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Abstract

Let F(z) be a vector-valued function F : C — CV, which is analytic at z = 0 and meromorphic
in a neighborhood of z = 0, and let its Maclaurin series be given. In a recent work [Si6] by
the author, vector-valued rational approximation procedures for F(z) that are based on its
Maclaurin series, were developed, and some of their convergence properties were analyzed in
detail. In particular, a Koenig type theorem concerning their poles and a de Montessus type
theorem concerning their uniform convergence in the complex plane were given. With the help of
these theorems it was shown how optimal approximations to the poles of F(z) and the principal
parts of the corresponding Laurent series expansions can be obtained. In the present work we
use these rational approximation procedures in conjunction with power iterations to develop
bona fide generalizations of the power method for an arbitrary N x N matrix that may be
diagonalizable or not. These generalizations can be used to obtain simultaneously several of the
largest distinct eigenvalues and corresponding eigenvectors and other vectors in the invariant
subspaces. We provide interesting constructions for both nondefective and defective eigenvalues
and the corresponding invariant subspaces, and present a detailed convergence theory for them.
This is made possible by the observation that vectors obtained by power iterations with a matrix
are actually coefficients of the Maclaurin series of a vector-valued rational function, whose poles
are the reciprocals of some or all of the nonzero eigenvalues of the matrix being considered,
while the principal parts of the Laurent expansions of this rational function are vectors in the
corresponding invariant subspaces. In addition, it is shown that the generalized power methods
of this work are equivalent to some Krylov subspace methods, among them the methods of
Arnoldi and Lanczos. Thus, the theory of the present work provides a set of completely new
results and constructions for these Krylov subspace methods. This theory suggests at the same
time a new mode of usage for these Krylov subspace methods that has been observed to possess

computational advantages over their common mode of usage.



1 Introduction

Let F(z) be a vector-valued function, F : C — CV, which is analytic at z = 0 and meromorphic

in a neighbourhood of z = 0, and let its Maclaurin series be given as
[» o}
F(2) = E Un 2™, (1.1)
=0

where u,, are fixed vectors in CV.

In a recent work by the author [Si6] three types of vector-valued rational approximation proce-
dures that are entirely based on the expansion in (1.1) were proposed. For each of these procedures
the rational approximations have two indices, n and k, attached to them, and thus form a two-
dimensional table akin to the Padé table or the Walsh array. Let us denote the (n, k) entry of this
table by F, x(2). Then F,x(2), if it exists, is defined to be of the form

Ef:o an'k)zk-j Fatvti(2) - P, +(2)
ST

where v is an arbitrary but otherwise fixed integer > —1, and

Fox(z)=

with ¢{™® = @, 4(0) = 1, (1.2)

m
Fn(z)= Zu;z", m=0,1,2,..; Fp(z)=0 form <0, (1.3)
i=0

and the cs-"’k) are scalars that depend on the approximation procedure being used.

If we denote the three approximation procedures by SMPE, SMMPE, and STEA, then the
c§~"'k) = ¢;, for each of the three procedures, are defined such that they satisfy a linear system of

equations of the form
k-1

doij 6= —ug, 0Si<k-1; e=1, (1.4)
i=0

where u;; are scalars defined as

(%n4is Unt;) for SMPE,
Ui; = 4 (¢i41,Untj) for SMMPE, (1.5)
(g, un4itj) for STEA.

Here (-, -) is an inner product - not necessarily the standard Euclidean inner product - whose

homogeneity property is such that (az,8y) = &8(z,y) for z,y € CN and a,8 € C. The vectors



@1, 42, ..., form a linearly independent set, and the vector g is nonzero. Obviously, Fo x(2) exists if

the linear system in (1.4) has a solution for ¢y, ¢y, ..., Ck_1.

It is easy to verify that for SMPE the equations in (1.4) involving ¢q, ¢1, ..., k1 are the normal

equations for the least squares problem

k=1
Co,cxlf}.l.{lck-x j=ocj Unti  Unk ) (1.6)
where the norm || - || is that induced by the inner product (-, -), namely, ||z|| = /{7, ).

As is clear from (1.2) and (1.3), the numerator of F,, x(2) is a vector-valued polynomial of degree

at most n + v + k, whereas its denominator is a scalar polynomial of degree at most k.

As can be seen from (1.4) and (1.5), the denominator polynomial Q,x(z) is constructed from
Uny Un41y ey Ungk for SMPE and SMMPE, and from u,,Unt1,...y Unp2k—1 for STEA. Once the
denominators have been determined, the numerators involve ug, %y, ..., U4, 4 for all three approx-

imation procedures.

The approximation procedures above are very closely related to some vector extrapolation meth-
ods. In fact, as is stated in Theorem 2.3 in Section 2 of [Si6], F,, x(z) for SMPE, SMMPE, and
STEA are obtained by applying some generalized versions of the minimal polynomial extrapola-
tion (MPE), the modified minimal polynomial extrapolation (MMPE), and the topological epsilon
algorithm (TEA), respectively, to the vector sequence F,(z),m =0,1,2,... . For early references
pertaining to these methods and their description, see the survey paper of Smith, Ford, and Sidi
[SmFSi], and for recent developments pertaining to their convergence, stability, implementation,
and other additional properties, see the papers by Sidi [Sil1, Si2, Si5)], Sidi and Bridger [SiB], Sidi,
Ford, and Smith [SiFSm], and Ford and Sidi [FSi]. The above mentioned generalizations of vector

extrapolation methods are given in [SiB, eqs.(1.16) and (1.17).].

A detailed convergence analysis for the approximations F, x(2) as n — oo was given in [Si6],
whose main results can be verbally summarized as follows: (1) Under certain conditions the de-

nominators @y k(2) converge, and their zeros, k in number, tend to the k poles of F(z) that are



closest to the origin. This is a Koenig type result and is proved in Theorems 4.1 and 4.5 of [Si6],
where the precise rates of convergence are also given for both simple and multiple poles of F(z),
and optimal approximations to multiple poles are constructed in a simple way. (2) Under the same
conditions F, x(z) converges to F(z) uniformly in any compact subset of the circle containing the
above mentioned k poles of F(z) with these poles excluded. This is a de Montessus type theorem
and is proved in Theorem 4.2 of [Si6]. (3) The principal parts of the Laurent expansions of F(z)
about its poles, simple or multiple, can be constructed from F, x(z) only. This construction, along

with its convergence theory, is provided in Theorem 4.3 of [Si6].

It turns out that the denominator polynomials Q, x(2) are very closely related to some recent
extensions of the power method for the matrix eigenvalue problem, see [SiB, Section 6] and [Si3].
Specifically, if the vectors u,, of (1.1) are obtained from u,, = Au,_y,m = 1,2,..., with ug arbitrary,
and A being a complex N x N and, in general, nondiagonalizable matrix, then the reciprocals of the
zeros of the polynomial @, x(2) are approximations to the k largest distinct and, in general, defec-
tive eigenvalues of A, counted according to their multiplicities, under certain conditions. In Section
3 of the present work we provide precise error bounds for these approximations for n — oo that are
based on the results of Theorems 4.1 and 4.5 of [Si6). While the approximations to nondefective
eigenvalues have optimal accuracy in some sense, those that correspond to defective eigenvalues do
not. In this paper we also show how approximations of optimal accuracy to defective eigenvalues can
be constructed solely from @, x(2), providing their convergence theory for n — oo at the same time.
We then extend the treatment of [SiB] and [Si3] to cover the corresponding invariant subspaces in
general, and the corresponding eigenvectors in particular. For example, we actually show how the
eigenvectors corresponding to the largest distinct eigenvalues, whether these are defective or not,
can be approximated solely in terms of the vectors u;, and provide precise rates of convergence for
them. The key to these results is the observation that the vector-valued power series 3%°_ up, 2™
actually represents a vector-valued rational function F(z) whose poles are the reciprocals of some
or all of the nonzero eigenvalues of A, depending on the spectral decomposition of ug, and that
corresponding eigenvectors (and certain combinations of eigenvectors and principal vectors) are
related to corresponding principal parts of the Laurent expansions of the function F(z). The main
results of Section 3 pertaining to eigenvalues are given in Theorem 3.1, while those pertaining to
eigenvectors and invariant subspaces are given in Theorem 3.2 and the subsequent paragraphs. A

detailed description of the properties of the power iterations u,, = Aup,_1,m = 1,2, ..., is provided



in Section 2.

In Section 4 we present a short review of general projection methods and Krylov subspace
methods for the matrix eigenvalue problem. Of particular interest to us are the methods of Arnoldi

[A] and Lanczos [L], which are described in some detail in this section.

In Section 5 we show that the extensions of the power method developed and analyzed in Section
3 are very closely related to Krylov subspace methods. In particular, we show that the reciprocals
of the poles and the corresponding residues of the rational approximations F, x(z) obtained from
the SMPE, SMMPE, and STEA procedures are the Ritz values and the Ritz vectors, respectively,
of certain Krylov subspace methods for the matrix A starting with the power iteration u,. Specifi-
cally, the methods of Arnoldi and Lanczos are related to the F, x(z) obtained from the SMPE and
STEA procedures, respectively, precisely in this sense. The main results of Section 5 are summa-

rized in Theorem 5.4 and Corollary 5.5.

Now the Ritz values and Ritz vectors obtained from Krylov subspace methods are normally
used as approximations to nondefective eigenpairs. They are not very effective for defective eigen-
pairs. Since we know that the generalized power methods based on the SMPE, SMMPE, and
STEA procedures are related to Krylov subspace methods, the constructions for approximating
defective eigenvalues and their corresponding invariant subspaces that o'riginate from generalized
power methods and that are given in Section 3 are entirely new as far as Krylov subspace methods
are concerned. Similarly, all of the convergence results of Section 3, whether they pertain to defec-
tive or nondefective eigenvalues and their corresponding invariant subspaces, are new and totally
different from the known analyses provided by Kaniel [K], Paige[Pai], and Saad[Sal,Sa2]. Some of
these analyses can also be found in Parlett [Par2] and Golub and Van Loan[GV]. The last two refer-

ences also give a very thorough treatment of the computational aspects of Krylov subspace methods.

In Section 6 we show how the Ritz values and Ritz vectors obtained in a stable way from the
common implementations of the Aroldi and Lanczos methods can be used in constructing the ap-
proximations to the defective eigenvalues and their corresponding invariant subspaces in general

and eigenvectors in particular.



In view of the connection between the Krylov subspace methods and vector-valued rational
approximations of [Si6] and the corresponding generalized power methods of the present work, we

can summarize the main contributions of this paper as follows:

(i) It is shown that Krylov subspace methods for the matrix eigenvalue problem have a basis

in analytic function theory and in rational approximations in the complex plane.

(ii) A mode of usage of Krylov subspace methods akin to the power method, in which one
first iterates on an arbitrary initial vector ;n;nirrtimes and only then applies Krylov subspace
methods, is proposed. This mode produces approximations only to the largest eigenvalues

and their corresponding invariant subspaces.

(iii) The output from Krylov subspace methods, namely, the Ritz values and Ritz vectors, are
used in constructing optimal approximations to defective eigenvalues and the corresponding
eigenvectors and invariant subspaces.” (The Ritz values and Ritz vectors by themselves are

not good approximations to defective eigenvalues and corresponding subspaces.)
(iv) A complete convergence theory for the generalized power methods is provided.

(v) Numerical experience shows that in many cases the mode of usage proposed in this work
and mentioned in (ii) above may produce the accuracy that is achieved by applying the
Arnoldi method in the commonly known way using less storage and less computational work

when the matrix being treated is large and sparse.

Before closing this section we would like to note that the eigenvalue problem for defective ma-
trices has received some attention in the literature. The problem of approximating the largest
eigenvalue of a matrix when this eigenvalue is defective has been considered by Ostrowski[O], who
proposes an extension of the Rayleigh quotient and inverse iteration and gives a thorough analysis
for this extension. Parlett and Poole [ParPo] consider the properties of a wide range of projection
methods within the framework of defective matrices. The convergence of the QR method for defec-
tive Hessenberg matrices has been analyzed in detail by Parlett [Parl]. The problem of determining
the Jordan canonical form of nondefective matrices has been treated in Golub and Wilkinson [GW].
The use of power iterations in approximating defective eigenvalues is also treated to some extent

in Wilkinson [W, Chap. 7] and Householder [H, Chap. 7).



Finally, we mention that the results of [Si6] as well as the application of vector-valued rational
approximations to the matrix eigenvalue problem were motivated by the developments in a recent

work by the author [Si4] on the classical Padé approximants.

2 Properties of Power Iterations

Let A be an N x N matrix, which, in general, is complex and nondiagonalizable. Let ug be a

given arbitrary vector in CV, and generate the vectors up, ug, ..., according to
u;41 = Auj, 72 0. (2.1)

Denote by s be index of A, i.e., the size of the largest Jordan block of A with zero eigenvalue. Then

Uy, i8 of the form
M| p m
um =) [ Y d; AT, form > s, (2.2)
j=1 1=0
where A; are some or all of the distinct nonzero eigenvalues of A, which we choose to order such
that

[A] 2 |A2] 2 [Aa| 2 -+ > |Apm] > 0, (2.3)

p; + 1 = w; are positive integers less than or equal to the dimension of the invariant subspace
of A belonging to the eigenvalue A;, and @;;,0 < I < p;, are linearly independent vectors in this
invariant subspace. It turns out that the vector @jp, is an eigenvector of A corresponding to Aj,
while the vectors &;;, {=0,1,...,p; — 1, are combinations of eigenvectors and principal vectors of

A corresponding to the eigenvalue A;. What is more, the subspaces
Y; = span {aJh' << p)}9 1=0,1, s Pjy
are invariant subspaces of A corresponding to the eigenvalue A;, and satisfy Yo DY D ... D Y},,.
Whether all distinct nonzero eigenvalues are present among A;, Az, ..., Arr, the exact values of

the w; , and the precise composition of the vectors &;;, all depend on the spectral decomposition

of the initial vector tg. For a detailed derivation of the above see [SiB, Section 2].

Before we go on, we will only mention how to determine the maximum value that w; can assume.

Suppose that the Jordan canonical form of A has several Jordan blocks whose eigenvalues are all



equal to A;. Then the largest value that w; can assume is the size of the largest of these blocks.
In general, for a randomly chosen vector tg, wj will take on its maximum value. In cases w; is
theoretically less than this maximum value, rounding errors on a computer will ultimately force w;

to take on its maximum value.

It is obvious from the above that

ko= E(p, FD)=Sw <N (2.4)
i=1
and
aji, 0<1<p;, 1<j< M, are linearly independent. (2.5)

Also the minimal polynomial of the matrix A with respect to the vector u, has degree kg = Zﬁl w;,

k
ko = min {k: (Eﬂ,-A‘) u, =0, B = 1}.
=0

If defined as a monic polynomial, this polynomial is unique and divides the minimal polynomial of

i.e.,

A, which, in turn, divides the characteristic polynomial of A. Furthermore, the minimal polynomial
of A with respect to u, is also the minimal polynomial of A with respect to u,, for all m > s. Con-

sequently, any set of vectors {tm, Um41, ..., Um4k} is linearly independent for m > s provided k < kq.

Applying now Lemma 3.1 of [Si6] in conjunction with (2.2), we conclude that the vector-valued

power series ) 7°_( 4, 2™ represents the vector-valued rational function

M pj

F@) =2 3 =i + 6, (26)

i=1 i=0

in which the vectors a;; are uniquely determined in terms of the a; from

ry i
d1=) aj ' y 0<1<p;, 1< M, (2.7)

i=l 1 -
and hence form a linearly independent set, and G(z) is a vector-valued polynomial of degree at
most s — 1. In fact, G(2) is in the invariant subspace of A corresponding to the zero eigenvalue.
Also, ajp; = @;p,, i.e., ajp; is an eigenvector of A corresponding to the eigenvalue Aj, while for
each 1,0 < i < p; — 1, aj; is some other vector in the invariant subspace Y, corresponding to the

eigenvalue A;, and involves principal vectors as well as eigenvectors.



When the matrix A is diagonalizable, p; = 0 for all 5 in (2.2) and hence in (2.6). If, in addition,
A is normal, then its eigenvectors form an orthogonal set with respect to the standard Euclidean in-
ner product, namely, (z,y) = z*y, where z* stands for the hermitian conjugate of z. Consequently,
the vectors &;o = ajo in (2.2) and (2.6) are orthogonal with respect to this inner product when A

is normal.

Now that we have shown that the power series }.70_ tm 2™ represents a rational function F(z)
that is analytic at 2 = 0 and has poles z; = )\J'-“ of respective multiplicities w; = p; + 1, j =
1,2,..,M, we can apply any one of the approximation procedures SMPE, SMMPE, or STEA to
the power series 3°7°_o 4 z™ to obtain the vector-valued rational approximations Fj, x(z) to F(z2).
We can then apply the theorems of Sections 4 and 5 of [Si6] to construct approximations to the

eigenvalues A; and the vectors aj; in (2.6) and (2.7).

It is important to note that the linear independence of the vectors a;; is an important condi-
tion for the convergence of the SMPE and SMMPE procedures, but is not needed for the STEA

procedure. In addition, we assume throughout that

(g1,010) ... (q@,81p,) .-« (g1,a0) ... (q1,a¢p,)
: : : #0 for SMMPE,  (2.8)

(Qk, alO) s (‘Jk, alm) see (Qk, atO) e (Qk, atpg)
and that .
[1(g,ajp;) # 0 for STEA. (2.9)

=1
No additional assumption is needed for SMPE.

In order for (2.8) to hold it is necessary (but not sufficient) that the two sets of vectors
{a;i:0<i<pj1<j<t}and {q,..,qk}, each be linearly independent, as has already been as-
sumed.

3 Theoretical Development of Generalized Power Methods

In light of the developments of the previous section and Theorems 4.1, 4.3, and 4.5 of [Si6] and

the developments of Section 5 in the same paper, we approach the matrix eigenvalue problem as

10



follows:

Given the vector 4o that is picked arbitrarily, we generate the vectors u;, u, ..., according to
(2.1). We then fix the integers n and k, and determine the coefficients cg"'k), J=0,1,..,k, of the
denominator polynomial of F;, x(z) for one of the procedures SMPE, SMMPE, and STEA, by using
Uny Und1y ooy Untk T SMPE and SMMPE, and up, tny1, ey Unpok—1, for STEA. By Theorem 4.1
of [Si6] the zeros of the polynomial @, x(A) = A*Qnu k(A1) = L5, cg-"’k)/\-" are approximations
to the k largest A; in (2.2), counted according to their multiplicities w;, provided the conditions
stated in this theorem are satisfied. In case the matrix A is normal, the zeros of the polynomial
Qnx(}), obtained from SMPE and STEA with the standard Euclidean inner product, are even

better approximations to the eigenvalues A; of A as follows from Theorem 4.5 of [Si6].

3.1 Treatment of Eigenvalue Approximations

Theorem 3.1 below, which is of constructive nature, summarizes all the relevant results con-
cerning the approximations to the A;. The corresponding approximations to eigenvectors and other
vectors in the invariant subspaces are subsequently obtained with the help of the developments in

Section 5 of [Si6], and the relevant results for this problem are summarized in Theorem 3.2 below.

We note that we have adopted in this section all of the notation of the previous sections.

Theorem 3.1: Let the matriz A and the vector sequence u,,m = 0,1,2, ..., be as described in the
preceding section. Let the positive integers t and k be such that

t t
|Ad > [Aegal and k=) (pi+1) =) w;. (3.1)
Ji=1

i=1

Determine the coefficients cg-"'k),j =0,1,...,k, for one of the procedures SMPE,SMMPE, and
STEA, by utilizing u,,,Un41, ..., as described in (1.4) and (1.5). Then, under the additional condi-
tions given in (2.8) and (2.9),

k t
Qnp(V) = 3 ™ = TT(A = 1)% + O(e(n)) as n — oo, (3:2)
=0 i=1
where
ol A T
en)y=n" == | , (3.3)
At

11



o being some nonnegative integer. In fact, if the \; whose moduli are |\,| are simple, then o = B,
where p = max{p; : |A;| = |\41]|}. Consequently, the polynomial Qni(}), for n — oo, has w; zeros
Aji(n), 1 <1< wj, that tend to A;, 7 =1,2,...,t. For each j and | we have

Ajiiln) = A;=0 (Jj(n)l/“’i) as n — 0o, (3.4)
where
8;(n) = n? ’\—;:‘— (3.5)
J
Let us denote N ' 4
Xj(n) = wi E Aji(n) or Xj(n) = [;1— E )\j‘(n)'l] . (3.6)
J =1 J 1=
Then
A;(n) = A; = 0(6j(n)) as n — . (3.7)

Also, the p;th derivative of Q, x()) has ezactly one zero A;(n) that tends to Aj and satisfies
Ai(n) = A = O(8;(n)) as n — oo. (3.8)

Let the matriz A be normal, i.e., AA* = A*A. Then p; = 0 hence w;j =1 for all 5. If the
cgn‘k) are determined through the procedures SMPE and STEA with the standard Euclidean inner
product, and k 18 such that

[ Akl > A4l (3.9)

and provided g = u, for STEA, then (6.8) and (6.10) are substantially improved to read, respec-

tively,
k )Y n
QM =TI0-2+0( | 217 agns o, (3.10)
j=1 : k
and, for j =1, ..., k,
2n
,\,-(n)-A,-=o(‘ﬁ§+.__ ) as n — oo, (3.11)
2

where A;j(n) is the unique zero of Q, x(X) that tends to );.

We would like to note again that the result in (3.2) and (3.3) was originally given in [SiB,
Section 6, Theorem 6.1}, and those in (3.10) and (3.11) were originally given for SMPE in [Si3].
The rest of Theorem 6.1 is new. As mentioned in these papers, the methods contained in Theorem

3.1 are true extensions of the classical power method.

12



One important aspect of Theorem 3.1 is the construction of optimal approximations to defective
eigenvalues through (3.6) and (3.7). From (3.4) it is clear that when p; = 0 hence w; = 1, which
occurs automatically if A; is a nondefective eigenvalue, the rate of convergence of the approxima-
tion corresponding to A; is optimal. In case A; is a defective eigenvalue and p; > 0, the rate of
convergence of each of its w; corresponding approximations is 1/w; of the optimal rate. For this
case (3.6) and (3.7) show how the poor approximations Aj(n) can be combined in a simple way
to give an optimal approximation, namely };(n). Similarly, (3.8) shows that X;(n), the zero of
the p;th derivative of Q, () that tends to );, has the same optimal convergence rate as Ai(n).
The results in (3.10) and (3.11) show that the approximations obtained from SMPE and STEA for
a normal matrix converge twice as fast as those obtained for a nonnormal diagonalizable matrix

having the same spectrum.

3.2 Treatment of Invariant Subspace Approximations

For the treatment of the eigenvectors and invariant subspaces we need some preliminary work.

Let us rewrite (2.6) in the form
R =3 i 4 Gla) (3.12)
i=1 1-0
where

zj=A7! and dji = (-2)*aj; forall j,i. (3.13)

Thus the dj; are the coefficients of the principal part of the Laurent expansion of F(z) about the
pole z;, j=1,..., M.

Consider the rational function

F(z)= g , (3.14)
which is analytic at z = 0 and has the Maclaurin series expansion
A w v
F(Z) = Z Un+v+i+l FAR (315)
1=0
By (3.12) we can write
F(2)= Z _— )-+1 + Gj(2), (3.16)
t—O

13



where

Bl -n-v-1 .
dji =27~y ] s 7y, (3.17)
{=¢ —1

and G'j(z) is analytic at z;, i.e., as above, the JJ-,- are coefficients of the principal part of the Laurent
expansion of F'(z) about the pole zj,j = 1,..., M. Unlike before, both £(z) and the Jj,- depend on
n, in addition. The vector J_,-, ;» being a scalar multiple of the constant vector djp,, i8 an eigenvector
of A corresponding to the eigenvalue A;. For i # p;, the vector Jj;, being a linear combination
of the constant vectors dj;,i < I < p;, is in the invariant subspace Y;, and, as is obvious from

3.17), the coefficients of the d;; in this linear combination are polynomials in n, up to the common
J y Up

zfn—u—l.

multiplicative factor z;

Following now the developments in Section 5 of [Si6], we obtain the following constructive result

for the dj;.
Theorem 3.2: With the notation and conditions of Theorem 3.1, let us define, for 1 < j <,
{i(n) = 1/X;(n) or {j(n) = 1/X;(n), (3.18)

and, for 0 <i<p; and 1 << w;,

. Tk k) pker Y o Ungypm ™1
djia(n) = (z - Gi(n)) lzrk_o TR km_ :)::_ o le=1/3,(n) (3.19)
and
wj
dji(n) = ) djia(n). (3.20)
=1
Then, for 0 < i< pj, Jj;(n) 8 an approzimation to J,-,- in (3.17) in the sense
N 1/n
li'r‘n_’solip fiji(n) —dj; < l Atg1 ’ (3.21)

We would like to note that Theorem 3.2 actually contains the basic ingredients of a potentially
bona fide numerical method for approximating the eigenvectors and other vectors in invariant
subspaces corresponding to largest eigenvalues of A. The resulting method, which is described
below, (i) makes use of only uy,,up41,..., disregarding ug,us,...,%,_; entirely, and (ii) enables us
to construct optimal approximations to the vectors a;;,0 < i < pj, for p; = 0 as well as p; > 0. We

now turn to these constructions.

14



3.2.1 Approximation of the Eigenvector a;,;
Let us first specialize the result of Theorem 3.2 to the case { = p;. We have
dip, = MPH"0dsp,, (3.22)

so that (3.21) can also be written as

1
/n<

At

lim sup IAJT““”‘IJJ',,J.(n) = djp, A

n—oo

. (3.23)

This clearly shows that the vector ijj(n), as n — oo, aligns itself with the constant vector d;p,,
which is proportional to the eigenvector aj,,, practically at the rate of |Ai41/A;[® It is thus
sufficient to compute the vectors d;; /(n), 1 < ! < w;, by (3.19), and then to form d;i(n) by (3.20)7
as our approximation to the (appropriately normalized) eigenvector a;,, and this is valid whether

pi=0o0rp; >0.

3.2.2 Approximation of the Vectors aj;, 0 <i<p; -1

Although the vector a;,; (up to a multiplicative constant) can be determined from d;, ;(n)in a
rather painless manner, the determination of the remaining a;; from the J,-l(n) becomes somewhat

involved. The reason for this is that the vectors JJ-;, apart from the scalar multiplicative factor

~n—-v-1
Zj

as functions of n, as can be seen from (3.17) and (3.13), and as has been mentioned before. This

, are linear combinations of the d;; hence of the aji, i <! < p;, with coefficients that vary
means that the d},- do not have a fixed direction with varying n=.

Let us now rewrite (3.17) in the form

( d; Jjo
d; d
Ty | 7 | =gt | (3.24)
[ dip; ] [ dip, |
where T'(n) is the upper triangular matrix
I Too Tor °*° TOp,‘ T
L ot Tip; -n-v-1 :
T(n) = . BT g*ialliandl  (3.25)
: [-i
[ Tpipi
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Obviously, T'(n) is invertible since its diagonal elements are unity. Thus,

d; djo
d; d;
-.’ = T(n)"1 :11 z;_;+u+l’ (3.26)
[ dip; | L le’j J

- where T'(n)~! is also upper triangular, its diagonal elements being unity.

Now since all elements of T(n) are polynomials in n, and since its determinant is unity, the
elements of T(n)~! turn out to be polynomials in =, i.e., the matrix T (n)~! can grow at most

polynomially as n = oo. If we denote the nonzero elements of T(n)~! by p;;,i <1< 2,0 <1< pj,

" then we'can write (3.26) in the form

Pj
dji = 2P "pydy, 0<i<p; (3.27)

Let us replace d;; in (3.27) by [(le - Jj,(n)) + Jﬂ(n)] , and invoke (3.21). After some manip-

‘ulation we obtain
1/n
<

lim sup . (3.28)

n—o0

pj . A
dji = 274 Y 7 py dyy(n) ==

=i

. j
This implies that the vector 372, pyi dji(n) aligns itself with the fixed vector dj; a5 n — oo prac-
tically at the rate of |As41/A;|". We leave the details of the proof of (3.28) to the reader.

We note that (3.28) shows how to construct a good approximation to dj; from the dj;;(n) and
Aj, provided A; is known. Since A; is not known, however, the vector Y°12. piid;;(n) cannot be con-
structed. We, therefore, propose to replace A; in the matrix T(n)~! by the known approximations
(j(n). Also, in this case, it can be shown that (3.28) remains valid. Again, we leave the details of

the proof to the reader.

Before closing this section, we must mention that the developments of this section are meant to
be theoretical, in general. Although they can be used for computational purposes for small values of
k, their use for large k is likely to introduce numerical instabilities in many cases. These instabilities
are mainly a result of our direct use of the power iterations un4; = A'u,, i = 0,1, .... They exhibit
themselves first of all through the poor computed approximations to the A;, which ultimately affect

the computed eigenvector approximations. This problem can be remedied by observing that the
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approximations Fy x(z) that we developed and applied to the matrix eigenvalue problem are very
tightly connected with Krylov subspace methods for some of which there exist computationally
stable implementations. In particular, the SMPE and STEA procedures are related to the method

of Arnoldi and the method of Lanczos, respectively, as we show in detail in the next two sections.

4 General Projection Methods and the Methods of Arnoldi and

Lanczos for the Matrix Eigenproblem

4.1 General Projection Methods

Let {v1,...,v¢} and {wy,...,ws} be two linearly independent sets of vectors in CN, and define

the N x k matrices V and W by
V = [vi]vg| -+ |vi] and W = [wy]wo]- - - |wi]. (4.1)

In addition, let us agree to denote the subspaces span {vy,...,v;} and span {w, ..., wi} by V and

W, respectively.

In projection methods one looks for an approximate eigenvalue-eigenvector pair (A, z) with

z € V that satisfies the condition
(y,Az = Az) =0 forall y € W, (4.2)
which can also be written in the equivalent form
W*(A - AI)VE =0 for some £ € C*. (4.3)

Here we have used the fact that z € V implies that z = V¢ for some ¢ € C*. Of course, (4.3) holds
if and only if A is an eigenvalue of the matrix pencil (W* AV, W*V), i.e., it satisfies the characteristic
equation 7

det(W*AV - AW*V) = 0. (4.4)
In general, (4.4) has k solutions for A, which are known as Ritz values in the literature. Given that

A’ is a Ritz value, the corresponding eigenvector ¢’ is a solution of the homogeneous system in (4.3).

The eigenvector approximation corresponding to A’ is now z’ = V¢’, and is known as a Ritz vector,

The different projection methods are characterized by the subspaces V and W that they employ.
(Note that V' and W are also called, respectively, the right and left subspaces.)
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4.2 The Method of Arnoldi

In this method V and W are Krylov subspaces given by
V = Vik_1 = span {uo, Auo, ...,A"‘luo} and W =Wy_, =Vi_4, (4.5)
for some arbitrary vector ug.

Arnoldi has given a very successful implementation of this method. In this implementation the

vectors A'ug,i = 0,1,..., are orthogonalized by a very special Gram-Schmidt process as follows:

Step 0. Let vy = ug/||uol|
Stepl. Forj=1,....k-1, do
Determine the scalar hj;q,; > 0 and the vector v;44, such that |Jvj41]| = 1 and

hip1,v541 = Avj — Ty hijoi, hij = (vi, Avy), 1 < i <.
(4.6)

Thus the N X k matrix V = [vy|vy] - -|vk] is unitary in the sense that V*V is the k x k identity

matrix. As aresult, W*V = V*V = I, and the generalized eigenvalue problem of (4.3) now becomes
HE = )¢, (4.7)

where H is the k X k upper Hessenberg matrix

o -

hin hiz - hik
7 hayy hay - hak
H= ha - hak | (4.8)
i hek-1 hir |

i.e., the Ritz values are the eigenvalues of H.

4.3 The Method of Lanczos

In this method V and W are the Krylov subspaces

V = Vi_y = span {uo, Aug, ..., A¥*"ug} and W = Wi_; = span {¢,4"q,...,(A")* ¢}, (4.9)
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for some arbitrary vectors ug and q.

The algorithm given by Lanczos generates one set of vectors {vy,...,v;} from the A'ug, i =
0,1,...,k~1, and another set of vectors {w,, ..., ws} from the (A*)iq, i = 0,1,...,k — 1, that satisfy
the biorthogonality condition -

wiv; = &;j, (4.10)

Step 0. Set v; = oug and wy = rq such that (wy,v;) = 1.
Stepl. Forj=1,..,k—-1,do

(a) Compute 9,41 and ;43 by

bjy1 = Avj — a;v; - Bv;

Wi = A*wj — G;w;j — §;wj

(when j = 1 take B1vp = §1wo = 0)

with a; = (w;, Avj)

(b) Choose ;41 and B;41 such that

5418541 = (Wj41,Dj41)

and set

is1 = Dj41/6541 and wipa = W41 /By
(4.11)

By (4.10) the matrices V and W satisfy W*V = I. As a result, the generalized eigenvalue problem
of (4.3) becomes

HE = A, (4.12)
where H is the k X k tridiagonal matrix

ay P

b2 o2 [

)
0= 3 a4 By ’ (4.13)
Br
L 6" Qk J

and the Ritz values are the eigenvalues of H.

19



4.4 The Case of Hermitian A

The subspaces V' in (4.5) and (4.9) are identical. When A is hermitian, i.e., A* = A, and
g = g, the subspaces W in (4.5) and (4.9) become identical too. Thus the methods of Arnold;
and Lanczos become equivalent for the case under consideration. Furthermore, it can be shown
that the elements h;; of the matrix H in the method of Arnoldi satisfy m = hi41,; so that
hiig1 = higz15 > 0fori=1,2,...,k ~ 1, while hij = 0 for j > i + 2. The diagonal elements h;; are
all real. That is to say, in the absence of roundoff, the matrix H is real symmetric tridiagonal. If
we pick ¢ = up and choose §; = §; = m in the method of Lanczos, then the matrix H in
(4.13) turns out to be real symmetric and is exactly the same as the one produced by the method

of Arnoldi.

The properties of the Ritz values and Ritz vectors of the Lanczos method, as applied to hermitian
matrices, have been analyzed by Kaniel [K], Paige[Pai], and Saad [Sal]. The paper [Sa2] gives results

for nonhermitian matrices.

5 Equivalence of Rational Approximation Procedures and Krylov

Subspace Methods

We now go back to the rational approximation procedures SMPE, SMMPE, and STEA. In

particular, we concentrate on the poles and residues of the rational functions F, 4(z2).

5.1 Poles of F, x(z) vs. Ritz Values

From the determinant representations of Fy, x(2) that are given in Theorem 2.2 of [Si6), it follows

that the denominator Qn x(2) of Fy, x(z) is a constant multiple of the determinant

1 A S 1
oo Uo1 e Upk

D(’\)'—' u10 U581 Tt ULk ’ (5-1)

Uk-1,0 Uk~1,1 - Uk-1,k

where A = 2~1 and u;; are as defined in (1.5). This implies that the zeros of the polynomial D())

are the reciprocals of the zeros of @, k(2), or, equivalently, the reciprocals of the poles of F, x(z).
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In addition, they are the roots of a generalized eigenvalue problem as we show next.

Theorem 5.1: Whatever the u;;, the zeros of the polynomial D(X) in (5.1) are the eigenvalues of
the matriz pencil (X,T), where

ol - o -
o1 Uo2 crr Ugk Uoo Uo1 e Uok—1
U1 Uiz Ter Upk U0 11 e Up k-1
X=| and T = ' , (5.2)
| Yk-1,1 Uk-1,2 * Uk—1k | [ Yk-1,0 Uk-11 " Uk k-1 |

i.e., they satisfy the equation
det(X — AT) = 0. : (5.3)

Proof: Multiply the (j — 1)st column of D(A) by A and subtract from the jth column for j =
k+1,k,...,2, in this order. This results in

1 0---0
Uoo

D)= wo |X-AT |=det(X - AT), (5.4)
Uk-1,0

thus proving the claim. O

When u;; are as in (1.5), Theorem 5.1 takes on the following interesting form.

Theorem 5.2: Define the N x k matrices V and W by

V = [unltnta] -+ |ungk-] (5.5)
and
W=V for SMPE,
W = [q1lg2] - - - |gk] for SMMPE, (5.6)

W = [g|A*q|---|(A*)k-1q] for STEA.
Then, with u;; as defined by (1.5), the zeros of D()) are the eigenvalues of the matriz pencil
(W*AV,W*V), i.e., they satisfy

det(W* AV — AW*V) = 0. (5.7)
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Consequently, the reciprocals of the poles of the rational approzimations F, x(2) obtained from the
SMPE or SMMPE or STEA procedures are the Ritz values of the Krylov subspace methods whose
right and left subspaces are column spaces of V and W, respectively.

Proof: Since Theorem 5.1 applies, all we need to show is that X = W*AV and T = W*V
there. That T = W*V follows from (1.5), (5.2), (5.5), and (5.6). From (1.5), (5.2), and (5.6), we
similarly have X' = W*[un41] - |unsx]. Using now the fact that uj4q = Auj, § > 0, we also have
[tns1] -+ |unyk] = AV. Consequently, X = W*AV. Again, from uj+1 = Auj,j > 0, we realize,
in addition, that the right subspace for all three methods is none other than the Krylov subspace

span {tn, Aty, ..., A¥~1u,}. This completes the proof. O

5.2 Residues of F,i(z) vs. Ritz Vectors

Turning Theorem 5.2 around, what we have is that the Ritz values obtained by applying
the Krylov subspace methods whose left and right subspaces are column spaces of V and W,
respectively, are, in fact, the reciprocals of the poles of the corresponding rational approximations
Fox(2) to the meromorphic function F(z) = %2, u;z°. An immediate question that arises is, of
course, whether there is any connection between the Ritz vectors and the F,x(z). The answer,

which is in the affirmative, is provided in Theorem 5.3 below.

Theorem 5.3: Let ) be a Ritz value of the Krylov subspace methods whose right and left subspaces
are column spaces of, respectively, V and W in Theorem 5.2. Denote the corresponding Ritz vector
by £. Letv = -1 in the corresponding rational approrimation F,i(z), ¢f. (1.2). Provided ) is
simple, £ is a constant multiple of the residue of F,, x(z) at the pole 5 = 1/.

Proof: Let us first determine the residue of F, x(z) at the pole 2 = 1/A. With v = —1

Pui(2) _ Thoger2"Fuyro1(2)
Res F, k(2)]i=s = —r——x = &= - 5.8
et = 0 ® T &9
since @, .(2) # 0 that follows from the assumption that A is simple, which implies that % is a
simple pole. By Fry,(2) = Fac1(2) + 1ot upmz™ and YF_, ¢,25-7 = 0, we can rewrite (5.8) in

the form, cf. Section 5 of [Si6],

1 k ntr—-1 gntk—-1 k-1
Res Fn,k(z)lzzﬁ = ,_ Z‘:rik-—r Z umém = I a Z nmun+m, (5'9)
k(é) r=1 m=n n,k(z) m=0
where N
Tm= 3, &A™l m=0,1,.,k-1 (5.10)
r=m+1
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Let us now denote = (no,M,...,Mk-1)T. Then (5.9) implies that Res F,i(2)|:=s is a scalar
multiple of V7. Recall that the Ritz vector corresponding to A is V£, where £ € C* and satisfies
W*(A — A)VE = 0, which, on account of Theorem 5.2, is the same as (X — AT)é = 0. Thus in
order to show that ResF, x(2)|;=s i8 a constant multiple of the Ritz vector corresponding to the

Ritz value }, it is sufficient to show that
(X -3y =0. (5.11)

From (5.2), the (i + 1)st component of the k-dimensional vector 7 = (X — AT)p, i = 0,1,...,k - 1,

is

Ti= ) (tim41 = Miim)m, (5.12)
m=0
which, by (5.10), becomes
k-
Z(u‘ m41l — '&utm) E /\' -m-1 (513)
m=0 r=m+1

Expanding and rearranging this summation, we obtain

k k
T; = —Ujg (E c,-:\") + Z Uiy Con (5.14)
r=1 m=1
Recalling that °F_ ¢, A = 0, we can rewrite (5.14) as
k
=Y UimCm. (5.15)
m=0
Finally, from the assumption that ¢, = 1 and from the fact that ¢, cy,...,ck_1 satisfy the linear

equations in (1.4), we conclude that
=0, i=0,1,..,k-1. (5.16)

This completes the proof. O

5.3 Summary of F, x(z) vs. Krylov Subspace Methods

We now combine the results of Theorems 5.2 and 5.3 to state the following equivalence theorem,

which forms the main result of this section, and one of the main results of this work.

Theorem 5.4: Let F, x(z) be the rational approzimation obtained by applying the SMPE or

SMMPE or STEA procedure to the vector-valued power series Y ov_o um2™, where u, = A™ug, m =
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0,1,..., are power iterations. Denote the reciprocals of the poles of Fox(z) by AL, ..., M. Setting
v = =1 in the numerator of F, x(z), denote the corresponding residues of Fox(2) by zi,...,z%.
Nezt, denote by A ,'...,,\ﬁ and z7, ..., z}, respectively, the Ritz values and corresponding Ritz vectors
produced by the Krylov subspace methods whose right subspace is span {tin, Atn, ..., A¥"1u,_;} and

left subspaces are the column spaces of the matrices W in (5.6). Then

M= M, =1,k (5.17)
and
z; o« z, provided X} is simple. (5.18)

More can be said about the SMPE and STEA procedures versus the methods of Arnoldi and

Lanczos, and this is done in Corollary 5.5 below.

Corollary 5.5: With Foi(2), A,z §=1,..,k, as in Theorem 5.4, let ALzl =1,..,k, be the
Ritz values and Ritz vectors produced by applying the k-step Arnoldi or Lanczos methods to the
matriz A, starting with the vector u, = A™uo. (That is to say, replace the initial vector Uug in
Step 0 of (4.6) or (4.11) by the nth power iteration u,.) In addition, let q be the same vector for
the STEA procedure and the Lanczos method. Then the SMPE and STEA procedures are equiva-

lent to the methods of Arnoldi and Lanczos, respectively, precisely in the sense of (5.17) and (5.18).

Now that we have shown the equivalence of the methods of Arnoldi and Lanczos with the
generalized power methods based on the SMPE and STEA approximation procedures, we realize
that those results that we proved in Section 3 for the latter and that pertain to the nondefective
as well as defective eigenvalues of A are, in fact, new results for the former. That is to say, if we
apply the methods of Arnoldi or Lanczos to the matrix A starting with the nth power iteration
un = A" for large n, then the Ritz values are approximations to the k largest distinct eigenvalues
of A counted according to the multiplicities that appear in (2.2). Similarly, the Ritz vectors can be
used for constructing the approximations to the corresponding invariant subspaces. These points

will be considered in greater detail in the next section.

5.4 Optimality Properties of the Arnoldi Method

In Section 1 we mentioned that the coefficients of c‘("'k) of the denominator polynomial @, x(2)

of Fy, x(z) for the SMPE procedure are the solution to the optimization problem given in (1.6). If
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we now pick the vectors u,, as the power iterations 4, = A™ug, m = 0, 1,..., then (1.6) reads

k-1
Y ;A + Ax | u,

min
€01C1 4000 yCh—1

. (5.19)

3=0

Exploiting the fact that the method of Arnoldi is equivalent to the generalized power method based

on the SMPE approximation procedure, we can state the following optimality properties for the

Arnoldi method as applied to a general matrix A.

Theorem 8.5: Let A}, 2}, j = 1,2,...,k, be the Ritz values and appropriately normalized Ritz
vectors, respectively, produced by applying the k-step Arnoldi method to the matriz A starting with
the power iteration u, = A™ug. Let Py denote the set of monic polynomials of degree ezactly k,

while i denotes the set of polynomials of degree at most k. Then for k < ko, cf. (2.4),

k
[H(A - /\:-I)] Un|| = min [|f(A)un]| = €np, (5.20)
i=1 €Ps
k
gi=| II (A= XI)| us, (5.21)
i=1
i#]
k-1 _ k-1
(A= NI = (E MM Al 4 A") n = 3 ¢ Nuppi + tny, (5.22)
=0 i=0
(A= MD5 = min  ||(A - M)g(A)uall,
AeC g€Px,
= min [|(4 - D)z},
min JI( )zl |
= i A - ,'I A nlly
Gain [|(A4 — X3T)g(A)un|
= €n independently of j, (5.23)
and
((A =Xz}, g(A)us) =0, all g € mp_;. (5.24)

For k = ko, we have Az, = Xz,

Proof: We start by noting that (5.24) is nothing but a restatement of the requirement that
Az} — Az’ be orthogonal to the left subspace of the Arnoldi method, which is also its right sub-
space V = {g(A)u, : g € mp_1}.
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Since the Ritz values Asy § = 1,..,k, are the zeros of the monic polynomial Qni(N) =

):f-_:ol C.('n'k)/\" + A¥, we can write

k
Qni(A) = H(,\ - Ah). (5.25)
. s=1
Thus - .
Qni(4) = Y ™M ai 4 4 = T[(4 - ). (5.26)
=0 =1

Combining (5.26) with (5.19), we obtain (5.20).
Provided z} is as given by (5.21), the proofs of (5.22) and (5.23) are immediate.

To prove the validity of (5.21) it is sufficient to show that z; € V and that (A — A1)z is
orthogonal to all the vectors in V. That 2 € V is obvious from (5.21) itself. The fact that
cg"'k), t=0,1,..,k — 1, are the solution of the optimization problem in (5.19) implies that the
vector Q",k(A)u,, is orthogonal to every vector in V. But Q,,,k(A)u,, = (A~ A I)z}, as can be seen

from (5.26). This completes the proof. O

Note that the proofs of (5.20) and (5.21) for hermitian matrices can also be found in [Par2,
Chap. 12, pp. 239-240].

A few historical notes on the methods of Arnoldi and Lanczos are now in order.

Following the work of Arnoldi the equivalent form in (5.19) was suggested in a paper by Erdelyi
(E], in the book by Wilkinson [W, pp. 583-584], and in the papers by Manteuffel [M] and Sidi and
Bridger [SiBr]. The equivalence of the different approaches does not seem to have been noticed,
however. For instance, [W] discusses both approaches without any attempt to explore the connec-
tion between them. With the exception of [SiBr], these works all consider the case n = 0. The case

n > 0 and the limit as n — oo are considered in [SiBr] and [Si3].

In his discussion of the power iterations in [H, Chap. 7], Householder gives determinantal
representations of certain polynomials whose zeros are approximations to the largest eigenvalues
of the matrix being considered. One of these representations, namely the one given in Eq. (16)

in [H, p. 186], coincides with the determinant D(A) in (5.1) of the present work pertaining to the
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STEA approximation procedure with n > 0. It is shown there that the zeros of D(A) tend to the
k largest eigenvalues of the matrix A as n — oo, but a theorem as detailed as our Theorem 3.1 is
not given. It is also mentioned in the same place that, apart from a constant multiplicative factor,
the polynomials D(A) with n = 0 are precisely the so-called Lanczos polynomials given in Eq. (10)
of [H, p. 23] that are simply det(A] — H) with H as given in (4.13). As we pointed out in this
section, up to a constant multiplicative factor, D(A) with n > 0 is itself the Lanczos polynomial
det(Al — H) when the Lanczos method is being applied with up replaced by u, = A™ug. It is not
clear to the author whether this connection between D(A) with n > 0 and the Lanczos method has

been observed before or not.

6 Stable Numerical Implementations

In this section we concentrate on the implementation of the generalized power methods based on
the SMPE and the STEA approximation procedures as these are related to the methods of Arnoldi
and Lanczos respectively, and as good implementations for the latter are known. For example, the

implementations in (4.6) and (4.11) are usually quite stable.

8.1 General Computational Considerations

The theoretical results of Section 3 all involve the limiting procedure n — oo. When ||
is larger (smaller) than 1, we may have difficulties in implementing the procedures above due to
possible overflow (underflow) in the computation of the vectors u,, for large m. This situation can

be remedied easily as will be shown below.

We first observe that the denominator polynomial @, x(z) of the vector-valued rational approx-
imation F, x(2) remains unchanged when the vectors uy,, in41, Un42, ..., are all multiplied by the
same scalar, say a, and so do its zeros. Consequently, the vectors J_,-.-(n) defined in Theorem 3.2
remain the same up to the multiplicative factor a. That is to say, as far as the matrix eigenvalue
problem is concerned, multiplication of the vectors t,, #n41, ..., by the scalar a leaves the eigenvalue

approximations unchanged and multiplies the eigenvector approximations by a.

For the purpose of numerical implementation we propose to pick @ = 1/}|u,||, and we achieve

this by the following simple algorithm that is also used in the classical power method:
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Step 0. Pick ug arbitrarily such that |Juo|| = 1.
Step 1. Form = 1,2,...,n do

Wy, = Alpy_y

Um = W f||wm|].

(6.1)

Once the vector u, has been determined in this way, we apply the k-step Arnoldi or Lanczos
methods to the matrix A with this u, as the starting vector, and obtain the k Ritz values and the

corresponding Ritz vectors.

6.2 Treatment of Nondefective Eigenvalues

If A;, one of the largest ¢ distinct nonzero eigenvalues of A that contribute to the power iterations
um exactly as in (2.2), is nondefective, i.e., it has w; = 1, then, under the conditions of Theorem
3.1, there is precisely one Ritz value A;(n) that tends to A; with Aj(n) — A; = O(nP|Aeg1/Aj|™) as
n — oo if A is nonnormal and A;(n) — A; = O(|Ae41/Aj[*") a8 » — o0 if A is normal. If z; is
the eigenvector corresponding to A;, then the Ritz vector z;(n) corresponding to A;(n) tends to z;
with limsup,,_,, [|zj(n) - a:,-“* < |At41/A;] in all cases, by Theorem 3.2. Thus the Ritz value and

the corresponding Ritz vector are the required approximations to the eigenpair (};, z;).

6.3 Treatment of Defective Eigenvalues

When the eigenvalue A; is defective and has w; > 1 in (2.2), then, under the conditions of
Theorem 3.1, there are precisely w; Ritz values Aji(n),1 < ! < w;, that tend to Aj, each with the
rate of convergence O([nf|Ar41/),]]*/“5) as n — 0o, That is to say, the Ritz values for a defective
eigenvalue are not as effective as the ones for nondefective eigenvalues. However, A;(n) and };(n)
that are defined in Theorem 3.1 do enjoy the property that they tend to A; with the optimal rate

of convergence O(nf|A;41/A;j[") as n — o0, as in the case of a nondefective eigenvalue.

As for the invariant subspaces Y;, i = 0,1,...,p;, p; = w; — 1, the most basic result to use is
Theorem 3.2. Acording to this theorem and the subsequent developments, the building blocks for
the invariant subspaces are the vectors d;;;(n) that are defined by (3.19). Now the vector djii(n)

is a constant multiple of Res Fj, k(2)|.=s;(n), Where z;i(n) = 1/A;(n), which, when v = -1, is a
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constant multiple of the Ritz vector corresponding to Aj(n) by Theorem 5.4. That is, once the
Ritz vectors have been computed, they can be used to construct the vectors (fj,-',(n), which, in turn,

are used in constructing the approximate invariant subspaces Y; with optimal accuracy.

Let us now show how the vector Jj;';(n) is expressed in terms of the corresponding Ritz vector.
For simplicity of notation we shall write # = z;;(n) = 1/A;;(n). The Ritz vector corresponding to
Aji(n) is & = T8, &v;, where v; = u, and (u,,u,) = 1 by (6.1). We recall that for the method
of Arnoldi the vectors vy, v;, ..., v are actually the ones that would be obtained by orthogonalizing
the power iterations un, Auy, ..., A¥~1u, by the Gram-Schmidt process. For the method of Lanczos
the vectors vy, v,, ..., U are obtained by biorthogonalizing u,, Au,,..., A¥~1u, against the vectors

g, A*q, ...,(A*)*~1q. In both cases we have
AV =VH 4R, (6.2)

where H is the upper Hessenberg matrix of (4.8) for the Arnoldi method or the tridiagonal matrix
of (4.13) for the Lanczos method, and thus it is upper Hessenberg in both cases. The matrix R has
all of its first k — 1 columns equal to zero, and its kth column is Rkt1,kVk41.

From the way the vectors vy, v3, ..., U are constructed it is easy to see that
V = [unldun| | 4% 0] B, (6.3)

where B is the upper triangular matrix

B Bz - Puk
B B2z ‘ﬂzk ’ (6.4)
| Brk |

whose entries 3;; are required. Substituting (6.3) in (6.2), we have
[Aun|A%u,| - - -|A*u,)B = [un|Auy| - - -|A*~'u,)BH + R. (6.5)

By equating the jth columns of both sides of (6.5) for j < k, we obtain

S (Aun)Bis = 3 (Aun)(BH)isr (6.:6)
=1

1=0
as the matrices B and BH are upper triangular and upper Hessenberg, respectively. From the

linear independence of the vectors A'uy,,i=0,1,...,k — 1, (6.6) reduces to
Bij = (BH)it15, 0<i<4; Bo;j=0allj>1. (6.7)
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Now B11 = 1 since v, = u,. These equations can be solved in the order i = 0,1,...,7, j=
1,2,..,k — 1, which amounts to computing the 1st, 2nd,...,kth columns of the matrix B, in this
order. This can be accomplished as hj1; > 0 for all j. Thus by letting ¢ = 0 in (6.7), we obtain
Zii} Prrhrj = 0, which we solve for By,;41. Next, letting i = 1, we obtain 8; = Zii} Barhrj,

which we solve for 3; j+1. By letting i = 2,3, ..., j, we obtain Bit1,5+1, 1=2,3,...,7, in this order.

Suppose that the Ritz vector £ has been computed in the form # = S~ | £&v; and that the ¢
have been saved. Then, recalling also that un4; = A'u,, i =0,1,...,k -1,

k-1
i= zaiun-{*l‘? (6'8)
1=
and the coefficient of u, is given by
k
o0 = Y Prjé;. (6.9)
i=1

Similarly, from (3.19), the coefficient of u, in dj; (n) (setting v = —1 there) is given by

o '_ k_ o{mh) sker (k) 5
Op = (Z - CJ(")) Ef=0 S-n'k)(k _ r)ﬁk—r—l = ( CJ("‘)) ( ) (610)

Now if we denote the Ritz values by Aj, ..., A{ and set z{ = 1/)!, i = 1,...,k, then we can show that

4

ag = —(& - ¢(n))’ , (6.11)
k
T (1= 2/
zi—;éi
so that
6* - (‘é _ CJ(ﬂ))l Z £ 6.12
Jt I(n) :L' E_’f:l ﬁljfjx’ ( )
[ (1-s/2)
i

which is the desired result.

With this we can now go on to compute the approximations to the eigenvector ajp; and the
vectors aj;, 0 < ¢ < pj, precisely as described in Sections 3.2.1 and 3.2.2, respectively. For example,
the vector Jj,j(n) = 512, djp,1(n) is the approximation to the eigenvector ajp; the error in which

is, roughly speaking, O(|A¢41/A;|™) as = — oo.

30



References

(A]
[E]
[FSi]
[GV]
[GW]
[H]

(K]

M

[0]

[Pai]

[Parl]

W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigen-

value problem, Quart. Appl. Math., 9 (1951), pp. 17-29.

I. Erdelyi, An iterative least-square algorithm suitable for computing partial eigensystems,

SIAM J. Numer. Anal., Ser. B, 2 (1965), pp. 421-436.

W.F. Ford and A. Sidi, Recursive algorithms for vector extrapolation methods, Appl.
Numer. Math., 4 (1988), pp. 477-489.

G.H. Golub and C.F. Van Loan, Matriz Computations, Second Edition, Johns Hopkins
University Press, Baltimore, 1989.

G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the computation of the
Jordan canonical form, SIAM Rev., 18 (1976), pp. 578-619.

A.S. Householder, The Theory of Mairices in Numerical Analysis, Blaisdell, New York,
1964, —

S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comp.,

20 (1966), pp. 369-378.

C. Lanczos, An iteration method for the solutlon of the exgenva.lue problem of linear

differential and mtegral operators J. Res. Nat. Bur. Standards, 45 (1950), pp. 255-282.

T.A. Manteuﬂ'el Adaptwe procedure for estlmatmg parameters for the nonsymmetrrc

Tchebychev 1teratxon, Numer. Math 31 (1978), pp 183- 203.

A.M. Ostrowski, On the convergence of the R,aylexgh quotrent 1teratlon for the computa-
tion of characteristic roots and vectors, IV and VI, Arch. Rat. Mech. Anal., 3 (1959), pp.
341-347 and 4 (1959/60), pp. 153-165. ' "

C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices,

Ph.D. dissertation, University of London, 1971.

B.N. Parlett, Global convergence of the basic Q R algorithm on Hessenberg matrices, Math.
Comp., 22 (1968), pp. 803-817.

31



[Par2]

[ParPo]

[Sal]

[Sa2]

[Si1]

[Si2]

[Si3]

[Si4]

[Si5]

[Si6]

[SiB]

[SiFSm)

B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ,
1980.

B.N. Parlett and W.G. Poole, A geometric theory for the QR, LU and power iterations,
SIAM J. Numer. Anal., 10 (1973), pp. 389-412.

Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmet-

ric matrices, Lin. Alg. Appl., 34 (1980), pp. 269-295.

Y. Saad, On the rates of convergence of the Lanczos and the block Lanczos methods,

SIAM J. Numer. Anal., 17 (1980), pp. 687-706.

A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank
extrapolation algorithms, SIAM J. Numer. Anal., 23 (1986), pp. 197-209. Originally ap-
peared as NASA TM - 83443 (1983).

A. Sidi, Extrapolation vs. pro jection methods for linear systems of equations, J. Comp.

Appl. Math., 22 (1988), pp. 71-88.

A. Sidi, On extensions of the power method for normal operators, Lin. Alg. Appl., 120
(1989), pp. 207-224.

A. Sidi, Quantitative and constructive aspects of the generalized Koenig’s and de Montes-

sus’s theorems for Padé approximants, J. Comp. Appl. Math., 29 (1990), pp. 257- 291.

A. Sidi, Efficient implementation of minimal polynomial and reduced rank extrapolation

methods, J. Comp. Appl. Math., 36 (1991), pp. 305-337.

A. Sidi, Rational approximations from power series of vector-valued meromorphic fune-

tions. Submitted.

A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation
methods in the presence of defective iteration matrices, J. Comp. Appl. Math., 22 (1988),
pp- 35-61.

A. Sidi, W.F. Ford, and D.A. Smith, Acceleration of convergence of vector sequences,
SIAM J. Numer. Anal., 23 (1986), pp. 178-196. Originally appeared as NASA TP-2193
(1983).

32



[SmFSi] D.A. Smith, W.F. Ford, and A. Sidi, Extrapolation methods for vector sequences, SIAM
Rev., 29 (1987), pp. 199-233. Erratum: Correction to “Extrapolation methods for vector
sequences”, SIAM Rev., 30 (1988), pp. 623-624.

(W] J.H. Wilkinson, The Algebraic Figenvalue Problem, Clarendon Press, Oxford, 1965.

33



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1992 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Application of Vector-Valued Rational Approximations
to the Matrix Eigenvalue Problem and Connections
With Krylov Subspace Methods

6. AUTHOR(S)
Avram Sidi

WU-505-62-21

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

National Aeronautics and Space Administration
Lewis Rescarch Center E-7317
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
\Nv?ll(;pallAer(;)r\szLJtlgzgzg Sgggc}: Administration NASA TM-— 105858
ashington, 12.%-. - ICOMP-92-18

11. SUPPLEMENTARY NOTES
Avram Sidi, Institute for Computational Mechanics in Propulsion, Lewis Research Center (work funded under Space
Act Agreement C99066G) and Technion-Israel Institute of Technology, Computer Science Department, Haifa 3200,
Israel.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 64 .

13. ABSTRACT (Maximum 200 words)
Let F(z) be a vectored-valued function £: C =V, which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its
Maclaurin series be given. In a'recent work [Si6] by the aulhafvcclor-vulucd rational approximation procedures for F(z) that arc hased
on its Maclaurin scries} were developed, and some of theirtonvergence propertics were analyzed in detail. In particular, a Koenig type

“Thétren concorning their poles and a de Montessus typé theerem concerning their uniform convergence in the complex plane were given.

i " With the help of these theorems it was shown how optimal approximations to the poles of F(z) and the principle parts of the corresponding
"Laurent series expansions can be obtained. In the present work we use these rational approximation procedures in conjunction with power
iterations 1o develop bona fide generalizations of the power mefhod for an arbitrary N X N matrix that may be diagonalizable or not. These
generalizations can be used to oblain simultancously several of the largest distinct eigenvalues and corresponding cigenvectors and other
vectors in the invariant subspaces. We provide interesting constructions for both nondefective and defective eigenvalues and the corre-
sponding invariant subspaces, and present a detailed convergence theory for them. This'is made possible by the observation that vectors
obiaincd by power iterations with a matrix are actually coefTicienis of the Maclaurin series of a vector-valued rational function, whose
poles are reciprocals of some or all of the nonzero eigenvalues of the matrix being considered, while the principal parts of the Laurent
expansions of this rational functions are vectors in the corresponding invariant subspaces. Jn addition, it is shown that the generalized
power methods of this work arc equivalent to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the
theory ef the present work provides a set of completely new results and constructions for these Krylov subspace methods. This theory
suggests at the same time a new mode of usage for these Krylov subspace methods that has been observed 1o possess computational

advantages over their common mode of usage.

14, SUBJECT TERMS 15. NUMBER OF PAGES

Vector-valued rational approximations; Matrix eigenproblem; Krylov subspace

X methods; Generalized power methods 16. PRICE CQOS
\
- 17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500



