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THEORY OF DECOMPOSITION AND BULGE-CHASING
ALGORITHMS FOR THE GENERALIZED EIGENVALUE PROBLEM*

DAVID WATKINST AND LUDWIG ELSNER?

Abstract. A generic GZ algorithm for the generalized eigenvalue problem Ax = ABz is pre-
sented. This is actually a large class of algorithms that includes multiple-step QZ and LZ algorithms,
as well as QQZ-LZ hybrids, as special cases. First the convergence properties of the GZ algorithm are
discussed, then a study of implementations is undertaken. The notion of an elimination rule is intro-
duced as a device for studying the QZ, LZ and other algorithms simultaneously. To each elimination
rule there corresponds an explicit GZ algorithm. Through a careful study of the steps involved in
executing the explicit algorithm, it is discovered how to implement the algorithm implicitly by bulge
chasing. The approach taken here was introduced by Miminis and Paige in the context of the QR
algorithm for the ordinary eigenvalue problem. It is more involved than the standard approach, but
it yields a much clearer picture of the relationship between the implicit and explicit versions of the
algorithm. Furthermore, it is more general than the standard approach, as it does not require the
use of a theorem of “Implicit-Q” type. Finally a generalization of the implicit GZ algorithm, the
generic bulge-chasing algorithm, is introduced. It is proved that the generic bulge-chasing algorithm
implicitly performs iterations of the generic GZ algorithm. Thus the convergence theorems that are
proved for the generic GZ algorithm hold for the generic bulge-chasing algorithm as well.
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1. Introduction. The standard algorithm for finding the eigenvalues of a dense,
indefinite, matrix pencil A — AB with B nonsingular is the QZ algorithm of Moler
and Stewart [11]. Related methods are the LZ algorithm of Kaufman (8] and the
combination-shift QZ algorithm of Ward [14]. In this paper we introduce and study
a generic GZ algorithm, which is actually a large class of algorithms that contains
these and many other algorithms as special cases. For example, QZ-LZ hybrids are
also included. Our coverage is not restricted to single- or double-step algorithms; we
allow multiple steps of arbitrary multiplicity.

The QZ algorithm is an extension of the QR algorithm, which is one of the most
widely used algorithms for the standard eigenvalue problem. The QR algorithm has
both explicit and implicit versions. The explicit version is useful for introducing the
algorithm and discussing theoretical aspects such as convergence theory, but it is
usually the implicit version that is actually implemented. The standard approach to
the QZ algorithm, as presented in contemporary textbooks [6], [12], mentions only
an implicit version, which is interpreted as a way of applying the QR algorithm to
the matrix AB~! without actually forming AB~! or even B~1. Earlier approaches
[11], (8] started from an explicit version and derived the implicit version therefrqm.
In every instance the focus was on the matrix AB~!. Our approach also starts wz'?h
an explicit version, but our explicit QZ algorithm differs from earlier formulations in
that it effectively applies the QR algorithm to both AB~! and B! A. The advantage
of this approach is that it reveals symmetries in the algorithm that are opscured by
the usual approaches. In particular, it puts the “Q” and “Z” transformations on an
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944 D. WATKINS AND L. ELSNER

equal footing. Of course our discussion is couched in more general terms. We consider
a generic GZ algorithm that amounts to the generic GR algorithm (17} applied to the
matrices p(AB~1) and p(B~! A) simultaneously, where pis a polynomial whose degree
is the multiplicity of the step. Our generic GZ algorithm is quite simnilar to the FGZ
algorithm of [16}.

The explicit algorithm is not a practical algorithm, because it would be too costly
to implement and quite likely unstable as well. However, it is a useful vehicle for both
the study of convergence and the introduction of implicit versions of the algorithm. We
introduce the generic GZ algorithm in §2. In §3 we study the convergence properties

of the algorithm and in §4 we consider questions of implementation. Sections 3 and 4
can be read independently of one another.

The convergence theorem that we prove in §3 is a generalization of a theorem
on the convergence of the GR algorithm that we proved in {17]. The theorem says
roughly that if the eigenvalues can be separated, and the shifts converge, and the
condition numbers of the accumulated transforming matrices remain bounded, then
the algorithm converges. We also introduce the generalized Rayleigh quotient shift

strategy and discuss its asymptotic convergence properties without proof. Usually
the convergence rate is quadratic.

In §4 we consider how to implement the GZ algorithm. Our approach is inspired
by Miminis and Paige [10]. They showed that by taking a detailed look at how one
would carry out an iteration of the QR algorithm in its explicit form, one can discover
how it can be done implicitly. As Miminis and Paige pointed out, this approach is
more involved than the usual approach, which invokes the Implicit-Q Theorem [6, p-
2.367], but it gives a much clearer picture of the relationship between the explicit and
§mplicit versions of the algorithm. Miminis and Paige also stated that their approach
1s.quite general. Our vehicle for introducing the desired generality is the idea of an
e‘llmination rule, which allows us to discuss the QZ, LZ, and all related algorithms
simultaneously. Each elimination rule gives rise to a specific implementation of the GZ
glgorithm. Following Miminis and Paige, we take a close look at the steps involved in
1mple?menting the GZ algorithm explicitly. By studying the form of the intermediate
matrices so produced, we discover how the algorithm can be implemented implicitly,
that is, without forming or operating on the matrices p(AB~!) or p(B~!A).

Once we have derived the implicit GZ algorithm, we introduce a generalization
called the generic bulge-chasing algorithm and prove that each iteration of the generic
bulge-chasing algorithm amounts to an iteration of the generic GZ algorithm. The
purp?se of making this last generalization is to allow additional flexibility in imple-
menting the' algorithm. This flexibility can be exploited to build more efficient and
stable algorithms. In particular it allows the introduction of variants that do not
break down when B happens to be singular. (For the originators of the @Z and

le glgorit.hms thi§ was an important point.) When it comes to implementing the
algorithm in practice, these are the variants that should be used

Valuinp[rt)gt]ﬂ :V; ugrodu'ced a generic bulge-chasing algorithm for the standard eigen-
of GR algoritl;m urf alﬁn there was to lay common foundations for implicit versions
o, To achievesdc: 3 types (e.g., QR, L}.I with or without pivoting, SR, hybrids,
Mirainis Paine & e e;xred It?vel of generality, we devised an approach that, like the
unlike M;i .g. pproac' ’ avmds. using a theorem of the Implicit-Q type. However,

iminis and Paige, we did not establish a close correspondence between the

operations in the implicit and explici . .
. plicit versions of th i
paper generalize those of [1 8. e algorithms. The results of this
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2. The generic GZ algorithm. We consider the generalized eigenvalue prob-
lem

(A—-AB)x =0,

where A and B are square matrices whose entries are complex numbers. Recall that
the pencil A — AB is said to be singular if its determinant is zero for all A and regular
otherwise. We focus here on the regular case. If the given pencil is singular (or not
known a priori to be regular), the staircase algorithm of Van Dooren [13] can be used
to remove the singular part. (See also Demmel and Kagstrém (3], [4].) This algorithm
also removes the infinite eigenvalue and its associated structure (which may be present
if B is singular) and the zero eigenvalue and its associated structure (which may be
present if A is singular). What is left is a regular pencil for which both A and B are
nonsingular. We assume throughout (with few exceptions, when we explicitly state
otherwise) that our pencil has a nonsingular B; we do not need to assume that A is
nonsingular.}

Recall that the pencils A — AB and A — AB are said to be strictly equivalent if
there exist nonsingular matrices G and Z such that

A=G'AZ and B=G'BZ

Strictly equivalent pencils have the same eigenvalues, and the eigenvectors are related
in a simple way through the transforming matrices G and Z. The generic GZ algo-
rithm generates a sequence of strictly equivalent pencils (A; — AB;) that converges (we
hope) to upper triangular or block triangular form, thus exposing the eigenvalues of
the pencil. The eigenvectors can be found by a back-substitution process that utilizes
the final upper-triangular matrices and the accumulated transforming matrices.

We assume that before we start our iterations of the GZ algorithm, we transform
the pencil to some initial form

Ap = Gyl AZ,, By = G;'BZ,.

For example, it is possible to make Ay upper Hessenberg and By upper triangular, as
described in [6] and elsewhere. Later on we assume that Ag and By have this form,
but for now we allow them to have any form; for example, we could take G = Zg = I.

The ith iteration of the GZ algorithm transforms A;—1 — AB;-; to A; — AB;
by transformations obtained from GR decompositions. By a GR decomposition of a
Square matrix M, we mean any decomposition

M =GR

in which G is nonsingular and R is upper triangular. Every matrix has many dif-
ferent GR decompositions. To obtain A; and B; we first take GR decompos@ons of
pi(A;_1B; 1) and pi(B;}{Ai_1), where p; is a polynomial. Thus we find nonsingular

G; and Z; and upper triangular R; and S; such that

pi(Ai-1B;Y) = G;R; and pi(BAi-1) = ZiSi.

! However, if A is known to be nonsingular, one has the possibility of reversing the roles o'f A and
B and considering the pencil B — A, where o = 1/X. If neither A nor B is known to be nonsingular,
a prudent course of action is to run the staircase algorithm to determine the fine structure of the
pencil.
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We then let
Ai=G;'A;1Z; and By =G['B,_,\Z,.

In the special case B;_ = I, Z; = G,, S; = R, this algorithm reduces to the
generic GR algorithm for the standard eigenvalue problem.

The GZ algorithm is really a large class of algorithms. Specific instances are
obtained by specifying the exact form of each GR decomposition and how the p, are
to be chosen. For example, variants of the QZ and LZ algorithms are obtained by
specifying that each decomposition be a QR or LR decomposition. respectively. The
p; are chosen so that their roots, which we call the shifts for the ith iteration, are
estimates of eigenvalues. The degree of p; is called the multiplicity of the iteration.

We will see that it is possible to carry out the G'Z iterations implicitly without
even calculating matrices of the form AB~! or B~! A, much less p(AB- Yorp(B~1A)

Were this not the case, there would be no point in discussing these algorithms at all
First we look at convergence.

3. Convergence of GZ algorithms. An easy computation shows that
AB7' =G (Ao BZL)G,.

Since G; was obtained from the decomposition p;(A;_; B] 11) = G,R,, we see that the

transformation A;_1B;Y — A,B;! is an iteration of the GR algorithm [17]. At the
same time we have

Bi'A; = Z7 (B4 A1) Z,,

where

pi(B Ais1) = Z,8;,

so the transformation BY A4, ; — B;'A; is also a GR iteration. It follows from

the theorems in [17] that both of the sequences (A;B; ') and (B; ' A;) converge to

(block) upper triangular form, provided that the condition numbers of the accumu-

lated transforming matrices G; = G- Gjand Z; = Z1 -+ Z; remain bounded and
the shifts converge, as i — oo. Preferably the shifts should converge to eigenvalues of
the pencil, in which case the convergence of (A;B;!) and (B;' A;) is superlinear.
We would like to be able to say something about the convergence of the sequences
(A;) and (B;) separately, since these are the matrices with which we actually work.
To do this we recall some nomenclature. Let 74 and T, be subspaces of C" of equal

dimension. The pair (7, T.) is called a deflating pair for the regular pencil A — AB
if and only if

AT, C T, and BT, CT.,.

The subscripts d and r are mnemonics for
are assuming that B is nonsingular, the ¢
Clearly (T4,7,) is a deflating pair for A — \B if and only if T4 is invariant under

B7A T, is invariant under AB~! and BT,;=T,. The following lemma generalizes
Lemma 6.1 of {17]. Here a(s,7)

denotes the usual distance (or gap) between two
subspaces and k2(G) denotes the condition number of G with respect to the spectral
norm.

domain and range, respectively. Since we
ondition BTy, C T, implies BTy = T,.
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LEMMA 3.1. Let A,B € C""" and let (T 4,T,) be a deflating pair of k-dimensional
subspaces for the pencil A—AB. Let Z, G € "™ be nonsingular matrices, and let Sy
and S, be the spaces spanned by the first k columns of Z and G, respectively. (Think

of Sq and S, as approzimations to T4 and T, respectively.) Let C denote either A
or B, and let C = G-1CZ. Consider the partition

A Cu Ci2 }
C = -
[ Ca Ca

where €1, € C***. Then

1€, < V259 (G)ra(2) [d(Sa, Ta) + d(Sy, T)].
¢,

Proof. Let Z = PU, G = QR be the QR decompositions of Z and G, respec-
tively. Thus P and Q are unitary, and U and R are upper triangular. Partition these
decompositions as

Uy, U
(20 Z]=[P pz][ g U;}

where Z; and P, are n x k, and similarly for the decomposition G = QR. Since
C=G"1CZ = R™1Q*CPU, we have Cq; = R;;Q;CPlUu, from which

ICa1ll; < 1| Rz o Q3C Py [ Una |l

Since ||Rz' l2 < IRz = |G 2, 1Unllz € 1Ull2 = [ Z]l2, and [ C2 <
IGl2ll € ll2]l Z71 ||z, we see that

1otz 1Q;CP.l:
1 Ui 3] —~s -,
" T Tel

Since Z, = P,\U;; and G, = Q1Ry;, we have S = R(Z;) = R(P,) and St ':;
R(Gy)* = R(Ql[L = R(Q2). Therefore, by Lemma 4.1 of [17), there exist T; € €™~
and T, € €™*"* with orthonormal columns, such that Ty = R(T1), Ty = R(T2),

| P — Ty |2 < v2d(Sa, T a)
and
1Q2 ~ T2 ll2 < V2d(S,, T+).
We use here the fact that d(S.,7T,) = d(S;L, Tf). Now
| Q5CP 2 < (@2 ~ To)*CPi 2 + I TC(Py = T) 2 + I TEC Tl
Since R(Ty) = T4, CT4 C T, and R(Ty) = T}, the product T3 CTy is zero. Thus

NQ3CP |2 <|Qz — T2 |l2)|Cll2ll Py ll2 + | T2 l21Cll2)l Py — T2
< V2| Cl2 [d(Sa, Ta) + d(Sr, T+)]

Combining this inequality with (1), we obtain the desired result. 0
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Define the cumulative transforming matrices by

Gi=G;---Gy, R;=R;---Ry,

Then
Ci = é;'-lCOZi,

where C can stand for either A or B. In the following theorem we prove the conver-
gence of the GZ algorithm by applying Lemma 3.1 with the roles of C, G, Z, and C
played by Cy, G;, Z;, and C;, respectively. The symbol (e1,...,ex) denotes the space
spanned by the vectors ey, ..., ex.

THEOREM 3.2. Let Ag, By € C™*™ with By nonsingular, and let p be a polynomial
of degree < n. Let Ay,...,\, denote the eigenvalues of the pencil Ay — A\By, ordered
so that [p(A1)| > [p(A2)| =« > |p(\n)|. Suppose k is a positive integer less than n
such that |p(Ak)| > [p(Aes1) |, and let p = |p(Aes1) |/|p(Ak)|. Let (p;) be a sequence
of polynomials of degree < n such that lim;_, pi=pandp;(N) #0 forj=1,...,k
and alli. Let (T4,T,) and (Uq,U;) be the deflating subspaces of A9 — ABy associated
with At,..., Ae and Aiy1, ..., A, Tespectively. Suppose (e1,...,ex) NUy = {0} and
(e1,...,ex)NU, = {0}. Let (A; - AB;) be the sequence of iterates of the GZ algorithm
using the given (p;), starting from Ag — ABy. If there is a constant & such that the
cumulative transforming matrices G; and Z; all satisfy k2(G;) < & and ko(Z;) < &,
then (A; — AB;) tends to block triangular form in the following sense. Let C; denote
either A; or B;, and partition C; as

Ci=

i it
o of

where Y € @(n-
M such that

(3) .
(2) | Coi Iz < M@ for alli.
1Cill2

K)xk  Then for every p satisfying p < p < 1 there exists a constant

Remark 1. If Ag is upper Hessenberg with no zeros on the subdiagonal and
By is upper triangular, then the subspace conditions (e1,...,ex) NUy = {0} and
(e1,...,ex) NU, = {0} are satisfied for all k, as is explained in [17] for the stan-

dard eigenvalue problem. The reasoning is no different for the generalized eigenvalue
problem.

Remark 2. The conditions pi(Aj) #O0forj=1,..
lated, but this is not undesirable. If Di
rem 4.3 shows that in this case the eig
after the ith iteration.

Remark 3. The conclusion of the theorem implies that the eigenvalues of Aﬁ? -
AB{) and AY ABSY) converge to A,
be shown by standard techniques.

A Remark 4. If p has Ak+1, ..., Aq among its roots, then p = 0, so (2) holds for all
p > 0. Thus the convergence is superlinear.

-,k may occasionally be vio-
(Aj) = 0, then pi(AiB;!) is singular. Theo-
envalue A; can be deflated from the problem

Ak and Agyq, . Ay, respectively, as can
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Remark 5. The hypotheses of the theorem usually hold for many values of k
simultaneously, thereby giving a limiting form that is block triangular with many
small blocks on the main diagonal. If the conditions hold for all k (1 < k < n —1),
the limiting form is upper triangular.

Proof. Let p; = p;---p1, let S = (ey,...,ex), Spi = f)i(AoBc','l)S, and Sy; =
Pi(Bg ' 40)S. All of the hypotheses of Theorem 5.4 of [17] are satisfied, with the role
of A in that theorem played by either AgBy Lor By 14,. Consequently there exists
M such that d(Sy;, T,) < Mj* and d(Sai, Ta) < Mp'. Recall that (as shown in [17]
and elsewhere) p;(ApBy Y = G;R; and pi(By 14¢) = Z:8;. Consider the partition
G = [@il) C;’s)], Zi = [ZA?) ZAS)], where G’il}, Zil) € €. Since R; and §; are
upper triangular, S,; = ’R(G’gt)) and Sg; = R(Zgl)). This is true even if ﬁi(AoBo_l)
and p;(B; ' Ap) are singular, as the assumptions § NUy = {0}, S NU, = {0}, and
|pi(A;)] > 0, j = 1,...,k guarantee that S contains no nontrivial null vectors of
Pi(AoBy?) or p;(By ' Ag). Therefore the spaces Sy and S,; have dimension k for all
i. Applying Lemma 3.1 with the roles of C, G, Z, and C played by Cy, G;, Z;, and
C;, respectively, we conclude that

(3) N . .
% < WaRs(Ca)ra Z0)MB < MG,
11|12

where M = 2/2&2 M. 0

3.1. The generalized Rayleigh quotient shift. Suppose we plan to perform
GZ iterations of multiplicity m, where m < n. A natural way of choosing the shift
polynomials is to let p; be the characteristic polynomial of the m x m lower right-hand
corner pencil A§2 ~ /\Bg). We call this the generalized Rayleigh quotient shift strategy.

In [17] we proved that for the standard eigenvalue problem, the asymptotic conver-
gence rate of the GR algorithm with the generalized Rayleigh quotient shift strategy
is quadratic, provided that the eigenvalues of the given matrix are simple. This result
also holds for the generalized eigenvalue problem. Specifically, if the GZ algorithm
converges under the conditions of Theorem 3.2, and generalized Rayleigh quotient
shifts with m = n — k are used, the asymptotic convergence rate will be quadratic,
provided AgBy! is simple. We omit the proof. The details are more tedious than
they are for the standard problem, but the ideas are the same.

4. Implementation of GZ algorithms. We assume from now on that the
initial transformation

Ao =G;'AZy, Bo=Gy'BZy

makes Ay upper Hessenberg and By upper triangular. We even assume thg)t) Ap is
a proper upper Hessenberg matrix; that is, all of its subdiagonal entries a; ; are

. PN ()
nonzero. This implies no loss of generality, for if some of the entries a;; ; are zero,

Wwe can reduce the problem to two or more subproblems, each of which has a properly
upper Hessenberg coefficient matrix. Since we are now concerned w1t'h the probler.n of
implementing one iteration of the GZ algorithm, we drop the subscripts and consider
the single iteration

~1_ =~
BZ,

(3) A=GAZ, B=G
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where
) p(ABY) =GR, p(B™'A)= 2§

Here all matrices are in €™*". The degree of the polynomial p is m, which is assumed

to be less than n. Normally m < n. Dropping the subscripts allows us to reintroduce
subscripts later for a different purpose.

An important relationship that follows directly from (3) and (4) is given in the
following lemma, which plays a key role in determining the structure of A, B find
intermediate matrices that arise during the execution of a GZ iteration, (It is a
generalization of [10, (3.5)].) Although the lemma is used to study structure, it is not
itself dependent on any special structure of the matrices involved, except that it is
crucial that G and Z be nonsingular. X

LEMMA 4.1. Suppose A, A, B, B, R, and § are any n x n matrices related by
(3) and (4), where G and Z are nonsingular matrices, and p is a polynomial. Then

AS = RA and BS = RB.

Proof. AS = AZ”'p(B-'A) = ¢ Ap(B-'A) = G"'p(AB-')A = RA. The
same argument shows that BS = RB, since the equation Bp(B~'A) = p(AB~!)B
also holds. 0

As a first application of Lemma 4.1, consider a GZ iteration in which the matrices
P(AB~') and p(B~'A) are nonsingular, as is usually the case. Then R and S are also
nonsingular, so the equations in Lemma 4.1 can be rewritten in the form

A ~

- P |
A=RAST',  B=hBS
- <1
Since A is properly upper Hessenberg and B, R, and S
we see immediately that A is properly upper Hessenberg a
Thus the special form is preserved from one iteration to th

are all upper triangular,
nd B is upper triangular.
e next.

4.1. The singular case. When p

(AB~') and p(B~!A) are singular, the upper
Hessenberg-

triangular form is not preserved, but something even better happens. A
small subpencil at the lower right-hand corner of the matrix can be deflated from the
pencil after the iteration. The part of the pencil that remains after deflation remains

in Hessenberg-triangular form. We consider this case in detail
The matrices AB~! and B

upper Hessenberg matrix W th
or B~14 in the application.

If p(W) is singular, then at least one of the shifts (roots of p) is an eigenvalue of
W, and conversely. Any shift that is an eigenvalue is called a perfect shift.

LEMMA 4.2, LetW be q proper upper Hessenberg matriz, and let p be a polynomial
that has v roots that are perfect shifts for W. Then

~1 A are both properly upper Hessenberg. The propeir
at appears in the following lemma is taken to be AB~

rank(p(W)) =n — 1.

Furthermore, the leading n — v colu
Remark. When we count perfe

repeated shift no more times th
of W.

This result is also proved in

mns of p(W) are linearly independent.
ct shifts, we allow repeated shifts, but we count a
an it appears as a root of the characteristic polynomial

[10] as part of Theorem 4.1,
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Proof. The statement about the rank is just Lemma 4.4 of [18]. To get the other
assertion, let x = p(1¥')e;. Let K(W,r) denote the Krylov matrix

K(W.or)=[r. Wz W3r,... W g
Then
(5) K(W. 1) = p(W)T.

where T = K(W.e;). Since W is properly upper Hessenberg, T is upper triangular
and nonsingular. Thus. for any k. the span of the first k& columns of K(W,zx) is the
same as the span of the first & columns of p(W'). In particular, rank(K (W, z)) = n—v.
The form of a Krylov matrix implies that if a given column is a linear combination
of previous columns, all subsequent columns will also be linear combinations of the
previous columns. Thus the first n — v columns of K (W, z), and hence also of p(W),
must be linearly independent. a

THEOREM 4.3. Consider the GZ iteration (3), (4), in which v of the shifts are
eigenvalues of A — AB. Then

_ R“ Rlz S-: Sll S'l?.}
= 0 0 . y

~»

i A Ap h 311 Bra

A—[ O An}' and B—|: 322]’

where R, Si1, Ay, By € (I,‘(ﬂ vix(n-v) "R\ and 511 are nonsingular, Ay is prop-
erly upper Hessenbery, and By, is upper tmangular The eigenvalues of the subpencil
Agz — ABas are ezactly the v perfect shifts.

Proof. In light of (4) and Lemma 4.2, the upper triangular matrices R and § both
have rank n — v and their first n — v columns are linearly independent. This proves
that they have the stated form.

Writing the equations of Lemma 4.1 in partitioned form, we have

(?“ C1y S11 Si2] _ [ R Rig Ci 012]
C21 éQ2 0 0 N 0 0 Ca1 Cog

where C' can denote either A or B. Equating the (2,1) blocks of the partltloned
equation, we find that 021511 — 0. Since Sy is nonsmgular we have 021 = 0.

Equating the (1,1) blocks and multiplying on the right by S 11 , we get
N R .| ~ 5—1
Cn = RuCuSll + R12021811 :

In the case C' = B, we have By, = 0, so By; = R11B11511 , which shows that Bn
is upper triangular. Now consider the case C = A. Since A is upper Hessenberg,

-1
Ay = 046185 v, Where a = ap_piy,-,. Since .S’11 is upper triangular, we have

e n-uSu = fel_ , for some 8. Let z = Ryzeq. Then

~ ~ '\"1 T
A1 = RnAnS, + Bze,_,.
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The first term on the right-hand side is properly upper Hessenberg and the second term
has nonzero entries only in the last column. Thus Ay; is a proper upper Hessenberg
matrix.

The fact that the eigenvalues of Agg — ABgs are just the v perfect shifts can be
deduced in the same way as in the standard eigenvalue problem by considering the

form of AB™". See Theorem 4.5 of 18). a

Remarks. We have opted for a brief algebraic proof using Lemma 4.1. Alter-
natively one could prove the form of A and B geometrically, using the Hessenberg
form of A, the relationships between the underlying subspaces (spanned by the leading
columns of G and Z), and the fact that the n—v dimensional spaces T4 = R(p(B ~14))
and T, = R(p{AB1)) form a deflating pair for A — AB. Such a proof would be
lengthier but perhaps more revealing.

Theorem 4.3 generalizes Theorem 4.5 of [18] and some aspects of Theorem 4.1 of
Miminis and Paige [10]. However, the Miminis—Paige result addresses certain details
that we have chosen to ignore.

Theorem 4.3 shows that if v of the shifts are perfect, then a v x v subpencil can
be deflated from the problem after the iteration. The pencil Ay — AB2; may not
have Hessenberg-triangular form, but it is normally small enough that it can easily
be returned to that form and its eigenvalues found. Subsequent iterations can focus
on the pencil Ay; — ABjj, which does have Hessenberg-triangular form. Of course
this is only a theoretical result. In a GZ step with roundoff errors, Ag; will be not
quite zero. Usually it will be far enough from zero to prevent deflation. In that case
a subsequent GZ step with the same p will often produce the deflation.

4.2. GR decompositions and elimination rules. To introduce specific ver-
sions of the GZ algorithm, we need to consider how GR decompositions are carried
out in practice. The standard way to perform a GR decomposition of any type is
to “reduce the matrix to triangular form” by introducing zeros into the matrix one
column at a time. Fach column of zeros is obtained by multiplying on the left by
a nonsingular matrix of a specified form. Algorithms of this type have the following
general structure. A matrix M € €™*" is reduced to upper triangular form inn —1
steps. After i — 1 steps, M has been transformed to a matrix R;_; whose first i — 1
columns have been reduced to upper triangular form. That is,

s I T E
R"‘"{o F}’

w}ieirg T € 11 js upper triangular. The ith step transforms R;_1 to R =
G. R;_1, where G; has the form

I 0
c=1g 6

A —i+1)x(n—i+1) x
and G; € DX =i+1) 4o hogen s0 that G7 't = aey, where z is the first column

of F, an('i @ is a scalar. After n —~ 1 such steps, M will have been transformed to the
upper triangular matrix R = Rn_1. Clearly R=G!, ... Gy'M, or

A A

M =GR,
where G = Gy--- G

n-1.
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Given any vector z € €™ (for any m > 2) we say that a matrix G € C™*™ jg
an elimination matriz for z if G is nonsingular and G~z = ae; for some scalar a.
If G is an elimination matrix for z, then G is an elimination matrix for all nonzero
multiples of z.

Usually an elimination matrix G is embedded in a larger matrix G. We also refer
to the larger matrix as an elimination matrix.

An elimination rule is a map r — G having the following properties. (i) The
domain of the map is a subset of Ui, @. (ii) Each vector z in the domain is mapped
to a matrix G that is an elimination matrix for z. (ili) The map is homogeneous, that
is, if z is in the domain, so are all nonzero multiples of z, and they are all mapped to
the same elimination matrix. (iv) Zero vectors are in the domain, and each is mapped
to the identity matrix of the same size. (v) If z = [¥] € @™, where y € @* with
k < n, then z is in the domain if and only if y is, and z is mapped to the matrix
G = diag{H, I,._+}, where H is the elimination matrix assigned to y by the map.

A complete elimination rule is one whose domain is all of Usea @', A partial
elimination rule is one whose domain is a proper subset of U, C°.

Probably the simplest elimination rule is Gaussian elimination without pivoting.
It is a partial elimination rule, as it is undefined on those nonzero x that satisfy
T1 = 0. An example of a complete elimination rule is Gaussian elimination with
Pivoting, which interchanges z, with the entry in z of largest magnitude before per-
forming the elimination. Another complete elimination rule is elimination by reflector
(Householder transformation). All of these types of elimination are discussed in [6]
and [15], for example. One can also build hybrid elimination rules from other rules.
For example, one can pick a tolerance T satisfying 0 < 7 < 1 and specify that 2 should
be eliminated by Gaussian elimination (without pivoting) if maxo<i<k |z;| < 7|xy]
and by a reflector otherwise. This type of strategy has been used successfully in some
of the algorithms in [7]. There are also more exotic types of elimination rules. For
example, a symplectic (partial) elimination rule, which gives rise to the SR algorithm,
is described in [1].

Every elimination rule induces a rule for carrying out GR decompositions; namely,
carry out the “reduction to triangular form” described above using the specified elim-
ination rule. Hence each elimination rule, together with a mechanism for choosing p,
induces a GZ algorithm. If the elimination rule is not complete, the algorithm will
break down (fail) if at some point it needs to perform an elimination on a vector that
is not in the domain of the rule.

4.3. The explicit GZ algorithm. We now assume that we have chosen an
elimination rule and will perform all of our eliminations with that rule.? Let us
examine closely the steps involved in performing a GZ iteration explicitly. First the
matrices p(AB~!) and p(B~'A) are calculated. Then GR decompositions of both
Matrices are performed, using our chosen elimination rule. As above, we assume
that v of the shifts are perfect. If v > 0, then by Theorem 4.3, the resulting upper
triangular matrices R and $ have rank n — v, and their bottom v rows zero. This

———————

2 However, everything we do could be cast in greater generality. For example, we could gllow a
different rule to be used at each step of the decomposition. Another possibility is to prescribe different
rules for the two different GR decompositions on which the GZ iteration is based. Such an a‘lgorithm
Was once proposed by Kaufman (9]. In this algorithm all of the “G” transformations are unitary and
all of the “Z” transformations are stabilized elementary (i.e., Gaussian elimination) transformations.
Thisis a g2 algorithm in which the decomposition of p(AB™1) is a QR decomposition and that of
p(BilA) is an LR decomposition with partial pivoting.
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implies that the reductions to triangular form will be completed after n — v steps.
Thus, letting p = min{n — v,n ~ 1}, the reductions have the form

A

R=G;'-G;'Gy'p(AB™),

S§=2;'.27'Z7'p(B71A),

Therefore

p(AB™Y) =GR and p(B7'A)= Z8,

where

G’=G1---G,, and Z= VARERW AR
We then complete the iteration by performing the equivalence transformations
(6) A=G"'AZ and B=¢'BZ.

Remark. In the case of the standard eigenvalue problem (B = I ), we have
p(AB-Y) = p(B~1A) = p(A), 50 G; = Zi,i=1,...,p,G=2, R= 5, A= G 1AG,
and B = I. This is one iteration of a GR algorithm [17].

To determine how to do these operations implicitly, we break the transformations

(6) down into small steps and study the intermediate results. Let C' denote A or B,
as before; define Cy = C, and

Py

Ci1/20=G1C;_
7 1 1/2 AT, i—1 ':__
(7) Ci=CirpaZ; } 1=1,...,p.

Then € = C’

We also give names to the intermediate matrices in the GR decompositions. Let
Ry =p(AB™Y), Sp = p(B~1A), and

Ri = G;lR,‘_l ,
5’1::2{15'1-__1 2—1,...,,0.
Then R = R, and § = S,

Since AB~! and B! A are proper upper Hessenberg matrices, Ry and S satisfy

7O (0 .
J+m.7?é0 S_g-gm,j#oa J=1,...,n_m

and

A (0
,EJ) (0)-—0 when i > j + m,

where m is the degree of p. Thus they have the form

1

-
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where the entries outside of the outlined area are all zero. Since G, is the elimination
matrix for the first column of Ry, G = diag{G\, I'}, where G; € €™ +D*(m+1) iq the

elimination matrix of [f'ﬁ’, .. .,ngi_l’l]T. The form of Z; is similar. In general R;_;
and S’,-_l have the form
for i =2,...,n — m. The first i — 1 columns are in upper triangular form. The ith

column has m nonzeros below the main diagonal. Thus G; = diag{I,-_l,G',-,I } and
Z; = diag{l;_1,Z;, I}, where G; and Z; are the elimination matrices of

[(11 »(t 1)]T
LA m+tl

(i1 (i—-1) T
and {SS )’ cey Sfrlﬁi,)z'] )
respectively. For i > n — m the transformations have the same form, except that
the vectors to be eliminated are shorter tzecause we h~ave reached the bottom of the
matrix. We then have G; = diag{I;,_;,G;}, where G, is the elimination matrix of

[fg—l),- . 'Sl DT, and similarly for Z;. A

LetG =Gy-Giand Z; =2,---Zi,i=1,...,p. Then fori < n—m, G; has

the form
_ &Y o
0 I|

where (“;ﬁ’l’ is (m + 1) x (m +1). This is clear from the form of the factors. The form
of Z; is the same.

The initial pencil A — AB = Ao ABy is in Hessenberg-triangular form, and so is
the final pencil A — AB = A - AB except possﬁ)ly for a small subpencil that can
be removed by deflation. The 1ntermed1ate pencils A;_1/2 — ABi_1/2 and A; — AB;
are not in Hessenberg-triangular form, but, as we shall see, they do not deviate from
it by too much. First note that

(8) A,‘ = G’i_lAZ and Bi = é: BZi,
fori=1,...,p. Since also
(9) p(AB™Y)=G;R; and p(B7'A)= 7.8,

we see that the pencil A; — AB; is the result of a partial GZ iteration driven by the
partial GR decompositions (9). Applying Lemma 4.1 to (8} and (9), we find that also

(10) /L-S'i = E,A and Bigi = R,B

We use these two equations in Lemmas 4.8 and 4.5, respectively, to help determine
the shape of A; and B;.
Similarly, we have

(11) fiih_l/g = G;IAZA'i_l and Bi-—l/2 = éi BZz'wl
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so the pencil Aiq /2= AB;_; /2 can be viewed as the result of a partial GZ iteration
driven by the partial GR decompositions

(12) p(AB_l) = GiRi and p(B_lA) = 25_15','_1.

Applying Lemma 4.1 to (11) and (12), we obtain

~

(13) Ai_1/28i-1=RiA and Bi_128is1 = R:B.

These equations are used to help to determine the shape of A, /2 and B,-_l /2-
We study first the shape of the “B” matrices.

LEMMA 4.4. Fori=1,...,n—m— 1, the last n — m — i rows of Bi—l/Z and B;
are in upper triangular form. That is,

~(1—1/2 ~(i
b P =By =0 ifj>k and j>i+m.

Pictorially, B;_, /2 and B; have the form

L

Proof. Writing the transformation B’i = éi‘lBZi in partitioned form, we have

NORNG

By By _lx oHBn 312”Y 0]
S0 a0 [T 0T 0 B ’
By By 210

where the (1,1) blocks all have dimension (m + i) x (m + ). Clearly ég? = 0, and
BSQ) = Bz, which is upper triangular. Thus B has the stated form. To prove
that B,;_,/; also has this form, apply the same partition to the equation B,-_l /2 =
67'BZi.,. O

Lemma 4.4 suggests that f)’n_m_l /2 and Br_m should be completely filled in.
Fortunately the transformations do not only destroy zeros, they create zeros as well,

as we see in Lemma 4.5. For the purpose of avoiding distracting complications in the
statement of this lemma, we define B, j2 = B.

| LEMMA 4.5. Fori=1,...,p, the first i columns of B; and 3,~+1/2 are in upper
triangular form. That is,

~(i)  ~(i41/2) .
bjk :b_)k = 1f]>k and k'S'l

Pictorially, both B, and Bi+1 /2 have the form
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Proof. By (10) B;S; = R;B. We write this equation in partitioned form as

A 50
Bll B12
NONIG'

By, By, 0 Rxn 0 Bz

[511 512]___[1311 Rlz][Bu 312]

where the (1,1) blocks are all i x i. The matrices S11, Ry, and By are upper
triangular. We know that the first n — v columns of S; are linearly independent, and
since ¢ < p < n — v, §1; must be nonsingular. Therefore

= (%)

B R _
[ “%1'1) Z[ ()11 ]8115111~
By,

Qonsequently, Bﬁ) = Ry By, Sy} is upper triangular and f?f;l) = 0. This proves that

B; has the stated form. To obtain the same result for B;11/2, partition the equation

al ~

Bi11/28: = Ri;1B (from (13)) exactly as above. a

Remark. In the nonsingular case, or even in the case v = 1, Lemma 4.5 shows that
B=B,,is upper triangular. If v > 2, we can conclude that B = B, has only its
first p = n - v columns upper triangular; it is not guaranteed that the final v columns
get reduced to upper triangular form. But we already know from Theorem 4.3 that
this portion of the matrix will be removed by deflation at the end of the iteration.
Combining Lemmas 4.4 and 4.5, we have the following result.
THEOREM 4.6. Fori=1,...,p,

+(1-1/2)
ik

b, =0 ifj>k and either j >i+m ork <i—1,

i)ﬁlk) =0 ifj>kandeitherj>i+mork<t.
Thus we see that when i < n — m, Bi—l /2 is upper triangular in its first ¢ — 1 columns

and its last n — § — m rows. Its nonzero pattern is

J

which would be upper triangular, except that it has a bulge. The tip of the bulge is
at the (i + m, 1) position. We call this an m-bulge or a bulge of order m because it
Protrudes m diagonals below the upper triangular part of the matrix. Thfa form of
B is similar, but the tip of its bulge is at the (i + m, + 1) position. This is a bulge
of order m — 1. We see thus that the transformation B;_1/2 — B shrinks the bulge
by deleting one column from the left side. On the other hand, the transformatm.n
B; - B;,1/2 enlarges the bulge by adding one row to the bottom. Thus t'he bulge is
chased downward and to the right as the GZ iteration proceeds. When i =n —m,
the bulge has reached the bottom of the matrix and begins to be pusheq off t'he edge.
fv<i, the bulge is eventually eliminated completely. If v > 1, the iteration ends
Wwith the last v columns uncleared.
We now turn our attention to the “A” matrices.
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LEMMA 4.7. Fori=0,...,n—m~ 2, the last n — i~ m —1 rows offi,- and
fliﬂ /2 have upper Hessenberg form. That is,

a =P =0 ifj>k+1 and j>itmtl

: Al s . .
Proof. Write the transformation A;;1/2 = G 1AZ; in the unsymmetric parti-
tioned form

Si4+1/2)  2(i+1/2)

Apy Ap _[X UHA“ AmHY 0]
A (4 i o A I O
ACHYD e 0 I 0 A

where A(1’1+1/2) Ay € (D(i+m+1)x(i+m) X e (D(i+m+l)><(i+m+l) Y € (D(i+m)x(i+m)
Clearly AS;L A _ and A(;; Y2 Asgo, which is the bottom right-hand corner of

an upper Hessenberg matrix. Thus A,H /2 has the stated form. To prove that A; also

has this form, apply the same partition to the equation A= G AZ 0
Thus it appears that An_p,_1 is completely filled in. But again it turns out that
the transformations are not only destroying zeros, they are creating zeros as well.

LEMMA 4.8. For2 <i < p, the firsti— 1 columns of Av—l/? and A; are in upper
Hessenberg form. That is,

A(z 1/2) _ —o ifi>k+1 and k<i-1.

Proof. By (13) we know that Afi_l/gsi_l = R;A. Consider the unsymmetric
partition

~{i—1/2) ~(1—-1/2)
All

A { Su Si2 } _ { Riy Rig ] { Ay A ]
A(;l 1/2) 121'(;2 1/2) 0 Sy 0 Rgo 0 A
afi-1 . , ) o
where A(:l / ), Ay € @*6-D 6 e @i-DXE-1) and Ry, € €. Both Sy and

R, are upper triangular and nonsingular. Thus

~{i-1/2)
All _ { R11 ]A S__l
~(i-1/2) - 0 119y -
Ay
Therefore Ag{l/ ) and A(f 1/2)

= R11A1157}. Since Ry, and ;' are upper

triangular, and Ay satisfies aj, = 0if j > k+1, Au "2 lnust also have this zero

pﬁattern This proves that A;_, /2 has the stated form. We obtain the same result for
A; by partitioning the equation A;5; = R;A in exactly the same way. 0
Hemark. Aslong as v < 1, Lemma 4.8 shows that both Ap_l /2 and A are upper
Hessenberg. If v > 1, Lemma 4.8 states that the first p — 1 columns of A = A are
upper Hessenberg. In fact the situation is better than that. From Theorem 4. 3 we
know that A is block triangular; all of the entries in column p below the main diagonal

are automatically zero. Of course this is a theoretical result that is valid only in the
absence of roundoff error.

Combining the results of Lemmas 4.7 and 4.8, we have the following theorem.
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THEOREM 4.9. For1<i<p,
201D _ g it d either i > i k<i_1
aj = ifj>k+1 andeitherj>i+mork<i-—1,
@) =0 ifj>k+1andeither j>i+m+1ork<i—1.

Fori=1,...,n—-m~-1, Ai—-l/2 has its first ¢ — 1 columns and its last n —m — ¢
rows in upper Hessenberg form. Thus it has the form

It has a bulge that has its tip at position (i + m,4). We call this a bulge of order
m — 1 because it protrudes m — 1 diagonals below the Hessenberg part of the matrix.
A; has its first i — 1 columns and last n — m — i — 1 rows upper Hessenberg. That is,
it has a bulge whose tip is at (i + m + 1,7). This is an m-bulge.

The transformation A;_; j2 = A; enlarges the bulge by adding one row to the
bottom. On the other hand, the transformation A; — A, /2 shrinks the bulge by
removing one column from the left side. Thus the bulge in /ii moves downward and
to the right, just as it does in B;,. When i = n — m — 1, the bulge has reached the
bottom of the matrix and begins to be pushed off the edge.

Now let us consider the effects of the transformations on the A and B matrices
together. The transformation C;_; /2 = C; enlarges the “A”-bulge while shrinking
the “B"-bulge. On the other hand, the transformation C; — C;1/2 shrinks the “A”-
bulge while expanding the “B”.bulge. The relative positions of the bulges in A; and
B; can be seen by superimposing them on one array.

b b b b b b b b]
a b b
a b b

a b b

a b b b b

a a a a b b

a b b

a b |

Here we have pictured the case n = 8, m = 3, ¢ = 2. The nonzero part of By is the
area outlined by the letter b. The nonzero part of Ay includes the nonzero part of
B; and in addition the entries marked with the letter a. This is an m-bulge for Az
and an (m — 1)-bulge for B,. After the transformation Cy — Cj/2, the situation is

=y
g




il
25
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as follows.

<o

bbb b b]

8 o

oo R oo
[l i R

b b
b b b
a

o e e O O O O

b
L a
The “A”-bulge has been shrunk by the elimination of one column from the left (marked
by zeros), and the “B”-bulge has been enlarged by the addition of one row at the

bottom. Now the bulges coincide perfectly. This is an m — 1 bulge in As/2 and an m
bulge in 35/2.

4.4. The implicit GZ algorithm. Now we are ready to use the information
amassed in the previous section to see how to carry out an iteration of the GZ algo-
rithm without actually forming the matrices Ry = p(AB~1), 5o = p(B~'A), or any
of the derived matrices R;, S;.

The first step is to find Gy, which is the elimination matrix for the first column
of Ry = p(AB~!). Thus we need to find z = p(AB~')e;. This can be computed
relatively inexpensively if m <« n. Indeed, p is given in the factored form p(A) =
(A—=01) -+ (A —om). Thus x can be calculated by the recursion

(14) 2 = (AB™! —o; )2V, j=1,....m,

with (® = e;. Then z = (™). Since it does not matter whether we get x or a
multiple of z, in practice we would also rescale at each step to avoid over/underflow.
This is inexpensive. Since AB~! is upper Hessenberg, only the first j components of
201 are nonzero. Now consider the jth step. If we let y(0) = AB~1xU~1) then
2U) =y — g;20-1). We can find y) by solving Bz = zU~1 for () and then
calculating y) = Az(). Because only the first j components of (/=1 are nonzero
and B is upper triangular, the system Bz() = 20~1 is in fact only a j x j upper
triangular system, whose solution requires only O(j%) operations. Only the first j
entries of z() are nonzero. Thus the product 42U) involves only the first j columns
of A. The nonzero entries in these columns are confined to the first j+1 rows, so y(j )
can be obtained in O(j2) operations. The computation () = y( — .10~ requires
only O(j) operations. Thus the total operation count for the jth step is O(j2). This
must be done for j = 1,...,m, so the total cost of computing z is O(m?), which is
small if m < n.3

Once we have x, we can let G; = diag{é‘l,l } be the elimination matrix for x
given by the chosen elimination rule and calculate

fil/g = Gl—lA and 31/2 = Gle.
Logically the next question would be how to find Z;. However, we postpone that

and ask instead how one finds G;, i = 2,3,..., p, to make the transformations

. el N o
Ais12=G Aiy and By =G'B;,,
3 This procedure can be modified in various ways. For example, a more accurate formula for the

case m = 2is given in [11]. Also, although we are assuming throughout this paper that B is non-
singular, one might reasonably ask whether this process can be salvaged in case one of b1y, ..., bmm

happens to be zero. Deflation strategies for singular B are discussed in f11], (9], and (6, p. 460].
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(see (7)) given that A,_; and B,_; are available, To deal with the two cases i <
n—m and i > n — m simultaneously, let ¥ = min{i + m,n}. Then G; has the
form diag{l;_1.G,, In_x}, where G; € qk—i+1x(k=i+1) 45 the elimination matrix for

{fffi—l), . ,fL":l)]T. Call this (column) vector y. We need to find y or a multiple of y

and we need to do it without knowledge of R, 1. We know that é‘ly = ey for some
scalar . The fact that the first p columns of R; are linearly independent guarantees
that a # 0.

We know from Theorem 4.9 that the operation
GilAii= ALy

shrinks the bulge in A,_; by removing column i — 1 from the bulge. All this means is
that the entries in positions (i +1,i—1),..., (k,i—1) get set to zero. Let us focus on
this column. In transforming A,_; to Ai_1/2, the submatrix G',._1 acts only on rows i
through k. As far as column i — 1 is concerned, the action is

. &,('ii——ll) 1 a(ifl/z)
.(1—’—1) 1,161
éi—] Gtri-1 | _
.(i.~1) 0
L ki—-1
- ——' -~ —1 A ‘—1 ~ '—1) T
In other words, defining z € CF*l by zr = [a,‘-fi-f,aﬁll,,-)_l,..-,aff,,-_ll , we have

G; z = Be;, where 3 = agit.'_ll/ 3 One easily checks that 3 # 0. Indeed, subsequent
transformations do not alter the entry in position (f,i —1). Thus 8 = &i”':l’ and
this is nonzero by Theorem 4.3. The relationship G; 'z = fe; says that G; is an
elimination matrix for 2. Since it is also an elimination matrix for y,  must be a
multiple of y. Indeed, z = 8G.e; = B~y .4

_ This relationship can also be inferred directly from the equation A;—15i-1 =
R;_1 A by comparing column i — 1 of the left-hand side product with the same column
of the right-hand side, which is analogous to the approach used in [10}. Focusing on
rows i through k, and taking into account the zero structure of the various matrices,

we find that

~(i—1 A(i—1)
1('?1'——1) Tii
(15) . 51('1—_19-1 = : Gii-1-
A(i=1 (i—1)
afc,i_i Tri

We know that a; ;_; # O for all 4, and 351‘113_1 #0aslongasi<p+1 Thus z is a
multiple of y. )

This solves the problem of how to find G;. We see that we do not need R-,‘_l, as
the required information for building G; is also present in A;_;. We summarize our
findings as a theorem.

THEOREM 4.10. Let 2 < i < p, and let k = min{i + m,n}. Then G; =
diag{[i—l,éi, In_x}, where G; is the elimination matriz of

@l el al

We now turn to the question of how to compute the transfor}nations Z;. Given

1<1i<p, let k = max{i +m,n}. We know that Z; = diag{li-1, Z:, I}, where Z;
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is the elimination matrix for the vector

_alim1) (-1 (1-INT
w—[si,a 1St Sk I

which is part of the ith column of S,. We wish to determine this vector (or a multiple
thereof) without computing S;. We have Z : lsr = aey, wherea #0.

We know from Theorem 4.6 that the transformation B,_/2Z; = B, (from (7))
shrinks the bulge in Bi~l/2 by setting the entries in positions (i + 1,1),...,(k,?) to

- -1 -1
zero. To see how Z;! acts, we consider the inverse equation Z7'B,_, =D, . We
know that Bi_l /2 has the form

) By B2 By
Biyj2=1| 0 By DBy |,
0 0 B

where By, € QU-DxG-1 p ¢ qk-itxtk=)ong g g g-¥x=k),
By, and Bgj are upper triangular, but By is full, as it holds the bulge. Clearly
B:l /2 has exactly the same zero structure; it is upper triangular with a bulge of or-
der k—i. B, has the same form as B;_, /2, except that the first column of By has been
set to upper triangular form. It is upper triangular with a bulge of order k —i— 1. Its
inverse has exactly the same structure. Thus the transformation Z,-"B:l] 5 = B!

shrinks the bulge in B;lx /2 by setting the entries in positions (i + 1,1), . ,(k,1) to

zero. The submatrix Z; ! acts on rows ¢ through k. Within these rows, our interest
focuses on column i, the first column of By,', as this is where the elimination takes

place. Call this column y; that is, y = B, e;. Then Z; 1y = Be;, where 3 # 0
A1

because B; is nonsingular. Thus Z; is an elimination matrix of y. Since it is also
an elimination matrix of x, y must be a multiple of z. Indeed y = 8Z,e; = Ba~'z.
Since y = By, e;, we can obtain it by solving the small system Baoy = e;. We have
now proved the following theorem.

THEOREM 4.11. For 1 < i < p let k = min{i + m,n}. Let Byy denote the
principal submatriz of B;_, /o consisting of rows and columns ¢ through k. Let y be
the unique solution of Baoy = e;. Then Z; = diag{l;_y, Z;,I,,_i}, where Z; is the
elimination matriz of y.

Theorem 4.11 can also be inferred from the equation

(16) Bi1/28i-1 = R:B,

which holds by (13). The vector z lies in the ith column of §;_;, so consider the ith
column of (16), partitioned as

Byy Biz By z Ri1 Ry b
0 By By T | =| Ryt R { 0 ] ,
0 0 333 0 0 R32

where B;_y/, is partitioned as before, z € €71, x € @F+! R,, € V% Ry €

k—it+1)xi i o ) .
¢!l )’“, and b € @*. Since the first 4 columns of R; are upper triangular, Ry has

only one nonzero entry, 1?*5?, which lies in the upper right-hand corner. Thus Ry =

T i
veie; WhereT’? = 1‘5,;) # 0. We seek 2. But clearly Boyx = Ry b = veielb = bey,
where 6 = ye; b = vb;; # 0. Thus we can find y = 6~z by solving Bosy = e;.
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Theorems 4.10 and 4.11 justify the implicit GZ algorithm, which is summarized
in (17). Notice that the algorithm takes n — 1 steps, rather than stopping after p
steps. In practice p is usually unknown because v is unknown. Even if v is known
in principle, it is not well determined in the presence of roundoff error. When it
happens that v > 1, the implicit algorithm differs from the explicit algorithm only
in one way. In this case a small subpencil can be deflated from the bottom of the
matrix. The implicit algorithm operates on this subpencil, reducing it to Hessenberg-
triangular form, whereas the explicit algorithm does not. This further reduction is
useful because we need to calculate the eigenvalues of the subpencil anyway.

IMpPLICIT GZ ALGCORITHM

fori=1,...,n-1

[k — min{i + m,n}

if (t = 1) then
x — p(AB)e, (See the discussion following (14).)
y — first k entries of

else
[ y— [al.z—l,---aak,iwl]’r
(17 end if
) G « elimination matrix of y (*)

G — diag{l,_1, G, In_x}

A—G'A, B~G'B

By « rows, columns 7 through k of B

z B2_21el

Z «— elimination matrix of 2 (%)
Z « diag{li_1, Z, In—x}

L A—AZ, B« BZ

Remarks. For standard eigenvalue problems (B = I), we have already noted that
Z;=G;fori=1,...,n— 1. Thus we have Z = G at each step of (17). This special
case is the implicit GR algorithm.

In [2] Bunse-Gerstner and Elsner developed a new version of the QZ algorithm
for unitary pencils, which are of interest in certain signal-processing applications.
Instead of using the Hessenberg-triangular form, they introduced a more condensed
block-diagonal form. Since our development is built upon the Hessenberg-triangular
form, it does not encompass the algorithm of 2] as a special case. However, the
methodology used here can be adapted to that situation and used to derive that
algorithm and its generalizations to higher multiplicity. In particular, if A and B are
unitary, the equations in Lemma 4.1 are joined by the two related equations

AR =8A* and B R=SB"

Whereas the equations of Lemma. 4.1 yield information about zeros below the main
diagonal (e.g., upper Hessenberg form is preserved from one iteration to the next),
these new equations give information about zeros above the main diagonal. In par-
ticular, block diagonal forms are preserved from one iteration to the next. Of course,
we must now insist that the G and Z transformations be unitary, so that the pencil
stays unitary from one iteration to the next.

4.5. The generic bulge-chasing algorithm. If one compares the implicit GZ
algorithm (17) with the standard double-step QZ algorithm, as presented in, for
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example, EISPACK [5], one notices an important difference. In (17) the transformation
Z; is designed to clear out one column of the bulge in B. In contrast. the corresponding
transformation in the standard code eliminates the entire B bulge before proceeding to
the computation of G,;;. The bulge is annihilated row by row, using one elimination
matrix for each row. In the case m = 2 (as in the Fispack code) the added cost
of doing this is small. However, as m is made larger, the cost difference hecomes
significant. On the other hand, the standard procedure may be substantially more
stable. The reason for this is that the Z; calculated in (17) is designed so that the
transformation Z;- 1Bi"_l1 2 =B7 ! will clear out one column in the bulge in the inverse
matrix. As a consequence, the transformation B;_, 28, = B, will also, in principle,
remove one column from the bulge in B, _, /2- However, these zeros are introduced only
incidentally; they are not enforced by the transformation. T herefore, in the presence
of roundoff errors these numbers will not be exactly zero. They may sometimes be far
enough from zero that they cannot be set to zero without compromising the stability
of the algorithm. After all, if the submatrix B33 should be ill conditioned at some
point, then the solution of By, z = e 1 and the resulting Z, may not be well determined.
In contrast, the standard procedure introduces the desired zeros explicitly through
the mechanism of eliminating the entire bulge from B. Therefore there 1S no question
of having to set to zero some numbers that should be, but are not quite, zero. We
note finally that in the extreme case of singular B, the implicit GZ algorithm (17)
breaks down, whereas the standard procedure does not.

It is therefore desirable to broaden our class of algorithms to include procedures
of this type. To this end we introduce a generic bulge-chasing algorithm, which is
exactly algorithm (17), except that at the two steps labelled () and (), where G
and Z are chosen, we do not require that they be determined by a specific elimination
rule. At (*) we allow any nonsingular G for which é*ly = ae; for some a, and
likewise for Z at (xx). That G~y = ae; means exactly that (at the ith step) the
premultiplication by G~ causes entries (i+1,i-1),..., (i+k,i— 1) of the A matrix to
be transformed to zero. Similarly, that Z-1z = Be1, where 7 = B;zle,, means neither
more nor less than that (at the ith step) the postmultiplication by Z causes entries
(i+1,4),...,06@ + k,i) of the B matrix to be transformed to zero. We do not require
that the vector z be calculated explicitly, only that the transformations produce the
desired zeros. (Indeed this can be done even if B2, is singular, in which case z is not

well defined.) Thus algorithms that annihilate the entire bulge in B at each step fit
into this structure.

It i§ worth rn.entioning a class of algorithms that avoids the high cost of eliminating
the entire bulge in B at each step by never allowing that bulge to build up in the first
place L9, p. 75]; Suppose that after i — 1 steps of a generic bulge-chasing algorithm we
have -Ai_l -AB;_1, wh_elre B;_1 has no bulge. The next step is to build an elimination
matrix G; such that G; " annihilates the entries in positions (i+1, i~ 1),...,(i+k,i-1)
of A;_1. One can build such a G; lasa product of simpler matrices G~_-1+1 e 7-1_,.k

-1 . . bt i ’

;vhere gach G;; acjcs.only on rows j — 1 and j (that is, its nontrivial part is a 2 X

Bmatrlx) gl_uiiBanm}fu}?tes the (j,i — 1) entry. One easily checks that the matrix
i~1/2 = G "B fails to be upper triangular only in that th ies i iti

G, (it21s 1)’ g y € entries in positions

(i +k,i+k — 1) are nonzero, These b hilated
by a transformation B, = Bi_1/2Z;, where Z; = Zisan- 2 can be annihilate

. ii+1, and each Z, ; acts
only on columns j — 1 and J and annihilates the en
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Our analysis of the generic bulge-chasing algorithm will show that each iteration
amounts to an iteration of a generic GZ algorithm. Thus the generic bulge-chasing
algorithm lies within the class of algorithms whose convergence properties we studied
in §3. To this end we introduce some notation. In fact the notation is identical to
notation that we used earlier, but the symbols now carry slightly different meanings.
Let G, and Z, denote the transformations produced at the ith step of the generic
chasing algorithm (as we have already done in the previous paragraph), let G; =
G\ G.2, =2y 2. A =G 'AZ, B, = G7'BZ;, Ai_yj2 = G7'AZ; 1, and
B;-]/Q = C:';’BZ,_,, { = 1,....,n — 1. These matrices may be different from those
featured in Theorems 4.6 and 4.9, but they have the same bulge structure; it is
exactly the function of the generic bulge-chasing algorithm to enforce this structure.
Let A= A,_, and B = B,_,. These are the final products of (one iteration of) the
generic bulge-chasing algorithm. A is upper Hessenberg, and B is upper triangular.
Assuming once again that B is nonsingular, let Ro = p(AB~') and Sy = p(B~'A4),
as before, and let R, = G:‘R,_l and S, = Zfl.‘;',-_l fori=1,...,n— 1. Now we
are using the matrices G, and Z; to define R, and S;, whereas in the development of
the explicit GZ algorithm we used R, and §; to define G, and Z;. It is an immediate
consequence of the new definitions that

p(AB~Y) = G.R; and p(B7'A)=Z:5;

fori=1,...,n—1. The matrices R, and S; defined in connection with the explicit
algorithm were partially upper triangular. Whether or not the new R; and S; have
that property is not immediately clear from the definition. In fact they do, as the
following theorem shows. R 5

THEOREM 4.12. Fori = 1,...,n — 1, the matrices R; and S; defined in the
previous paragraph both have the form

X X2
(18) { 0 Xzz]’

where X1, € C*** is upper triangular.

Proof. The proof is by induction on i. First let ¢ = 1. The transformation
G is designed to annihilate p(AB~!)ey, the first column of p(AB~') = Ry. Since
Ry = Gl_lfio, R, must have its first column in upper triangular form, as claimed.
_ Now we show that, fori = 1,...,n — 1, if R; has the stated form, then so does
Si. Since B; = GA,-"IBZA,-, p(AB™1) = G;R; and p(B~'A) = Z;5i, we can apply
Lemma 4.1 to obtain B;S; = R;B or, equivalently,

$. = BT'R:B.

Each of the three matrices on the right-hand side has the form (18), where X € CH,
so S; must also have this form. A R

We complete the induction by showing that for i = 2,...,n— 1,if R;—1 qnd Sifl
have the stated form, then so does R;. Certainly the first ¢ — 1 columns of R; in:e in
upper triangular form, for this is true of R;_1, and the transformation R, =G; Ri
does not alter these columns, as one easily checks. Thus we can focus on the ith column
of R;. Since A;_;;, = G7'AZ;_, p(AB™") = GiR; and p(B~'A) = Z;_15i-1, we
can apply Lemma 4.1 to obtain

(19) Ai—l/ZS'i—l = RiA-
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We wish to pick out the ith column of R;. Noting that a; ;1 # 0, we examine column
i — 1 of (19), partitioned unsymmetrically as

i— -1/2
(20) A A [U}'[R“ RHHW]
i(i-1/2 0| | Ran R 0]’
0 Aég 12 21 H22
where fl(lil Y c C* ! Ry e@* veC ', andwe C*. The last entry in w

is a; i We already know that the first i — 1 columns of R; are upper triangular.
This implies that Ry is upper triangular, and all but the last column of R;3 is zero.
Thus Riy = zel for some . If we can show that = 0, we will be finished. Equating

second components of (20), we have 0 = Ryyw = reTw = za;;_,. Since a;;1 # 0,
we have £ = 0. 0

Let G = Gn_y, Z = Zn-1, R=Ryu_1, and § = S,_y. Then R and S are upper
triangular by Theorem 4.12 with i = n — 1, and

(21) A=G'AZ and B=0¢
where
(22) p(AB ') =GR and p(B~'4)=Z8§

We conclude that one iteration of the generic bulge-chasing algorithm amounts to one
iteration of the generic GZ algorithm.
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