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Abstract. Starting from the existence of a CP-basis for any CP-family of subspaces having
constant dimension, we construct a Brunovsky basis of class CP for a CP-family of pairs of matrices
having constant Brunovsky type. We derive a global pole assignment theorem for such kind of pairs.
In all the cases we assume that the manifold of parameters is contractible.
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1. Introduction. There is a large literature concerning parametrized families of
linear systems. “Most results attempt in essence to establish local-global principles:
does pointwise solvability imply the existence of nicely parametrized solution?” [17].

In particular, there is also a large literature concerning the problems dealt with in
this paper: global reduction to the canonical form, and global pole assignment. Both
problems have been widely studied for pointwise controllable families. One of the
aims of this paper is to present a generalisation to families non-necessarily pointwise
controllable.

For a general introduction to families of linear systems, see for example [13].
There, some problems that justify the study of families of systems are presented, and
one tackles the classification of families (fine moduli spaces), the existence of global
canonical forms and some others. In fact, that work deals with a more general class
of families of linear systems, in terms of bundles over the space of parameters, which
includes the parametrized ones.

An alternative generalization is the consideration of systems over rings, this is
to say, pairs of matrices with entries on a commutative ring. The particular case of
parametrized families arises when rings of functions defined in the space of parameters
are considered. See [15] and [2] for a general introduction, and [17] for a survey and
many references, mainly centered on control and stabilization problems.

The Swan theorem connects these approaches to local-global problems by means
of the correspondence between vector bundles and projective modules.

Let us see in more detail the problems explicitely studied in this paper. The
central one is theorem 6, in 3.4: the existence of a differentiable reduction to the
Brunovsky form (or equivalently, the existence of a differentiable Brunovsky basis) for
a differentiable family of pairs of matrices having constant Brunovsky type, provided
that the manifold of parameters is contractible.

For pointwise completely controllable families, the result is classical in the con-
tinuous case [2] or for polynomial rings [18]. It is also well known in the differentiable
case and used in the literature without explicit reference (see for example [14] and
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[17]). On the other hand, the global reduction to the Jordan form for a family of
square matrices has been more recently studied by [4], [8] and [5].

However, the extension to the general case starting on the above “extreme” cases
(controllable, Jordan) does not seem trivial in spite of the global splitting in [13]
(11.3.1) because this is not a direct split.

In fact, this obstruction is not surprising because it appears in other problems
concerning parametrized families of systems. For example, the construction of a
versal deformation has been solved in [1] for square matrices and in [18] for pointwise
controllable pairs of matrices. But the general case does not derive from them (see

[6])-

Secondly, we study the global pole assignment of parametrized families, which has
been widely studied (see for example [17]), always under the hypothesis of pointwise
controllability. The problem is solved en [2] and [16] by means of algebro-geometric
and algebraic techniques respectively, provided constant controllability indices. Other
conditions are considered, for example, in [19] (constant rank of B, ring controllability)
or in [12] (one-dimensional manifold of parameters).

Here the general result for non-necessarily pointwise controllable families (theo-
rem 7, in (4)) is derived as an application of the previous one about global reduction
to Brunovsky form. By means of it, the proof in [9] of pole assignment for a pair of
matrices (non-necessarily controllable) can be immediately translated into a differen-
tiable family of pairs of matrices having constant Brunovsky type.

Going back to the central result about global reduction to the Brunovsky form,
our technique consists essentially in extending the construction in the constant case
to the parametrized one by means of the theorem 2, in (1): the existence of global
differentiable bases for a differentiable family of subspaces having constant dimension,
parametrized over a contractible manifold.

A classical and fundamental reference for this basic tool in the continuous case
is [10]. In fact, it proves by means of the method of cocycles a generalization for
operator valued functions defined on a contractible manifold, provided it is compact.
In our case of matrix valued differentiable functions on a contractible manifold non-
necessarily compact, it is used for example in [13], and it is explicitely presented in
[20] (remark after 2.5).

For the continuous case, the key point is [11] (3.4.8) about the triviality of bundles
over contractible spaces. Then, the smooth case follows by means of approximation
theorems. Alternatively, we have checked that the proof of this key point in [11] for
the continuous case can be adapted to the differentiable one.

Notice that the hypothesis that the manifold of parameters must be contractible
is only used for prop.A to be verified. Then, all the machinery works under others
conditions whenever this prop.A holds. For example, under the conditions of [11]
(8.1.2).

This technique for extending the local case to the parametrized one is possible if
we have a geometrical description of the construction in the constant case (in terms
of kernels, supplementary subspaces,...). In this case, we use the description of a
Brunovsky basis obtained in [7], as a basis of the global space adapted to an increasing
chain of certain subspaces.

The minimum subspace of this chain corresponds to the uncontrollable subsystem,
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whose Brunovsky bases are in fact Jordan bases. For this step, we remark that in
[5] the same technique has been used for the case of square matrices having constant
Jordan type, by means of the usual description of Jordan bases as adapted to an
increasing chain of kernels.

Notice that this method does not need further references to algebro-geometric
or algebraic techniques, but only the prop. A and the standard machinery for the
constant case. As one of the referees has pointed about, this presentation seems more
accessible to engineers.

Moreover, our approach has some connections with the one in [3]. There, the
control properties of a pair of matrices (A, B) are studied by means of the geometric
properties of the curve v : R — G7r;,,, 7(7) = Im (eA7B). Here, we do not consider
a pair (4, B), but a CP-family of pairs (A(t), B(t)), t € M, having constant Brunovsky
type.Then, instead of a curve in Grg ,, we could consider a multi-parametrized map-
ping T': M x R — Grs,,, T(t,7) = Im (EA®7B(7)). Tt can be expected that some
control properties of the family should be related to the geometric properties of I'.

In (1) and (2) we recall, respectively, the basic facts about differentiable families
of subspaces and about global similarity of square matrices which we will use in the
sequel. See [5] for more details. (3) is devoted to the proof of the main theorem 6.
And (4) contains the application to global pole assignment.

Throughout the paper K denotes R or C, (eq,...,e,) the standard basis of K,
and Gry, p, the set of k-dimensional subspaces of K". If vy,...,v, are vectors of K™,
then [vy,...,vs] will denote the subspace spanned by them.

We write M,,x,(K) for the vector space of (n X k)-matrices with entries in K,
M., the open subset formed by the matrices A € M, (K) having rank k (< n),
and Gl(n) the linear group of non-singular matrices of M, (K). If A € M, xm(K),
we also denote by A the linear map from K™ to K™ defined by (zi,...,z,) —
(x1,...,7m)At, where A! is the transpose matrix of A. Id will denote the identity
mapping, and Idj, the identity k-matrix.

By a differentiable manifold we mean a CP-manifold, 1 < p < co. In all the paper
M will be a differentiable manifold. In the same way, by a differentiable map between
two of such manifolds we mean a CP-morphism.

We are grateful to the referees for their careful revision and their valuable sug-
gestions.

2. Differentiable families of subspaces. In Gr;, the usual topology and
differentiable structure are considered. With them, Gr , is a compact homogeneous
manifold. This topology is equivalent to the one induced by the gap metric [9]. A
proof of this equivalence is given in [5].

By a famaily of k-subspaces of K" parametrized on M we mean a map L :
M — Gryp. If it is differentiable, we write £ € CP(M, Gry ). The existence of
“differentiable local basis” is a useful criterium for the differentiability of a family of
subspaces. It follows immediately from the local triviality of a bundle:

PROPOSITION 2.1. Let M be a differentiable manifold, and L : M — Gryp
a family of k-subspaces parametrized on M. Then, L is differentiable if and only
if: for every to € M there is an open neighbourhood Wy, of to in M, and k maps
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v; € CP(Wyy, K™), 1 < i < k, such that {vi(t),...,vx(t)} is a basis of L(t), for all
t e Wy,.

For example, if £L € CP(M,Gry,,), then L+ € CP(M,Grp—.n), where L1 (t) =
L(t)*. Also, if A € CP(M, Myxm(K)) with rank A(t) = k, for all t+ € M, then Im
Ae CP(M,Gry,,) and Ker A € CP(M,Grp—gn)-

Let us assume that M is contractible. As we have remarked in the introduction,
a basic tool in our technique is the existence of a “differentiable global basis” (in fact,
we will use the corollary):

THEOREM 2.2 ((see the introduction for the references)). Let M be a contractible
manifold, and L € CP(M,Gry,n) o differentiable family of k-subspaces parametrized
on M. Then there exist k maps v; € CP(M,K"™), 1 < i <k, such that {vi(t),...,ve(t)}
is a basis of L(t) for everyt € M.

COROLLARY 2.3. Let M be a contractible manifold, and L; € CP(M,Gry; ),
1 <4 <2, such that L1(t) C L2(t), for all t € M. Then there exist vy, ...,v; €
CP(M,K™), k = ko — ki1, such that

Lo(t) = L1(t) D [v1(2),...,ux(t)], forall te M.

3. Global similarity of class CP. As we have said in the introduction, the
first step in the proof of theorem 6 about block-similarity of class CP is the already
known analogous result concerning similarity. Let M be a differentiable manifold,
and A € CP(M, M,(C)); that is to say, A(t) is a family of n-square complex matrices,
parametrized by ¢ € M, and of class C?. The family A(¢) is said to have constant
Jordan type if the number of distinct eigenvalues and the list of the sizes of the
Jordan blocks corresponding to different eigenvalues are independent of ¢.

PROPOSITION 3.1. Let M be a simply connected manifold, and A € C? (M, M, (C))
having constant Jordan type. Then:

(i) there exist A1, ..., \q € CP(M,C) such that \i(t),...,\(t) are the q distinct

eigenvalues of A(t), for every t € M.

(i) the respective algebraic multiplicities my, ..., mq of these eigenvalues are con-

stant.

THEOREM 3.2. Let M be a contractible manifold, and A € C?(M, M,(C)) having
constant Jordan type. Then, there exists S € CP(M,Gl(n)) such that S(t) L A(t)S(t)
is a Jordan matriz, for allt € M.

4. Global block-similarity of class CP.

4.1. We recall some basic properties of the block-similarity of pairs of matrices.
Let us consider pairs of matrices (A B), where A € M,(C) and B € M, x»(C).
Two of such pairs (A B) and (A’ B') are called block-similarif there are complex
matrices S € GI(n), T € Gl(m) and C € M,,xn, such that: A’ =S *(4A+ BCS™1)S,
B’ = STIBT, or equivalently

(4 BY=5'(4 B)(é g)
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Every pair (A B) is block-similar to its so-called Brunovsky form

N1 El
N2 E2

N, E,
J 0

where k; > ... > k., N; is a nilpotent k;-matrix, F; is the column (k; x 1)-matrix
transpose of (0...0 1), and J is a Jordan matrix. This canonical form is unique,
up to permutations of the Jordan blocks in J. In particular, r = rankB, and s =
ki +...+ k. =rank (B AB ... A""1B).

Numbers ki, ..., k, are called the controllability indices of (A B). Although
the Jordan matrix J is not uniquely determined, its similarity invariants are well
defined: we will refer to them as the Jordan invariants of the pair (A B). In
particular, the eigenvalues of the pair (A B) are those of J.

Two pairs are block-similar if and only if they have the same Brunovsky form.
Thus, the controllability indices and the Jordan invariants of the pair form a complete
family of invariants for the block-similarity.

Analogous considerations are valid for pairs of matrices of the form g). By
duality, both constructions are equivalent. In particular, the controllability indices
and the Jordan invariant of a pair (A B) coincide with those of its transpose (gz )

4.2. We shall follow the method in [7] for the construction of Brunovsky bases.

We recall that, up to reordering, a Brunovsky basis of a pair ( g) is obtained there

by successive extensions in the chain of subspaces
YV,=...=YnCYn_ 1 CYvooC...CYhcY,CYo=CtCcY_, =Cvm™
(the inclusions are strict) where

B
Y; = Ker BA , 1<i<n.
s

One verifies that A(Yx) C Yn. And for 0 <4 < N — 1, if Y; is any complementary
subspace to Y1 in Y, this is to say Y; = Y;11 © Y, then: A is injective on Y;
A(Y3) € Yies; AT NY; = {0},

Moreover, in this description the controllability indices are characterized as the
conjugate partition of the one formed by the differences dimY; — dim Y;; 1, and the

Jordan invariants of the pair are those of the endomorphism A| : Yy — Yi,

(5)
B
defined as the restriction of A. In particular, k&y = N, r = n —dimY7, and s =
n — dim YN.

4.3. Now let us consider families of pairs of matrices. Let M be a differentiable
manifold , and (A B) € CP(M, M,y (n+m)(C)), that is to say, (A(t) B(t)) is a
family of pairs of matrices, where A € CP(M, M, (C)) and B € CP(M, My xm(C)).
We say that the family (A(t) B(t)) has constant Brunovsky type, if:

(i) the controllability indices are constant
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(ii) the Jordan invariants have constant type
Notice that, with regard to the description in 3.2, it is equivalent to saying that:
(i) the dimensions of the subspaces Y;(t) are independent of ¢
(ii’) the family of endomorphisms A(t)| : Ya(t) — Yn(t) has constant Jordan

type

4.4. For such a differentiable family (A(¢) B(t)) having constant Brunovsky
type, the question lies in the construction of a Brunovsky basis depending differen-
tiably on t € M, provided that M is contractible.

THEOREM 4.1. Let Mbe a contractible manifold, and(A B)e CP(M, M, «(;4-m)C)
a differentiable family of pairs of matrices having constant Brunovsky type. Then,
there exist S € CP(M,Gl(n)), T € C?(M,Gl(m)) and C € CP(M, M,,xn(C)) such
that

S(t)~ (A(t) B(t>>< 58 T?t))

is a Brunovsky matriz, for all t € M.
Proof. Our aim is to adapt to parametrized pairs the construction relative to
a constant pair (A B) sketched in 3.2. In fact, as it was the case there, we shall

deal with pairs of the form ( 2’8) In order to do so, we shall consider the chain of
subspaces
V) =...=Yn(t) CYN_1(t) C...CYi(t) C Yp(t) =C* c C*t™
where
B(t)
Yi(t) = Ker BHA®) , 1<i<n

B(t)A(t)!

Because of the hypothesis (i’) above, and the examples after proposition 1, each term
in the chain is a differentiable family of subspaces having constant dimension. The
desired basis shall be constructed by successive extensions in this chain. The key point
is the application of theorem 5 in the first step, and of corollary 3 in the following
ones.

First, let us see that there exists a differentiable Jordan basis of the family of
restrictions A(t)| : Yn(t) — Yn(t ) Let wq(t), ..., Warm(t) be a differentiable basis
of C"*™ guch that: [Wsy1(t),. .., w,(t)] = YN(t) [wy(t),...,w,(t)] = C", for all
t € M (cf. corollary 3). Because of A(t)(Yn(t)) C Yn(t) and B(t)(Yn(t)) = 0 for

)
all t € M, if we apply this change of basis to ( E )) we obtain a matrix of the form

(%;Eg Zzg(t)> where, for each t € M, Ay,(t) is the matrix of the restriction A(t)| in
Bi(t) 0
the new basis @y, 1(t),...,w,(t). According to the hypothesis (ii’), A(t) has constant
Jordan type, so that theorem 5 can be applied. Hence, there exists a differentiable
Jordan basis wsy1(t),. .., w,(t) of A(t)|, and the first step is finished.

Let us denote W (t) the differentiable basis ws11(t),- .., wy(t) of Yn(t) obtained
above. Let us extend this basis successively. Corollary 3 ensures the existence of a
differentiable basis Vy_1 () such that

Yy =W®o[Vy-a@)].
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We have remarked in 3.2 that map A(t) is injective on [Viy—1(t)], and that its image
forms direct sum with Yy _1(t) in Yx_2(¢). Then, again by virtue of corollary 3, there
exists a differentiable basis Vy_»(t) such that

Yn_2(t) =Yn_1(t) D [A)(VN-1(t))] ® [VN-2()].
Following this way, the next step gives
Yn_3(t) = Yoo (t) © [A%(6) (Viv—r ()] @ [A(6) (Viv—a ()] @ [Viv—s (1)] -
and so on. O

4.5. REMARKS. (1) In fact, proposition 4 can be also applied to A(t) in the above
proof. Thus, in the conditions of theorem 6, one has:

- there exist \,...,A\; € C?(M,C) such that Ai(t),...,\;(t) are the distinct
eigenvalues of (A(t) B(t)), for every t € M.

- the respective algebraic multiplicities my, ..., m, of these eigenvalues are con-
stant.

(2) One has a similar result to the above theorem if we consider families of pairs
of matrices (A B) with real coefficients. The only difference is that the matrix J(¢)
in its Brunovsky form (cf. 3.1) is a real Jordan matrix instead of a complex one.
Obviously, the corresponding matrices S(t), T'(t) and C(t) are also real.

5. Global pole assignment of class CP. We assume that M is a contractible
manifold, and (A B) € CP(M, M, (n+m)(R)) a differentiable family of pairs of ma-
trices having constant Brunovsky type. Then, s = k; + ... + k, is constant. Also
(cf. 3.5), there exist A\1,..., A, € CP(M,C) such that Ay (¢),...,\,(¢) are the distinct
eigenvalues of (A(t) B(t)), having constant multiplicities my, ..., mq.

We say that a set of maps p; € CP(M,C), 1 <i < s, is closed under conjuga-
tion if for each 4 there is j such that p;(t) = p;(t) for every ¢t € M.

THEOREM 5.1. Let M be a contractible manifold, (A B) € CP(M, M,y (n4-m)(R))
a differentiable family of pairs of matrices having constant Brunovsky type, A1,...,\; €
CP(M,C) giving the distinct eigenvalues of (A B), and mq,...,m, their respective
algebraic multiplicities. If p; € CP(M,C), 1 < i < s, is a set of maps closed un-
der conjugation, then there exists a family of matrices K € CP(M, My xn(R)) such
that the eigenvalues of A(t)+ B(t)K (t) are p1(t), ..., ps(t), Mi(2),...,Ag(t), the latter
having multiplicities mq, ..., my.

Proof. As we have said above, it is a simple adaptation, by means of theorem 6,
of the proof in [9] relative to a constant pair. We enclose it for the convenience of the
reader.

From (3) we know that there exists S € C?(M,Gl(n)), T € CP(M,Gl(m)),
C € CP(M, My, xn(R)) such that

is a Brunovsky matrix for all ¢ € M. We denote by (4 B) this Brunovsky family of
matrices; that is to say

~
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We shall find a family K € CP(M, M,,x»(R)) such that A(t) + B(t)K (t) has the de-
sired eigenvalues i1 (), . . ., ps(t), A1 (t), . .., Ag(t). Then, if we take K () = C(t)S(t)™'+
VK (t !

a
T(#)K(1)S(t) ", the family A(f) + BH)K(t) = S(H)(A(t) + B(H)K(1))S(t) " has the

same eigenvalues. Let us construct K (¢). One has

N1 El

(see 3.1).
Let £j =k +...+kj, 1 <j<randceCP(M,C) defined by

kj—1

(€= pe; 141 () . (€ — pe; () = €M + Z ch(t

where £ is a indeterminate. Then

kj—1
(€ = m(8) .. (€ = ms(t) = H (5’“ + Z it )

and since {p1, . .., s} is closed under conjugation we see that 0(71 are in fact real maps.
Let K(t) the m x n matrix defined by K(t) = (K, (t) K»(t) ... K.(t) 0) where

0
K;(t) = ( @) ... —c,ij_l(t) ) (m-th row)
0

for 1 < j <. Then it is easy to see that the n x n matrix A(t) + B(t)K (t) is of the
form

Ci(t)
Cy(t)
J(t)
where
(kj
0 1 ... 0
GW= o .. 0 1
—At) .. . —c ()

Clearly, this matrix has the desired eigenvalues.O
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