallel machines.

The cost of one EVALUE problem for matrices of size N; is O(N?) and one partial
SVD also costs O(N?). The total costs are given below.

|8

; 2 d;
Sequential: 2¢ COST(EVALUE, N:) + 33 3 COST(SVD, N;, mjq) < ebr
I=13=1

Parallel: COST(EVALUE, N;) + COST(SVD, MV, mal.xmj,;l) < clz—\’;
Js

In the sequential algorithm above, the dominant cost is due to the reduction of
the Hessenberg matrices to bidiagonal form. As in the tridiagonal case, the cost of
performing a partial SVD on a bidiagonal matrix of size O(N;) is 0(1;’-22). ’

For the I-th problem on level &, we must combine the results of its two sub-
problems to get the associated eigenvalues and eigenspaces of H € CNeXNe where

H= ( 131 }212 ) From the previous discussion, COST(COMBINE, N}) is clg—i +
2

¢2COST( (Hy — A)¥y*) where y* represents a i vector. The total costs for the

E+T

COMBINE routine are given below.
Sequential:

i-1 2% : i=1

T 3 COST(COMBINE, Ny) < eN?% + C2k}: 2FCOST((Hy — AT o™, ﬁ-;)

k=0I=1 =0

< cN?

Parallel:

i=1 -1 .
T COST(COMBINE, i) < eN? +¢; T COST((H ~ ATyt ) < eN?
k=0 =0

COST(FORMZ, N, mju) can be split into two parts. The first part is identical
to the tridiagonal case. The second part is the cost to form 1 — vT(A — H)*u where
H is a Ny x Ny Hessenberg matrix. The cost of one EVALUE problem is O(N?) and
one partial SVD also costs O(N2). The total costs are given below.

Sequential:
i=1 2% dy
Y. 3 3, COST(FORMZ, Ny, mju)

k=0i=13=1

i-1 28 dy
<12iN+ 5 5 S COST(1 — oT(A; — H)*u, Ny) < eN®
k=01=1 j=1

Parallel:
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i—1
;;OCOST(FORMZ, Ny, max ms )

i~1
< 12i 4 T COST(L — o7 (A= H)*u, Ny, maxmip) < e
k=0 i

As in the tridiagonal case, the calculation of 1 — vT(A— HYtu is only done when
7¢ = 0. Hence, most likely the costs above reduce to 12¢N and 12i, respectively.

The costs of FORMZ are identical to the tridiagonal case and are repeated below.

i—-1 2% 4 .
Sequential: 3° 3° 3: COST(FORMZ, Ny, mju) < e(iN)

k=01=17=1

i=1 N
Parallel: 2 COST(FORMZ, Nk, m:?xmj,k,) < ct
k=0 Jx

The costs of LEFT and RIGHT involving the m columns of WRQ‘;{ and WLQf are
the same as for the tridiagonal case. COST(RIGHT, N}) involving the pseudoinverse
is gotten for free during the formation of FORMZ and FPORMZ. From the five cases in
section 4.2, we see that COST(LEFT, N}) involving the pseduo inverse reduces to the
calculation of at most one (H¥ — X)*v for a possible m-th or m+ 1-st left eigenvector.
This costs O(%?;) work since H is a Ni X N}, Hessenberg matrix. The total costs are
given below.

Sequential:
ké: ( ;il du(COST(LEFT, Ny) + COST(RIGHT, N}))
i~1 2% dig - .
< kgo z ,~§1 COST((HH = X)to, Ni) + O(N?) < eN?
?arallel:
g: (COST(LEFT, N;) + COST(RIGHT, Ny))

i-1 _ -
< kz: COST((HH - X)*v,Ny) + O(IV) < eN?
=0 .

As in the tridiagonal case, the calculations above are only done for problems which
- satisfy ¢ = 0. So, most likely the costs involving the pseudoinverse reduce to zero
and the total costs become O(N2) and O(N), respectively.

We now have sy = dy — diy remaining distinct eigenvalues of the I-th H- problem
on recursion level k. We use a Newton-type rootfinder and assume that a constant
number of steps per root are required. The total costs are given below when py; = sp.

i—1 2% ~
Sequential: zz > COST(ROOTS, sg, Ny ) < eN®
k=01=1
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i=1
Parallel: 3. COST(PROOTS,sy, Ny, pri) < ¢N?
k=0

We now find the eigenspaces corresponding to these roots. COST(RIGHTR, Ni)
and COST(LEFTR, Ni) become COST((H — X)™'u, Ni) and COST((H¥ ~ 5\)_11),
Ny,), respectively. Since the matrices H and H H are Hessenberg, both calculations can
be done in O(%?—) time, assuming they can be done stably by solving linear systems.
If so, the total costs are given below.

Sequential:

i-1 2% i=1 2%
> 3 su (COST(LEFTR, Ni) + COST(RIGHTR, Ng)) <c 3 %f— S sp L eN®
k=20 =1 k=0 =1

Parallel:
i1 i-1
kE (COST(LEFTR, Ni) + COST(RIGHTR, Ni)) <e 2 %2— < cN?
=0 . k=0

From the above costs, we see that the sequential algorithm requires O(g—\ﬁ + N3)
time, assuming all the calculations can be done stably. Likewise, our results show the
parallel algorithm takes O(%; + N2) time. So for a parallel algorithm of O(N?) to
result, we must recurse the problem until O(i = {log,N).

As in the tridiagonal case, parallel results of one order less in N can be obtained,
assuming stability, without creating smaller problems after the deflation process. On
sequential computers, however, one may improve the constant in the complexity result
by creating smaller problems in the diagonalizable case. We feel a better path is to
abandon the Hessenberg form if possible and reduce the original matrix to another
sparser form, perhaps tridiagonal, in a stable way.

In this section, we have demonstrated progress toward the development of a fea-
sible divide and conquer recursive algorithm for both nonsymmetric tridiagonal and
Hessenberg matrices, Without making any assumptions on diagonalizability, our al-
gorithm finds all eigenvalues and left and right eigenvectors in O(N®) and O(N?)
sequential time and O(N?) and O(N) parallel time for Hessenberg and tridiagonal
matrices, respectively. In comtrast, the QR algorithm requires O(N' 3) work on a se-
quential machine to find all eigenvalues and Schur vectors for both Hessenberg and
tridiagonal matrices. Also, in the symmetric case, the usual implementation of Cup-
pen’s method for tridiagonal matrices requires O(N3) work to find all eigenpairs,
although we observe that the eigenvectors could be gotten by solving tridiagonal sys-
tems (as we do in the nonsymmetric case) with O(N?) work. This observation is based
on the assumption that these calculations can be done stably.

7. Conclusions. In this paper we have derived the theory needed to devise divide
and conquer algorithms for nonsymmetric eigenvalue problems. We have formulated
algorithms for solving eigenvalue problems involving tridiagonal and Hessenberg ma-
trices. Especially the tridiagonal divide and conquer algorithm has a very favorable
complexity: O(N?) and O(N) for the computation of all eigenvalues and vectors on
sequential and parallel computers with O(N) processors, respectively.
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As had to be expected, the cost for the Hessenberg divide and conquer algorithm
is one power of N higher. So, the divide and conquer algorithm has the same complex-
ity as the Hessenberg QR algorithm on serial computers, but can be parallelized. But
recall, the divide and conquer and QR algorithms do not compute the same decom-
positions. From the considerations at the end of section 3 it is clear that one should
not compute the Schur decomposition by a divide and conquer algorithm.

The Hessenberg form is certainly not the matrix form we want to use in a divide
and conquer algorithm. It is appropriate for the stable computation of the Schur
decomposition by the QR algorithm since general matrices can be stably transformed
into this form. . :

The difficulty of stably tridiagonalizing arbitrary matrices prevents a widespread
use of nonsymmetric tridiagonal eigenproblem solvers. It may be possible to transform
arbitrary matrices stably into a a very sparse but no longer tridiagonal form [18]. The
divide and conquer algorithm could eventually take advantage of this form as systems
of linear equations with such matrices have to be formed in the course of the algorithm.

Our approach is a theoretical one. We do not address important practical issues
as

o Numerical multiplicity of the eigenwalues. In real arithmetic, m;n may be
greater than 2. This could substantially degrade the costs of the routines
SVD, FORMZ, LEFT, and RIGHT, especially on parallel machines since the
time is governed by MAX M

Zero finding. There are two very difficult problems connected with zerofind-
ing. We do not know how many zeros, i.e. eigenvalues, we have to look for
nor do we know where they are. Jessup [15] discusses zerofinders which are
based on the principle of the argument (Cauchy’s integral formula). As does
Jessup, we doubt their practicability. The calculation of the integrals involved
is too expensive. One probably has to resort to Newton’s iteration. As with
any zerofinder, in order not to find the same zero several times, it may be
necessary to successively deflate zeros which ruins parallelism.

Stability. It is yet to be seen whether the calculation of the eigenvectors by
solving linear systems of the form (A — 7)™ or (A= H)™? will give numeri-
cally linearly independent eigenvectors for close values of X. A related issue
is the calculation of (A — T')7u. There may be cancellation when projecting
onto the orthogonal complements of the null spaces. It is possible that a
well conditioned problem T or & can have ill conditioned subproblems Ty, T
or Hy,Hy, respectively. This problem. of nonsymmetric divide and conquer
methods as well as other problems are discussed in [15] for a particular rank-2
splitting.

Trom this short list one sees that there are several problems to be solved before
a practical implementation of a divide and conquer algorithm for the nonsymmetric
problem becomes possible.
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