FACTORIZATION OF MATRIX POLYNOMIALS WITH SYMMETRIES

A.C.M RAN* aAnD L. RODMAN7{

Abstract. An n x n matrix polynomial L(\) (with real or complex coeflicients) is called selfadjoint if
L()\) = (L(X))*, and symmetric if L(\) = (L(£A))T. Factorizations of selfadjoint and symmetric matrix
polynomials of the form L(A\) = (M(X))*DM()) or L(\) = (M(£X))T DM(}) are studied, where D is
a constant matrix and M () is a matrix polynomial. In particular, the minimal possible size of D is
described in terms of the elementary divisors of L(A) and (sometimes) signature of the Hermitian values

of L(A).
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1. Introduction. Let L()) = Z)\jAj be a matrix polynomial, where 4; (5 =
=0

0,...,¢) are complex n X n matrices and A is a complex parameter. The polynomial L(})

is called selfadjoint if L(A) = (L(X))* for all A € C.

Factorizations of the form
L(X) = (M(X))*D M()), (1.1)

where D = D* is a constant matrix (not necessarily of the same size as L(A) and M(}) is a
matrix polynomial, have been studied in the literature, under various additional hypotheses
(see [Ja, Co, GLR1, GLR2]). The study of factorizations (1.1) is motivated by several
applied problems, such as filtering (Chapter 9 of [AM]). Factorizations of matrix polynomial
L()) having other types of symmetries, such as L()\) = (L(—)))T or L()) = (L(X))T have
been studied in the literature as well (see, e.g., [Lyul, Lyu2]). For such polynomials, it is

natural to seek factorizations of type
L) = (M(=\))TD M(2), (1.2)

where D = DT is a constant matrix (not necessarily of the same size as L())), M(})) is a
matrix polynomial, and € =1 or ¢ = —1, as appropriate.

In this paper we identify the minimal possible size of the matrix D in factorization of
types (1.1) and (1.2), where L(A) has the appropriate symmetry. The cases when L())
has complex coefficients or real coefficients are studied (if L() is assumed to be real, then

in (1.1) and (1.2) M()X) and D are assumed to be real as well). Our result concerning
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factorization (1.1) is a generalization of the main result of [GLR2] where only the case of

constant signature was considered under the additional hypothesis that det L(A) #Z 0

We present also (in Section 2) general factorization results in an abstract framework,
for matrix polynomials over a field having suitable symmetries. These results, although in-
dependently interesting, play an auxiliary role in this paper, serving as essential ingredients

in the proofs of the main results given in Sections 3—6.

The following notation will be used throughout the paper. Standard notation R(C) to
denote the real (complex) field, and I}, for the k£ x k unit matrix. AT (resp. (A*) stands
for the transpose (resp. conjugate transpose) of a matrix 4, and (A7)~ (resp. (4*)71) is
abbreviated to A~T (resp. A=*). Block diagonal matrix with the blocks Z,..., Z,, on the
main diagonal will be denoted 7, & - -- & Z,, or diag (Z1,...,Zy,). For a Hermitian n x n
matrix X, let v4(X) (resp v—_(X), or v9(X)) be the number of positive (resp. negative, or

zero) eigenvalues of X counted with multiplicities. Thus,
vi(X) +v_(X) +19(X) =n.
Given a matrix polynomial L(A) over €, its general rank r(L) is defined by

r(L) = ix()lg()[:({rank L(Xo)}-

It coincides (when F' = C) with the notion of general rank introduced and used in Section
2 for matrix polynomial over a field F'. The points A\¢g € C for which rank L(XAg) = r(L) will
be called regular points of L(A); all other points Ao € € will be called singular. Clearly,
the set of singular points is finite (or possibly empty). An n X n matrix polynomial L(})
is called regular if r(L) = n, or, equivalently, if det L(\) # 0.

Acknowledgement. The problem concerning the minimal possible size of D in fac-
torizations (1.1) for complex selfadjoint matrix polynomials has been posed by

Prof. I. Gohberg.

2. Symmetrix matrix polynomials over general field. Let F be a (commutative)
field, and let F'[A] be the ring of polynomials over F' in one variable A. Matrices L(A) with
entries in F[A] will be called matriz polynomials (over F). It is well-known (see, e.g., [M])

that every m x n matrix polynomial L(A) admits a representation (called the Smith form)
L(X) = E(X) diag(di(A),d2(A),...d-(0),0,...,0)F(X) (2.1)

where E()) and F()) are matrix polynomials with sizes m x m and n x n, respectively, and

having constant non-zero determinants, and d;(}),...,d,()) are monic scalar polynomials
(over F') such that d;()) divides d;y1(A) (¢ = 1,...,7 —1). The polynomials d;(A) are

called invariant polynomials of L()); these polynomials, as well as their number r, are
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uniquely determined by L(A) : r x r is the maximal size of a square submatrix in L(})
with determinant not identically zero, and for ¢ = 1,...,r the product di(A)...d;(A) is

the greatest common divisor of the determinants of all ¢ x ¢ submatrices in L(A).
The number r will be called the general rank of L(A) and denoted »(L).

In this section we will study factorizations of symmetric matrix polynomials, and the

Smith form will be our main tool.

From now on we assume that the characteristic of F' is different from 2. For a given
automorphism o of F such that o> = identity; and for fixed ¢ = +1 consider the following
transformation: for a(A) = Y a; A7 € F[)] let

a(A) =Y _o(a;)(eA) = o(a;)e! N € FIAL (2.2)

For an m x n matrix polynomial X () = [mij()\)]?;’?’jzl over F' define

Xo(A) = [i(M]ZT j=1
where ;;(\) = [zi())]s. We have:
1) [XA)Y (V)] = YALXA).
2) [X(A))x = X()
3) [2(N)X(A) + y(\)Y (N)]s = 2. X, + 3, ¥, for scalar polynomials z()) and y()).
4) if det X(\) = const . # 0, then

These rules will be used often in the sequel.

An m x n matrix polynomial L(A) will be called generally invertible if all its invariant
polynomials are constant 1. The terminology is justified by the fact that L()) is generally
invertible if and only if L()) has a generalized inverse, i.e. matrix polynomial N()) such
that N(A)L(A)N(A) = N(X) and L(A)N(X)L(A) = L(X) (this fact is easily proved using
the Smith form). A matrix polynomial L(A) will be called right (resp. left) invertible if
there exists a matrix polynomial N(A) such that L(A)N(AX) = I (resp. N(A)L(A) = I).

We now state one of the main factorization results of this section.

THEOREM 2.1. Let L()\) be an n x n generally invertible matrix polynomial such that
L(X\) = L.(N), (2.3)

and let v be the general rank of L()X). Then L()\) can be factorized in the form
L(X\) = M.(\)DM(X), (2.4)
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where M(A) is an r x n right invertible matrix polynomial and D is an r X r constant
matrix such that D = D.,,.

Conversely if (2.4) holds for an r x n right invertible matrix polynomial M()) and a
constant matrix D = D, then L()) satisfies (2.3), is generally invertible and has general

rank r.

Proof. The converse statement is easy: Indeed, if

M()) = BO)I 0lF())

is the Smith form for M (), then

- I . - -
L(X) = F.(A) . E.Q)DE) 0[F())
_ [E.x) ol[D 0o][E()) o] _
| o0 I]]lo o 0 I

so by uniqueness of the Smith form L(A) is generally invertible and has general rank r.
The verification of (2.3) is trivial.

We now prove the direct statement.

Observe that the proof is easily reduced to the case when r = n, ie., det L()) =
const. # 0. Indeed, let L(X) = E(A)D(X)F(X) be the Smith form of L()), and let z()\) =
(Fu(N))"*L(A)F(X)~!. Clearly, z()\) is a matrix polynomial, z()\) = E*()\), and because of
the equality Z()\) = (F«(X))"1E(X)D(X) the last n —r rows and columns of z()\) are zeros.
Obviously, it will suffice to prove the direct statement for the r x r matrix polynomial N ()
formed by the first r rows and columns of Z()\) As det N(A) = const. # 0, the required

reduction is accomplished.
We assume from now on that det L(A) = const. # 0. In this case the direct statement
follows from Theorem 3 in [Lyul] (see also [Lyu2]). We outline an alternative procedure
developed in [Co]. As in [Co| or [GLR2] (Section 4) we prove that there exists an n x n
matrix polynomial X () with det X()) = const. # 0 such that for the matrix polynomial
AQ) = XL L)X (A) = [ai;(V)]F]

1,7=1

either ay; = 0 or A()) is diagonally dominant (i.e. for j = 1,...,n, the degree of o;;(\)
is bigger than the degrees of all non-zero entries in the j-th row and the j-th column in
A()X)). Because of this fact, without loss of generality we can assume that either L(}) is
diagonally dominant or the (1,1) entry in L(A) is identically zero. If L(A) is diagonally

dominant, then it must be constant, and we are done. So let

L =




where A; = Ay, and Cy = Cy, are (n — 1) x (n — 1) matrix polynomials. Now put

1
y=3 (1 —cxAic); ¢ =—A1c— ay.
Yy T
Y =
c I
A calculation shows that
1 —z, 1 0
Y =1,
0 I —c I

and so detY = 1. Another straightforward calculation shows that

1 0
Y.LY = ,
[0 LO]

where Lo()) is an (n — 1) x (n — 1) matrix polynomial. Thus, we have reduced the size of

L by one and can complete the proof by induction on n. []

As the proof of Theorem 2.1 shows, the constant matrix D can be taken diagonal.

If L()) is not generally invertible, then easy examples show that the representation (2.4)
(with D having the size equal to the general rank of L())) is not always possible, even if we
omit the requirement that A/ () is right invertible. We can, however, obtain a factorization
result for not generally invertible L(A) if we allow D to be a polynomial (with special
properties). To state and prove this result we need the concept of elementary divisors. Let
L(X) be an m x n matrix polynomial with invariant polynomials d;(}),...,d.()), where
ds(A),ds+1(X),...,d-(X) are non-constant (if L(\) is generally invertible, then we say that
L(A) has no elementary divisors). Factor:

di(A) = (Fa ()™ (F(A)*2 - (fir, (M) ™5 d=s,8+ 1,057 (2.5)

where fi1(A),..., fir;(A) are irreducible and pairwise relatively prime non-constant monic
scalar polynomials (over F'). The collection of factors (f;;(A))* (5 = 1,...,ki51 =
$,8+1,...,7), where each factor is repeated as many times as it occurs in (2.5), is called
elementary dwvisors of L()), and the positive integer «;; is called the order of the elemen-
tary divisor (f;;(A))*7. Because of the divisibility relations among invariant polynomials,
the collection of elementary divisors of L(A) determines the invariant polynomials uniquely,

and therefore is invariant under the transformations
L(A) — E(A)L(A)F()), where detE())=const.+# 0, det F(A)= const.# 0.

THEOREM 2.2. Let L()A) be an n X n matrix polynomial such that



and let r be the general rank of L(\). Further, let {f1(A)*,..., fy(A)®¢} be the collection
of elementary divisors of L(\). Then L()) admits a factorization

where M()) is an r xn matrix polynomial, and D(A) = D.()) is an v X r matrix polynomial;
moreover, the collection of elementary divisors of D(X) is {f;(X) : j € J}, where the subset
J of {1,2,...,q} consists precisely of those indices j for which f; = ei°#™°Ji f;. and «; is
odd.

Recall that ¢ = +1 is taken from (2.2).

Proof. As in the proof of Theorem 2.1, we can assume that » = n. Let L()\) =
E(XA)D1(X)F(X) be the Smith form L()), where the invariant polynomials d;(A),...d.(})
are on the main diagonal of D;()A). Because L = L,, and by the uniqueness of invariant

degree d,’d,
7

polynomials we have in fact d;, = ¢ (i=1,...,7). The factor ed&*¢4i appears

because d; is monic (this is part of the definition of invariant polynomials) while the leading

degreed;

coeflicient of d;, is ¢ . In the sequel it will be convenient to denote f, = edegrecf f,

for a scalar polynomial f. Thus, d;; = d;. Observe that f, is monic if f is monic and
that (f1f2)+ = fi4 fo4 for all pairs of polynomials fi, f.

Replacing L by F,!LF~!, we can further assume without loss of generality that the
i-th column of L is divisible by d;(A\) (¢ =1,...,n). By symmetry, the ¢-th row of L is
divisible by d;.()). Let the nonconstant invariant polynomials of L(X) be ds(A),...d ()
and factor them as in (2.5). Then

k; k;

di = [[(fi)* = [[(fisr)™ (i=s,8+1,...7),

and by the uniqueness of decomposition (2.5) we obtain that the set {fi1,..., fir; } must
consist of selfsymmetric polynomials (f;; = fij+) and/or of pairs of mutually symmet-
ric polynomials f;;, = fij,+; in this case necessarily a;;, = ayj,. Say, fi,..., fip, are
selfsymmetric and

fipivr = (fipit2)+s- s fipit2ai—1 = (Fipit24: )+

here p; +2¢; = k;. Let iy be the smallest index such that «;,; > 1 for some j € {1,...,p;};
say, aj,1 > 1 (if no such ¢ exists, we put

q:

hi= H(fi,pi-l—Zj)ai’pHZj (i=s,s+1,...,7)).

j=1



Define

i
hi = H(fi,p,»+2j)a”"'+2j 1=38,8+1,...00 — 1,
i=1
'8
h; = fa H(fi,pi+2j)ai’Pi+2j i=4d9,%0 +1,...,7,
i=1
where we assume that the elementary divisors are numbered so that f;; = fi,; for s =

t0+1,...,7. To make the subsequent formulas more uniform we define also h; = 1 for ¢ =
1,...,8 — 1. The divisibility relations between the d;’s imply that whenever f; ;, = fi,j,,
where ¢; < i3, then a;,;, < oy,j,. Consequently, we obtain that h; divides hiy1 (¢ =
1,...,7—1).

The formulas (2.5) lead to the factorization

d; = hixgih; (i=1,...,7), (2.6)

where g; =1fori=1,...,8 — 1;

_j:H a,, for i:s,...,io—l;
Di
=+f"" H(fij)a“ for  1=1g,00+1,...,7
j=2

(the sign + or — in g; is chosen so that g; is monic). Clearly, g; divides g;4; for 1 =
1,...,» —1.

In view of (2.6) we now have a factorization
L(X) = diag(1,...,1,hs(A),... ,hr*()\))Z()\) diag(1,...,1,hs(A),...,~r(A)) (2.7)

for some matrix polynomial L = L,. Denote by CZ()\), ... ,JT(A) the invariant polyno-
mials of z()\) Equality (2.7), together with the Binet—Cauchy formula for determinants
of submatrices in the product of several matrices implies the following: Every determi-
nant of j X j submatrix in L(\) is a linear combination (with polynomial coefficients) of
the determinants of 7 x 7 submatrices in z()\) when the determinants are multiplied by
j j

[I(Rix(X)Bi(2)). 1t follows that dy(})...d;()) divides di(X (M) JJ(Ris ) for

=1 i=1



j=1,...,7). The equality (2.6) now shows that g;(}A)... g;(}) divides c’lvl()\) .. CZ(A) On
the other hand, for the (7, j)-th entries p;; of L and p;; of L, respectively, we obtain

Pij = hi_*lpijhj_l = hi_*lpijdi_lhj*gj,

and since (assuming ¢ < j) both pijdi_l and hi_*l h ;. are polynomials, p;; is divisible by g;.
Also, p;; is divisible by g; (because g; divides g; if 7 < j). By the symmetry of E, we obtain
that p;; is divisible by gyax(s,j)- Therefore, the determinant of every j x j submatrix of
L is divisible by g1...g9;. Consequently, d; c’ij divides g1 ...g;. Comparing with the
previously obtained opposite divisibility relation, we conclude that gq,...,g, are in fact
the invariant polynomials of L.

Repeat the procedure given above with L replaced by Z, and so on, until (after a

finite number of steps) we obtain a matrix polynomial D()) with the properties required
in Theorem 2.2. []

3. Factorization of selfadjoint matrix polynomials on the real axis. In this

section we consider matrix polynomials L()) over € with the following property:
LA = (LX) , XeC.

Such polynomials will be called selfadjoint.

THEOREM 3.1. Let L()) be a selfadjoint n x n matrix polynomial. Then L()\) admits

a factorization

L(X) = (M(X))" D M(X), (3.1)

where D is an m x m constant Hermitian matrix and M()) an m X n matrix polynomial
if and only if
m > my, (3.2)

where

mo = max v (L(V) + max v (L(). (3.3)

Moreover, in all factorizations (3.1) having the minimal size mg x mg of D, the matrix D
is uniquely determined up to congruence: D has maxv,(L())) positive eigenvalues and

maxv_(L())) negative eigenvalues (multiplicities counted).

We can say more about the spectral properties of the factor M(A) in (3.1). A set A of
non-real numbers is called a c-set (with respect to a selfadjoint matrix polynomial L(}))
if A is a maximal (by inclusion) set of non-real singular points of L(A) with the property
that A\p € A = A¢ ¢ A. (The case when a c-set is empty is not excluded.) The concept
of c-set was introduced and used in [GLR1, GLR3]. It turns out that, given L(}\) as in

Theorem 3.1, and given a c-set A, there exists a factorization (3.1) where D is my x my
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and where the set of non-real singular points of M(\) coincides with A. This statement

follows as a by-product of the proof (given below) of Theorem 3.1.

Theorem 3.1 admits an alternative formulation. An n X n matrix polynomial M(X)
will be called elementary if (M) = 1 and M()) is positive semidefinite for all real A. It
is not difficult to see (this fact is actually a particular case of Theorem 3.1) that M(}) is
elementary if and only if M()) is of the form M()\) = z(A)(z()))*, where z()) # 0 is an
n X 1 column polynomial. One can consider elementary matrix polynomials as building
blocks for selfadjoint matrix polynomial, in the same spirit as the constant rank 1 positive

semidefinite matrices are building blocks for constant Hermitian matrices:
THEOREM 3.2. Any selfadjoint n x n matrix polynomial L()) admits a representation
L) =) eiM;(0), (3.4)

J=1

where €; = £1 and M;()) are elementary matrices. The number m of terms in (3.4) is
greater than or equal to myg, where my is given by (3.3), and if m = my, then exactly

maxvy(L())) of €;’s are equal to +1 and exactly maxv_L())) of ¢;’s are equal to —1.

To obtain Theorem 3.2 from Theorem 3.1, assume (without loss of generality) that
n (3.1) D is a diagonal matrix with +1’s on the main diagonal. Then let M;()) =
(z;(X))*z;()), where z;()) is the j’th row of M()), to produce the formula (3.4).

COROLLARY 3.3. Any selfadjoint n x n matrix polynomial admits a factorization (3.1),

or a representation (3.4), where m < 2n.

There are selfadjoint matrix polynomials, for example, L(A) = AI, for which there do

not exist representations (3.1) or (3.4) with m < 2n.
The rest of this section will be devoted to the proof of Theorem 3.1.
We start with the easy direction. Let be given a factorization (3.1), and let Ay be a

real point for which

v (L)) = max v ().

As L(Xy) = Y*DY, where Y = M(}\), the Hermitian matrix D must have at least
v4(L(Ao)) positive eigenvalues. Analogously, D must have at least v_(L(A1)) negative

eigenvalues, where A\; € R is chosen so that

v (L)) = maxv—(L(N).

We obtain therefore the inequality (3.2). It is also clear that in any factorization (3.1),

where D is mg X mg, the Hermitian matrix D is unique up to congruence.
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It remains to show that a given selfadjoint matrix polynomial L()) admits a factor-
ization (3.1) with mg x my the size of D. This is the difficult part and we need some
preliminaries. Note that L(A) is selfadjoint if and only if L = L., where the transfor-
mation a — a, is defined as in Section 2, with FF = C, o(z) =% (z € C), and ¢ = 1.
Nevertheless, here the general results of Section 2 will not be used because the preliminary
results we need (such as Proposition 3.4 below) are already available in the literature (it
should be noted however that the result of Theorem 2.2 plays an essential role in the proof

of Proposition 3.4).

First observe that there exists an n x n matrix polynomial N(\) with constant non-zero

_ lLO()\) 0

determinant such that

L) = (N(V))* . 0] N(A), (3.3)

where Lo()) is a selfadjoint k& x k matrix polynomial, k = r(L). See, e.g., Theorem 32.4 in
[M], where (3.5) is proved for symmetric matrices over principal ideal rings, with (N()))*
replaced by N(\)T; the same proof works to produce (3.5); also, (3.5) can be obtained
without difficulties from the Smith form of L()\) (see Section 2). Because of (3.5) we can
(and will) assume from the very beginning that the general rank of L is equal to n, i.e.

det L(A) # 0.

Our next observation is that the result of Theorem 3.1 is known in the case L()) has
constant signature, i.e. vi(L()A)), and therefore also v_(L())) and v(L())), is constant
for all real regular points A:

PROPOSITION 3.4. ([GLR2]) Let L()) be a selfadjoint n x n matrix polynomial such
that

r}x\lgy+(L()\)) + I}I\leal/_(L()\)) =n.

(necessarily det L(A) # 0). Then L()\) admits a factorization (3.1) with n X n the size of
D.

We will prove the following lemma:

LEMMA 3.5. Let L(A) be a selfadjoint n x n matrix polynomial with det L(\) # 0,
and let my > n be defined by (2.3). Then there exists an my x mg selfadjoint matrix
polynomial L(\) such that

L(\) 0]

and such that
max v (E(V)) + maxv (F(N)) = ma, (3.6)

or equivalently Lis regular and has constant signature.
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Proof. By Rellich’s Theorem [R] (see also [GLR3]) the eigenvalues p1(A),...,pn(A) of
L(A) for A real can be enumerated so that pi(A),...,u,(A) are real analytic functions of
the real variable A. Clearly, A¢ € R is singular if and only if A¢ is a zero of at least one of

the analytic functions p1(A),...,un(A). Let Ag € R be singular, and let
Q) = {1 <5 <n | us(h) =0},

For every 7 € Q()g) let m; be the multiplicity of A¢ as a zero of pj(A), and let ¢; be the
(m;)
J

gj on Ag in the notation.) Define the integer g(Ag) by

sign of the non-zero real number [p; " (A)]|x=1,. (We suppress the dependence of m; and

g(Xo) = { # of indices j € Q(A¢) such that m; is odd and ¢; =1}
— {# of indices j € Q(A¢) such that m; is odd and ¢; = —1}.

From the definition of g()g) it is clear that
v (D0 + ) = 4 (T — ) = g(h) (3.7
for all sufficiently small € > 0. It is easy to see that

mo i= max vy (L(V) + maxv— (L) = n+ max vy (LO0) v (L) (3.8)

where the maximum is taken over all regular real points A; and A;. Also, as it follows from

(3.7),
> gh)

A1<Ao <Az

max v (L)) = v+ (L(%))| = max

(3.9)

where the summation in the right hand side of (3.9) is over all singular points )¢ in the
interval A\; < Ap < As.
Denote the right-hand side of (3.9) by p. We now construct p scalar real polynomials
r1(A),...,rp(A) with the following properties:
(i) all zeros of 7j(A) (j = 1,...,p) are real and simple and belong to the set S of real
singular points Ag of L(A) for which g(XAg) # 0;
(ii) for every A € S exactly |g(A¢)| polynomials among r1(A),...,7,(A) have Ay as their
zeros; and for each r;(A) such that r;(Ag) = 0 we have q()\o)r;()\o) < 0.
The definition of p ensures that such polynomials r1(}),...r,()) canindeed be constructed.
Let
L(\) = diag(L(A),m1(A),...,7p(A)).

By the property (i), an in view of the qualities (3.8), (3.9), it is easy to see that the
number of positive eigenvalues of L(A) is constant for every real A which is a regular point

for L(A). The equality of (3.6) therefore follows. []
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Now we can easily finish the proof of Theorem 3.1. Indeed, given a selfadjoint matrix
polynomial L(X) with det L(X) # 0, construct L(A) as in Lemma 3.5 and apply Proposition
3.4 to L(A):

L(}) = (N(X))*D N(%),

where D is a constant mg x my Hermitian matrix. Then (3.1) holds for M(A) formed by
first n columns of N(A). [J

¢
4. Factorization of real symmetric matrix polynomials. Let L(\) = Z )\jAj
7=0

be a real symmetric matrix polynomial, i.e. 4; (j = 0,...,£) are real symmetric n x n

matrices. For such polynomials L()) we consider factorizations
L(X) = (M(X))" DM(X), (4.1)

where D is a constant real symmetric m x m matrix and M()) is a matrix polynomial
with real coefficients.
It will be convenient to state the next theorem in terms of elementary divisors (see

Section 2 for definitions of the concepts related to elementary divisors).

THEOREM 4.1. Let L()\) be a real symmetric n X n matrix polynomial, and assume
that the elementary divisors of L(\) which are powers of irreducible quadratic polynomials
(over R) all have even orders. Then L()) admits a factorization (4.1) if and only if m > my,
where my is defined by (3.3). Moreover, in factorization (4.1) with the minimal possible size

of D, the matrix D is uniquely determined up to congruence and has exactly max v4(L(A))
cR
positive eigenvalues and exactly max v_(L(X)) negative eigenvalues, multiplicities counted.
cR
Alternatively, L(\) admits a representation

L(A) = ) & M;(N), (4.2)

J=1

where M;()) are real elementary matrices and ¢; = £1, and if and only if m > myq. In case

m = myg, the number of +1’s (resp —1’s) among the e1,...,&,, is exactly max v (L(A)
cR
maxv_(L(X))).
(resp naxv (L(N))

In particular, Theorem 4.1 applies if all singular points of L()) are real.

Proof. The “only if” part (easy direction) is proved as in the proof of Theorem 3.1.
Also, we can easily reduce the proof to the case when det L(A) # 0. Using Theorem 2.2
(with ' = R, o = identity, ¢ = 1), we further can assume that all elementary divisors
of L(A) are first degree polynomials (necessarily with real roots). From now on the proof
proceeds in the same way as that of Theorem 3.1. The role of Proposition 3.4 is played by
Proposition 4.2 below. []
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PROPOSITION 4.2. Let L()A) be a real symmetry n x n matrix polynomial with all

elementary divisors first degree polynomials. Assume further that

r}x\lgy+(L()\)) + I}I\leal/_(L()\)) =n.

Then L()) admits a factorization (4.1) with n X n the size of D.

Proposition 4.2 can be proved by repeating the arguments leading to the proof of
Theorem 1 in [GLR2]. We omit the details.

If the hypothesis on the orders of elementary divisors of L()) is omitted in Theorem
4.1, easy scalar examples (for example, L(A) = A% + 1) show that the result of Theorem
4.1 is generally not valid. Scalar examples show also that, in this case the matrices D of

minimal size in factorizations (4.1) are not necessarily congruent to each other:

) (0 +2)
10 1 0715
M 4+1=]) 1]! ]! ]: |:%()\2—|-2),%)\2:| ! ] 2

0 1]]1 0 —1 1y
2

We have, however, and upper bound on the minimal rise of D:

THEOREM 4.3. Let L()) be a real symmetric n X n matrix polynomial, and let mg be
defined by (3.3). Then for every m > 2min(mg,n)L()) admits a factorization (4.1).

Proof. Assume first that my < n. By Theorem 3.1, we have
L(X) = (M(X))"D M(N), (4.3)

where D is my X mg constant Hermitian matrix (which can can be chosen to be real
without loss of generality), and M () is a complex matrix polynomial. Write M(A) =
Mi(X) + tM3(X), where M;(X) and M»2(A) are real matrix polynomials. Then, separating
the real part in (4.3) we obtain

D 07 [M())
L(A) = [Mi ()T Mz(A)T][ ”

which is the desired factorization (with m = 2my).

If mg > n, use the simple equality:

13



5. Factorization of symmetric real polynomials on the imaginary axis. In this
section we consider the case of n x n matrix polynomials L()) such that L()\) = (L(=)))T
and L()) is real for real A. Note that such a polynomial is selfadjoint on the imaginary
axis, i.e., L(A) = (L(X))* for A € iR. An immediate consequence of Theorem 3.1 (applied

to L(i))) is that such matrix polynomial admits a factorization
L) = (M(-3)TD M()) (5.1)

for a complex m x m Hermitian matrix D and a complex m x n matrix polynomial M ()
if and only if

> .
m > maxv, (L(V)) + magv- (L))

We shall show in this section that D and M(A) can be taken real. Note that here is

a contrast with the situation of Section 4, where an analogous factorization of a real

symmetric matrix polynomial having real factors is not always possible.

First we shall deal with the case when L(A) is regular and has constant signature
on the imaginary axis), after which the general case is reduced to the case of constant
g y y g

signature.

So in view of Theorem 2.2 (with F' = R, o = identity, ¢ = —1) we can restrict our
attention to matrix polynomials having only elementary divisors of the form X or A% + \2
where )¢ is real and nonzero. Next, we deal with the case when L is regular and has

constant signature.

THEOREM 5.1. Suppose L(A) is a real regular n x n matrix polynomial satisfying
L()\) = L(—\)T and having constant signature on the imaginary axis: v (L())) is constant

for all regular points A € iR. Then L admits a factorization
L(X) = (M(=X))"D M()

where M is an n X n matrix polynomial with real coeflicients and D is an n X n constant

real matrix.

Proof. Again by Theorem 2.2 we may assume L has only pure imaginary eigenvalues
and all elementary divisors are linear (in the sense of €). First we deal with the case when
A2+ X2, Ao € R\{0} is an elementary divisor of L. Using the Smith form of L(}\), write

L(A) = E(X) diag((A* + X5)p1(A), -5 (A% + A5)pg (), Pa+1(A); - -, a () F (),

where p;(A) (j = 1,...,n) are real monic scalar polynomials and E()), F()) are real n xn
matrix polynomials with det E()\) = const. # 0, det F'(A) = const. # 0. Then we have for

LX) := F(=A)"TL(A)FM\) ™
- (A2 +23)Buu(d) (A +A3)Biz())
L)) = R - (5.2)
(A2 + A3)B21(X) Aza(X)
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where Bi; is a g X ¢ matrix polynomial. Moreover B (+iXo) must be invertible, as
otherwise det i()\) and hence also det L(A) would be divisible by ()\2 + )\%)‘H’l. Note: if
L has constant signature, so has i, which means i(z)\) for A € R is a Hermitian matrix
having constant signature for all real A except at a finite number of points. Using Rellich’s

theorem [R], we can write

o~

L(iN) = (U(N)" diag(u1 (M), ., a(M)UR) , AeR

where U()) is unitary valued and analytic, and p;(A) is analytic and real. The functions
p;(A) have simple zeros only as L has only linear elementary divisors (over €). Without
loss of generality we may assume p1(Ag) = -+ = pg(Ao) = 0. By Lemma 6 in [GLR2] we
have that g is even, and exactly half of the numbers p}(Xo)(5 = 1,...,9) is positive, the
other half if negative. Let u; be the j-th column of (U()g))*. Then one calculates

(L'(iXo)uj,ui) = (D'(Mo)ejses),

where D()) = diag(p1(A),...,pn(A)). Note that uy,...,u, span Ker L(¢Ag). So on Ker

L(i)Xo) the quadratic form given by L'(¢A¢) has £l positive squares and El negative squares.
Now by (5.2) Ker L(i)) is span {e1,...,eq}, and for z,y € Ker L(z)¢) we have

% (L(iN)z, y) | x=ro = —2X0(B11 (i), ).

Therefore we conclude that there is an invertible matrix V such that

R 1 0 1 0 1 0
0 -1 0 -1 0 -1
1 . q .. .
where the block 0 1| repeated 2 times. Moreover, a simple argument shows that

V can be taken such that it has a real determinant.

Now we will first state and prove a lemma, after which we shall return to the proof of
Theorem 5.1.

LEMMA 5.2. Let W be a complex invertible n X n matrix with real determinant, and
let Ao be a non-zero real number. Then there exists a real n x n matrix polynomial M()\)
with constant determinant such that M (i) = W.

Proof. We can decompose W as a product of elementary matrices:
W=W; Wy-...Wy, (5.4)
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where each W; is either triangular with ones on the diagonal and exactly one non-zero
off-diagonal entry, or W; is a diagonal invertible matrix. Multiplying each diagonal w; by
a suitable complex number a; so that det(o;W;) is real, we can assume without loss of
generality that det W; is real (j = 1,...,k); here we use the hypothesis that det W is real.

Furthermore, by writing

W; = diag(cji1,...,cjn) = diag(cj1,¢j1,1,...,1) - diag(1, Cszj_ll,Ej2cj_11, 1,...1)

-~ diag(1,1,...,Pjn, Cjn)

(here pj, € C — {0}), we can assume that every diagonal matrix W; in (5.4) has real non-
zero determinant and at most two diagonal entries different from 1 (located in adjacent

positions). Clearly, it will suffice to construct a polynomial M(A) as required such that

M(iXo) = W; (for a fixed j). If W; is triangular, let

1 — A1 _
M) =-(W,+W; — (W, — W ;).
If W; = diag(1,...,1,d1,ds,1,...,1) with dy,d; real than the constant M(X) = W; will
do. Finally, if W; = diag(1,...,1,d;,d>,1,...,1) with did; € R but d; ¢ R, then put

p(A) (A A

M(X) = diag(1,...,1,
A2+ A2 q(A)

, 1,...,1). (5.5)

Here

p(A) =dip + A\ dir, 7 =dida(A] + (Aedird;] )?) 7

g(\) = p(N) 7 rAY + 202302 + A + dids),

where dir (resp. dir) stands for the real (resp. imaginary) part of d;. (The 2 x 2 block
p(A) (A +AP)r d 0
NEXA (V) d
W;.) It is easy to verify that ¢()) is in fact a real polynomial, M () (defined by (5.5)) is
a real matrix polynomial with constant non-zero determinant, and M(iXg) = W;. []
Now let us return to the proof of Theorem 5.1. Let V be as in (5.3), and choose M(A),

a real ¢ X ¢ polynomial with constant non-zero determinant such that M(i\g) = V. This

is in the same position in M () as the position of is in

is possible by Lemma 5.2 (recall det V is real). Now we may replace E()\) by

. M(-))~T o] _ MM\t o0
- [ [ ]



As M has constant non-zero determinant, L is a matrix polynomial, and we may write

IO = [(AZ +A5)Bu(d) (M + A%)Blz()\)}
(A2 + A3)Ba1(X) Aza(X)
where
Bll(’i)\()) = dlag(l, —1, ey ]_, —1)
Now put
A —)\0 A _)\0
)\0 A )\0 A

where the leading block is repeated g times.
We shall show that N(\) = K(—A)_TE(A)K(A)_l is a polynomial. Note that it may

have a pole only at +1)¢, and it suffices to show it has no pole at either one of these points.

Moreover, any pole of N must appear in its leading ¢ x ¢ block. This leading g x ¢ block

A )\0 A )\0
Jroo([ 5 3= =5 3))

as an easy computation shows. Now at A = ¢\¢ we have that

equals

A =X
(A +25) 7
X —A

-2 =X
Ao —A

—t X0 —Xo 1 0772 o 0 0
Moo —ido] L0 1] = ixe] |0 o]
. . 1 0 10 . .
Recalling that Bq1(i)g) = [0 _1} DD 0 _1} we see that N()) is a polynomial.

Taking determinants we see that N()) has no eigenvalue at +i)g. Applying the same
argument at each non-zero, singular point of L we reduce the proof of Theorem 5.1 to
the case when zero is the only possible singular point of L()). However, for that case a
similar argument shows that L()\) admits a representation L(\) = (K(—)))T N()) K())
with K()) a real matrix polynomial and N(A) a real matrix polynomial without singular

points (cf. the proof of Proposition 3.4 given in [GLR2]).

So we have reduced to the case where L has no singular points. In this case the result

follows from Theorem 2.1. []

Next we state the main result of this section.

THEOREM 5.3. Let L()\) = (L(—)))T be an n x n matrix polynomial with real coeffi-
cients. Then there is a real m x m matrix D = DT and a m x n matrix polynomial M())

with real coefficients such that
L(A) = (M(-X))"D M(X) (5.6)
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if and only if

> = L(A —(L(N)). 5.7
m > my = maxv. (L) + maxv(L(V) (5.7)
Moreover, when m = my, the matrix D is unique up to congruence by a real orthogonal
matrix.

Analogously to Theorem 3.1, the polynomial M () in Theorem 5.3 can be chosen with
additional spectral properties. Given a polynomial L()A) as in Theorem 5.3, a set A of
numbers with non-zero real parts will be called a d-set (with respect to L()A)) if A is a
maximal set of singular points of L(A) with non-zero real parts having the property that
AEA=Xc A, —)¢&A. (A d-set may be empty.) It turns out that under the hypotheses
of Theorem 5.3, for every given d-set A there exists a factorization (5.6) where D = DT
is mg x mg and where the set of non-real singular points of M () coincides with A. This
follows as a by-product of the proof of Theorem 5.3 (including Theorem 5.1 and Theorem
2.2 with F' =R, o = identity, e = —1).

Proof. The uniqueness of D is verified as in the proof of Theorem 3.1, as well as the
fact that m > my is necessary for the existence of real D = DT and M()) such that (5.6)
is satisfied is seen as in the proof of Theorem 3.1. It remains to prove sufficiency. We may
reduce to the regular case again as in Section 3. In case L has constant signature we are
finished, using Theorem 5.1. In case L does not have constant signature on the imaginary

axis, it will be shown that there exists a real m( x m( matrix polynomial z()\) such that

L)) = L(—\)T and

while L is regular and has constant signature on the imaginary axis. Indeed, as L(¢]) is
selfadjoint for real A we can write (using Rellich’s theorem [R], also [GLR3])

L(i) = (UN)* diag(a1 (V) ., N)U(N)

where p;(A) is analytic and real valued and U()) is analytic and unitary. Since L(z)) =

L(—i)) , X € R, the matrices L(zA) and L(—i)) have the same eigenvalues, and therefore

for every point A\¢g € R there is a permutation o on {1,...,n} such that

(=X = oV (i =1,...,m) (5.8)

in a neighborhood of Ag.

Let A\gp € R be such that +i)\( are singular points of L()). Define Q(A¢) and ¢(Ao)
as in the proof of Lemma 3.5. It follows from (5.8) that g(Ag) = —¢(—X¢); in particular,
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(0) = 0 (if Ag = 0 is a singular point of L(A)). Furthermore (analogously to (3.8) and

mo = max v (L(i3)) + maxv—(L(i)) =

= n + max |1/_|_(L(7)\1)) - V—|—(L(i)\2))|7
and

max |v4(L(iA1)) — vy L(iX2))| =

Z q(Mo)

A< Ao <Az

= Imax
A<z

(5.9)

where the summation is over all Ag € (A1, A2) such that ¢)¢ is a singular point of L.
(here the real numbers A; and A; are such that iA\; and ¢A; are regular points of L).
Denote the number (5.9) by p, as in the proof of Lemma 3.5. Now construct p polynomials
r1(A),...,rp(A) with real coeflicients having the following properties:
(i) r;(A) =r;(—A) is real for X € R,
(ii) all zeros of r; are pure imaginary, non-zero numbers and belong to the set S of pure
imaginary singular points A¢ of L for which g(X¢) # 0,
(iii) for every Ag € S exactly |g(A¢)| polynomials among ry,...,r, have Ay as a zero and

for each r; having A¢ as a zero we have

d :
q()\())a 7j(3A) <0.
)\:)\0

(Note that because of (i) and g(—A¢) = —¢q(Xo) condition (iii) is satisfied at —Xg if it is
satisfied at Ag.) Put

L(X) = L(X) @ diag(r1(A),...,7p(A)).
Then z()\) is regular and has constant signature on the imaginary axis as desired. Thus

by Theorem 5.1 L admits a factorization
L()) = (N(-\)" D N(})
with D an mg X mg real matrix and N()A) an mg X n real matrix polynomial. Taking for

M () the matrix polynomial formed by the first n columns of N now finishes the proof. []
Analogously to Theorem 3.2, the result of Theorem 5.3 can be put in terms of additive

representations of L()) via elementary matrix polynomials. Here, a real n x n matrix
polynomial M()) will be called elementary if (M) =1 and M()) is positive semidefinite
Hermitian for all A € iR.
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THEOREM 5.4. Let L()) be as in Theorem 5.3. Then L()) admits a representation

LX) = e;M;()) (5.10)

Jj=1

where ¢; = +1 and M;()) are elementary matrix polynomials, if and only if ¢ > my,

where my is defined by (5.7). Moreover, when ¢ = my, exactly max v4(L(Xg)) of the gj’s
o€:[R

in (5.10) are equal to +1, and exactly g\xlea}y_(L(A)) of them are equal to —1.

We omit the easy derivation of Theorem 5.4 from Theorem 5.3.

6. Factorization of complex symmetric polynomials. In this section we consider

n x n matrix polynomials L()) with complex coeficients having the symmetry
L(X) = (L(A)T (6.1)
where ¢ = %1 is fixed, and their factorizations of the form
L(\) = (M(eX)TDM()) (6.2)

where M () is an m xn matrix polynomial (over C), and D is a constant complex symmetric
matrix. Observe that every m x m complex symmetric matrix D can be factored as
D = VTV for some complex matrix V (see, e.g., p. 159 in [HJ]). Therefore, we may
assume that D = I in (6.2).

Here (in contrast with Sections 3-5) signatures of Hermitian matrices do not play a

role.

We start with the case ¢ = —1.

THEOREM 6.1. Let L()A) be an n xn matrix polynomial satisfying (6.1), wheree = —1.

Then the minimal size m for which L()) admits a factorization
L(A) = (M(=X))"M(}) (6.3)

with an m X n matrix polynomial M()) is equal to the general rank r of L(])).

Proof. We use the same ideas as in the proofs of results in the previous sections.
Therefore, the proof of Theorem 6.1 will be presented with less detail.

Clearly, a factorization (6.3) is impossible if m < r. Therefore we have to prove only
that such a factorization exists for m = r. We can (and will) assume that in fact n = r,
i.e., det L(A) # 0.

Apply Theorem 2.2 with F = ©, ¢ = identity, ¢ = —1. Since the only irreducible
monic complex polynomial f satisfying f = ed°8™¢/f, is f(A\) = A, by Theorem 2.2 we
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can assume (replacing L(A) by D(A)) that the elementary divisors of L(A) are A, A,..., A
(k times). Here k is necessarily even. Indeed, the property L()\) = (L(—)))T ensures that

det L(\) = (const .)A* is an even function.
If k=0,i.e. det L(A) = const. # 0, and application of Theorem 2.1 gives the desired
result. Suppose therefore that k > 0. Using the Smith form of L()) write

Al 0

L(A) = E(X) F(),

0 In—k

where E()) and F()) are n X n matrix polynomials with constant non-zero determinants.
Replacing L()) by (F(—=X))"TL(A\)F()A)~! we can assume that the first k£ columns (and,
by symmetry, also the first k rows) of L()) are divisible by A. Thus:

AL1(X) )\Lz()\)]
—ML2(=N)T Ls()
where the matrix polynomials L1, L; and L3 are k x k, k x (n — k) and (n — k) x (n — k),
respectively. Moreover, —Li(—A) = (L1(A))T and L3(—A) = (L3(A))T. We claim that
Ly(X) L2(A)]
ML2(=2)T  Ls(})
Li(X) Ly(X)
—)\Lz(—)\))T Ls()) would
be divisible by A**1 an impossibility. Now L;(0) is skew-symmetric, and therefore admits

o[ a])e

L)) =

L4(0) is invertible. Indeed, if L;(0) were not invertible, then det [

would be divisible by A, and consequently det L(\) = A* det [

a factorization

for some invertible matrix @. Let

X0 2 0] Q 0
moy =[5 e e[ Yen) [T L0 (6.4)
(the summand [_0)\ (1)] is repeated g times). Then

L(A) = (My(=2))"L(A) M ()

for some matrix polynomial Z()\) such that E(—)\) = (E(A))T and det E(,\) = const . # 0.
The only thing not immediate here is the claim that L(A) is indeed a polynomial. But the
only point in € where L()) could conceivably have a pole is Ag = 0. We have

At 0'@1 )'Q—T 0
n—=k

A7t oo
Z(X) = (Ml(—)\))_TL()\)Ml()\)_1:<! o olEEl, 0
AL;()) ALZ(A)] lQ—l 0 ](l—)\—l 0 [—A71 0] )
DD © Lot | -
~ALy(-2\)T L3 0 I,_» 0 1 | 0 1]
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Clearly, AZ(}) is analytic at Ag = 0, and the coefficient of A™! in the Laurent series of
Z()) in a neighborhood of Ag = 0 is

(i o)
1
o O Y

To finish the proof, it remains to apply Theorem 2.1 to Z(X). [J

1 0
DD
0 0

BB Pp0=0.

Finally, we consider matrix polynomials L()) having symmetry (6.1) with ¢ = 1.

THEOREM 6.2. Let L(\) = L(\)T be an n x n matrix polynomial over C, and let r be
the general rank of L(A). Then L()) admits a factorization

LX) = (M(X)"M(N) (6.5)

for some m X n matrix polynomial M()) if and only if m > r (resp. m > r+1) in case the
product of invariant polynomials of L()) is a square of some complex polynomial (resp. is

not a square of any complex polynomial).

Proof. Again, we omit many details here. We will assume that » = n. If L()) admits
factorization (6.5) with M()\) n x n, then det L()\) = (det M()))?, and so the product of

invariant polynomials of L(\) must be a square as well. This implies the “only if” part.

To prove the “if” part, first of all observe that it suffices to consider only the case
L(A) 0 ]

o fN/
where f(A) is a judiciously chosen scalar polynomial so that f(A)det L(A) is a square).

when det L()) is the square of a polynomial (if it is not, replace L(A) by

By Theorem 2.2 we may assume that all elementary divisors of L(A) are first degree
polynomials. Since det L(A) is a square, the number k& = k(a) of elementary divisors
A—a,...,A—aof L(X) (where a € T is fixed) is even. As in the proof of Theorem 6.1, we
can further assume that

L) = (A =a)li(A) (A= a)Lz(/\)]

(A = a)(L2(A))" Ls(})

for some matrix polynomials L;(A) = Li(M\)T , Ly()) and L3()\) = L3(A\)T of sizes k x
k, k x (n — k) and (n — k) x (n — k), respectively. Moreover, L;(a) is invertible and
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symmetric, and therefore

- 0 1 0 1
Li(a) = Q OB
1 0 1 0
. . . . 0 1. k .
for some invertible matrix ¢ (the direct summand 1 ol repeated here 2 times). As

in the proof of Theorem 6.1, we verify that

L(A) = (Mi(A — )" L) M (A — a)
where M;()\) is defined by (6.4), and Z()\) is a matrix polynomial such that Z()\) = (E(A))T
and Z()\) has no elementary divisors of the form A —a. Apply the above procedure to Z()\)
in place of L()), using elementary divisors A — b,...,A — b of z()\) for some b € €, and so
on, until a matrix polynomial L;()) = (L1()))T with det L;1()\) = const. # 0 is obtained.
Now apply Theorem 2.1 to get the desired factorization of L — 1(A). []

Theorems 6.1 and 6.2 can be recast in terms of elementary matrices (analogously to

Theorem 3.2). An n X n matrix polynomial M(A) (over C) is called e-elementary if
M(X) = (z(eX)) z(N)
for some 1 X n row polynomial z(A) # 0 (here ¢ = +1 is fixed).

THEOREM 6.3. Let L(A) be an n xn matrix polynomial satisfying (6.1), and let r be the
general rank of L()\). Then L()) can be written as sum of r e-elementary matrices, unless
e = 1 and the product of elementary divisors of L()) is not a square of any polynomial.
In this latter case L(\) can be written as sum of r + 1 1-elementary matrices, and cannot

be represented as sum of any r 1-elementary matrices.
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