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Abstract

This paper considers the Leslie model of population growth and

analyzes its asymptotic growth rate and its asymptotically stable age

distribution as functions of the fecundity and survival rates of each

age group in the population. This analysis is performed by computing

�rst and second order partial derivatives of the Perron root and vector

of a Leslie matrix with respect to each relevant entry in the matrix,

with emphasis on the second partial derivatives. We discuss the signs of

these derivatives as well as the qualitative implications that our results

have for the Leslie model. Where possible, quantitative interpretations

of the results are also given. Throughout, the techniques employ ideas

from the theory of group generalized inverses.



1 INTRODUCTION

The purpose of this paper is to investigate �rst and second order e�ects of

changes in fecundity and survival rates of various age groups on the asymp-

totic rate of growth and the asymptotically stable age distribution vector of

the Leslie population model. This population model can be represented by

a nonnegative matrix whose Perron root and, an appropriately normalized,

Perron eigenvector then furnish the rate of growth and the stable age dis-

tribution of the model, respectively. The �rst and second order e�ects are

obtained by computing the �rst and second order partial derivatives of the

Perron root and Perron vector with respect to those matrix entries which

represent the fecundity and survival rates of each age group. The existence

of these derivatives is assured because in the problem's setting the Perron

root is simple. It should be mentioned that �rst order e�ects of changes in

the fecundity and survival rates upon the growth rates of the model have

already been obtained by authors such as Demetrius [6], Goodman [12], and

Lal and Anderson [15].

In the Leslie model one assumes that the population consists of n age

groups. Let xi(t) denote the number of individuals in the i{th age group at

time t. Let Fi, i = 1; . . . ; n, denote the fecundity of each individual in the

i{th age group and let Pi, i = 1; . . . ; n� 1 denote the probability of survival

of an individual from age i to age i + 1. Assume that both the fecundity

and survival rates are independent of the time t. Then, as can be readily

ascertained, the age distribution at time t + 1, t � 0, can be described by

the matrix { vector relation:

x(t+ 1) =

0
BBBBBBBB@

F1 F2 . . . . . . Fn�1 Fn
P1 0 . . . . . . 0 0
...

. . .
...

... 0 0
... . . .

. . .
...

...
...

... . . . . . .
. . .

...
...

0 . . . . . . . . . Pn�1 0

1
CCCCCCCCA
x(t) =: ~Ax(t); (1:1)

where x(�) = (x1(�) . . . xn(�) )
T for all � � 0. For more background

material on the Leslie population model see Pollard [18].

Papers in demography, cf. Demetrius [6], say that the population has

reached a stationary age distribution if there exists a time t0 and a constant
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� > 0 such that

x(t+ 1) = �x(t); 8 t > t0: (1:2)

In this case � is called the growth rate of the population. The term stationary

age distribution comes from the fact that if (1.2) holds, then from time

t0 + 1 onwards the ratio between the various age groups in the population

is maintained. We note further that if (1.2) holds, then

�x(t) = x(t+ 1) = ~Ax(t) = . . . = ~At+1x(0); 8t > t0: (1:3)

Because a stationary age distribution is reached in �nite time only when

the initial age distribution vector x(0) is a linear combination of a Perron

vector and a generalized null vector of ~A, we prefer to think of Demetrius'

notions of growth rate of the population and stationary age distribution as

the asymptotic growth rate and the asymptotically stable age distribution

vector, respectively.

If ~A is an irreducible matrix then by the Perron{Frobenius theory (see

Section 2 for preliminaries and Berman and Plemmons [2] for a comprehen-

sive background), �must be the Perron root of ~A and x(t) is a corresponding

right Perron (eigen{)vector and the theory guarantees the existence and dif-

ferentiability of both. Further, if ~A is primitve, namely, it is irreducible with

a single eigenvalue of maximum modulus, then, e.g., the power method for

computing dominant eigenvalues and corresponding normalized eigenvectors

(see Stewart [19, p.340]) shows that the right{hand{side of (1.3) will always

converge to a Perron vector of ~A so that asymptotically (1.2) holds. We

comment now that just as the entries of the nonnegative matrix ~A have a

physical interpretation, we see that the Perron root and vector and their

derivatives also have a physical meaning for the model.

One can relax the assumption of irreducibility. Even then the special

structure of the Leslie matrix ~A implies that its Perron root remains simple,

thus ensuring that the Perron root and vector are still di�erentiable. While

the reducible case may lead to some interesting questions, we nevertheless

restrict ourselves to the case of irreducible Leslie matrices, { i.e. we will

always assume that Fn > 0 { since this captures the largest part of the

mathematical content and di�culty.

It is natural to ask how the growth rate and the stable age distribution

vectors are e�ected as we change the fecundity and survival probabilities at
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each age group. Demetrius [6] has investigated one of these questions by

looking at the derivatives of the Perron root with respect to the fecundities

and the survival rates which he obtained via the characteristic equation

for a Leslie matrix. His results can also be obtained from a more general

theorem giving expressions of the partial derivatives of a simple eigenvalue

of a matrix with respect to the matrix entries as follows: Let B = (bi;j) be

an n� n real or complex matrix and let � be a simple eigenvalue of B. Let

� and � be right and left eigenvectors of B corresponding to � normalized

such that �T� = 1. Then it is known, see for example Stewart [19, p.305,

Exer. 1], that
@�

@i;j
= �j�i; 81 � i; j � n; (1:4)

where @�=@i;j is the derivative of � with respect to the (i; j){th entry at B.1

Consider the matrix C = �I � B. Zero now is a simple eigenvalue of C

and therefore the group generalized inverse of C, C#, exists and as is known,

��T = I � CC#. Thus we see that the group inverse of C can be used to

express �rst order partial derivatives of � with respect to the matrix entries

at B . Further, as is shown in Deutsch and Neumann [7], the second order

partial derivatives of � with respect to the (i; j){th entry can also written

in terms of C#. Speci�cally they showed that

@2�

@2i;j
= 2(I � CC#)j;iC

#
j;i; 81 � i; j � n: (1:5)

Assume that B is an n � n nonnegative and irreducible matrix. Since

any right and left Perron vectors of B are positive, (1.4) readily con�rms the

well known fact that the Perron value is a strictly increasing function in any

of the matrix entries. In a series of papers Cohen [3,4], and [5] established

the fact that the Perron root is a convex function in the main diagonal of the

matrix. His principal approach to proving this fact was probabilistic relying

on evolution equations due to Kac. In [7] a matrix theoretic proof of this

fact is presented. Moreover, from the formula (1.5) which was found in [7]

we see that for any pair (i; j), the convexity or concavity of the Perron root

with respect to (i; j){th entry is determined by the sign of the (j; i){th entry

of C# = (�I � ~B)#. Perturbation and convexity theory of the Perron root

1
Section 2 for a more precise discussion of the partial derivatives of eigenvalues of

matrix with respect to matrix entries.
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has been investigated by a number of authors. To list a few we mention El-

sner [9], Friedland [11], Golub and Meyer [13], Haviv, Ritov, and Rothblum

[14], and Meyer and Stewart [17].

Let us return to our Leslie matrix ~A and assume that it is irreducible.

In this paper we explicitly compute expressions for the �rst and second or-

der derivatives of the Perron root and an appropriately normalized Perron

vector of a Leslie matrix with respect to its entries in the �rst row and on

its subdiagonal. We shall then interpret what meaning our result have for

the population model which the matrix represents. Most of our results show

that younger ages exert more inuence on the behavior of the growth rate

and the stable age distribution vector than older age groups do. Our ex-

perience is that it is much more di�cult to analyze the e�ects of changes

in survival rates on the population than it is to do so for changes in the

fecundity rates.

The plan of this paper is as follows. In Section 2 we shall present further

notation and preliminaries which are necessary for the work here. We shall

obtain in this section an explicit formula for the group inverse of �I � ~A.

In Section 3 we shall derive formulas for the second order derivatives of the

Perron value of a Leslie matrix with respect to its top row and subdiagonal.

In doing so some results of Deutsch and Neumann in [8] on the �rst and

second derivatives of the Perron vector will be extended. In Section 4 we

shall do similarly for the partial derivatives of the Perron vector of ~A. In

each of Sections 3 and 4 we shall explain what implications our results

have for the population model both qualitatively and, where possible, also

quantitatively.
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2 NOTATION AND PRELIMINARIES

In this paper we shall use the following notation:

IRk denotes the k{dimensional real space.

IRk;k denotes the space of all k � k real matrices.

e 2 IRk denotes the k{dimensional vector whose entries are all 1's.

ei 2 Rk denotes the k{dimensional unit coordinate vector, i = 1; . . . ; n.

Ei;j 2 IRk;k is the matrix whose (i; j){th entry is 1 and whose remaining

entries are 0.

The symbol � will indicate algebraic expressions with the same sign.

Let u = (u1 . . . un ) 2 IRk and v = ( v1 . . . vn ) 2 IRk . We shall write

that that u � v, if ui � vi, i = 1; . . . ; n. We shall say that u majorizes v, in

notation u � v, if

iX
j=1

uj �
iX

j=1

vj ; i = 1; . . . ; n� 1;

and
nX

j=1

uj =
nX

j=1

vj :

We shall say that a function f : IRk ! IRk is isotone if

u � v ) f(u) � f(v):

Let C 2 IRn;n and consider the matrix equations

CXC = C; XCX = X; and CX = XC:

A matrix X 2 IRn;n which satis�es all three equations, if it exists, is called

the group inverse of C and is denoted by C#. Moreover, if C# exists and

D is any nonsingular matrix, then

(D�1CD)# = D�1C#D: (2:1)
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In particular, if D is a diagonal matrix whose diagonal entries are all pos-

itive, then all the entries of the matrices C# and D�1C#D have identical

signs in the same locations. It is known, see Ben{Israel and Greville [1],

that a necessary and su�cient condition for C# to exist is that the elemen-

tary divisors, if any, of C corresponding to the eigenvalue zero are all linear.

Thus if B is an n� n nonnegative and irreducible matrix so that its Perron

root is simple, then 0 is a simple eigenvalue of C = �I � B, showing that

the group inverse of C exists.

Suppose that B 2 IRn;n has a simple eigenvalue, call it �(B). It readily

follows from considerations involving the minimal polynomial that there is

an open ball in IRn;n about B such that every matrix in the ball has a simple

eigenvalue. Thus for any E 2 IRn;n and for su�ciently small t 2 IR, B + tE

has a simple eigenvalue �(B + tE) such that �(B + tE) ! 0 as t ! 0.

Wilkinson [20, pp.66{67] shows that for su�ciently small t, �(B + tE) can

be expanded in a convergent power series about B. Hence the derivatives

of all orders of � with respect to t exist at B. In particular, the partial

derivative of � with respect to the (i; j){th entry at B is given by the limit

@�(B)

@i;j
:= lim

t!0

�(B + tEi;j)� �(B)

t

=
by (1.4) �j�i; (2:2)

where � = �(B) = ( �1 . . . �n )
T and � = �(B) = ( �1 . . . �n )

T are

right and left eigenvectors of B corresponding to �(B) normalized so that

their inner product is 1. In a similar manner we de�ne the higher order

partial derivatives of � at B with respect to the matrix entries. Wilkinson

goes on to show that provided one of many standard normalizations (but not

the in�nity norm) is applied to the eigenvector corresponding to �(B + tE)

throughout the ball, then the entries of the corresponding eigenvector can

be expanded in a convergent power series and therefore they too are di�er-

entiable with respect to t at B. When it is absolutely clear from the context,

we shall suppress the letter representing the matrix from the expressions for

the partial derivatives, viz., we shall write @�=@i;j for @�(B)=@i;j etc.

Our approach will be to �rst develop our results for stochastic Leslie

matrices and then transform them to general Leslie matrices from which

we shall be able to draw our conclusion for the population model under

consideration. To do so it will be helpful to have formulas connecting the

partial derivatives with respect to the Perron root of a general nonnegative
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and irreducible matrix ~B and the stochastic and irreducible matrix B to

which ~B is transformed using the diagonal similarity

B =
1

�
D�1 ~BD; (2:3)

where

D =

0
BBB@
~x1 0 . . . 0

0 ~x2 . . . 0
...

. . .
. . .

...

0 . . . 0 ~xn

1
CCCA (2:4)

and where ~x = ( ~x1 . . . ~xn )
T is a right eigenvector of ~B corresponding to

its Perron root �. Throughout we shall normalize all right Perron vectors

so that their �rst entry equals 1. Thus if ~y is the left Perron vector of ~B

normalized so that ~xT ~y = 1, then it follows from (1.4), (1.5), (2.1), (2.3),

and (2.4) that

@2�

@2i;j
=

2~yi

�

(~xj)
2

~xi
Q
#
j;i; (2:5)

where Q = I�B. Similarly relations for the eigenvectors will also be useful.

In particular, the following formulas can be obtained:

@~x

@i;j
=

~xj

�~xi
D
@x

@i;j
; 1 � i; j � n; (2:6)

and
@2~x

@21;i
=

~y1~xi

�2
D
@2x

@21;i
; 1 � i � n: (2:7)

For the speci�c case of the Leslie matrix ~A as given in (1.1), the right

Perron vector is given by

~x =

0
BBBBBBBBBBBBBB@

1

P1
�

P1P2
�2

...

P1���Pn�1

�n�1

1
CCCCCCCCCCCCCCA

: (2:8)
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With (2.3) and (2.4) in mind we �nd that ~A can be transformed into the

stochastic and irreducible Leslie matrix

A =

0
BBBBBBBB@

a1 a2 . . . . . . an�1 an
1 0 . . . . . . 0 0
...

. . .
. . .

... 0 0
... . . .

. . .
. . .

...
...

... . . . . . .
. . .

. . .
...

0 . . . . . . . . . 1 0

1
CCCCCCCCA
; (2:9)

where

a1 =
F1

�
� 0 and ai =

P1 � � �Pi�1Fi
�i

� 0; i = 2; . . . ; n; (2:10)

with an > 0.

LEMMA 2.1 Let A be a an irreducible stochastic Leslie matrix whose top

row is given by (a1 . . . an ). Set

Q =

0
BBBBBBBB@

1� a1 �a2 . . . . . . �an�1 �an
�1 1 . . . . . . 0 0
...

. . .
. . .

... 0 0
... . . .

. . .
. . .

...
...

... . . . . . .
. . .

. . .
...

0 . . . . . . . . . �1 1

1
CCCCCCCCA
: (2:11)

Then

Q# =

�
(Q#)1;1 (Q#)1;2
(Q#)2;1 (Q#)2;2

�
; (2:12)

where

(Q#)1;1 = M�1 + �M�1erTM�1 + �erTM�2 + �2(rTM�2e)erTM�1;

(2:13)

(Q#)1;2 = ��M�1e� �2(rTM�2e)e; (2:14)

(Q#)2;1 = �rTM�2 + �2(rTM�2e)rTM�1; (2:15)

and

(Q#)2;2 = ��2(rTM�2e); (2:16)
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and where e 2 IRn�1,

r =

0
B@

0
...

�1

1
CA 2 IRn�1 and � =

1

1� rTM�1e
=

1
1
an

Pn�1
i=0 (1� si)

(2:17)

and

M�1 =
1

an

0
BBBBBBBB@

1� s0 sn�1 � s1 sn�1 � s2 . . . sn�1 � sn�3 sn�1 � sn�2
1� s0 1� s1 sn�1 � s2 . . . sn�1 � sn�3 sn�1 � sn�2
1� s0 1� s1 1� s2 . . . sn�1 � sn�3 sn�1 � sn�2

...
...

...
. . .

...
...

...
...

. . .
...

1� s0 1� s1 1� s2 . . . 1� sn�3 1� sn�2

1
CCCCCCCCA
:

(2:18)

Here

s0 = 0 and si =
iX

j=1

aj ; 81 � i � n� 1: (2:19)

Proof: Let M be the (n� 1)� (n� 1) leading principal submatrix of Q. It

is not di�cult to check using the fact that the ai's sum to 1 that Q admits

the full rank factorization

Q =

�
M

rT

�
( I �e ) =: BC: (2:20)

According to Ben{Israel and Greville [1], Q# = B(CB)�2C. Now it can

be veri�ed that (CB)�1 = M�1 + �M�1erTM�1, where � and M�1 are as

given in (2.17) and (2.18), respectively. That Q# is given by (2.12) and as

speci�ed in (2.13){(2.19) can now be ascertained from the above partition-

ing of C and B and the aforementioned formula for (CB)�1. 2

We comment that the above lemma is a specialization to the case of

a singular M{matrix obtained from an n � n irreducible Leslie matrix of

a formula for the group inverse of an a singular M{matrix obtained from

a general n � n nonnegative and irreducible matrix found by Meyer [16,

Theorem 5.2].
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3 THE PERRON ROOT OF A LESLIE

MATRIX AS A FUNCTION OF TOP ROW

AND SUBDIAGONAL

We begin by determining the second order behavior of the Perron root as a

function of the top row.

THEOREM 3.1 Let A be an n � n irreducible stochastic Leslie matrix

whose top row is given by (a1 . . . an ). Then the entries in the �rst

column of the group inverse of Q = I �A are given by

Q
#
i;1 =

�

an

2
4n� i� �

an

n�2X
j=0

(1� sj)(n� 1� j)

3
5 ; i = 1; . . . ; n; (3:1)

where � and the sj 's are as in (2.17) and (2.19). In particular, the en-

tries of the �rst column of Q# are strictly decreasing from �rst to last and

Q
#
1;1 > jQ#

n;1j. Moreover there exists an integer k0 < (n + 1)=2 such that

Q
#
1;1; . . . ; Q

#
k0;1

are all nonnegative while Q
#
k0+1;1

; . . . ; Q
#
n;1 are all nonposi-

tive.

Proof: For each 1 � i � n � 1 we �nd from (2.13) that

Q
#
i;1 = eTi [M

�1 + �M�1erTM�1 + �erTM�2 + �2(rTM�2e)erTM�1]e1:

Also from (2.18) we have that

rTM�2e = (rTM�1)(M�1e) =
n�2X
j=0

1� sj

an
(n� 2� j)�

0
@n�2X

j=0

1� sj

an

1
A
2

:

(3:2)

It now follows after several algebraic reductions that

Q
#
i;1 =

�

an
(1� s0)(1� �rTM�2e� eTi M

�1e):

Further algebraic manipulations now yield (3.1). A similar calculation shows

that (3.1) holds also for the case i = n.

From (3.1) it readily follows that the entries in the �rst column of Q# are

strictly decreasing from �rst to last and that the �rst entry is always positive
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(which is a general result of Meyer [16] for all diagonal entries of the group

inverse of a singular and irreducible M{matrix and it is also an outcome of

Cohen's results described in the introduction) while the last entry is always

negative. Next, that Q
#
1;1 > jQ#

n;1j follows at once from (3.1). To complete

the proof we need only show that if i � (n+1)=2, then Q
#
i;1 � 0. From (3.1)

we �nd that for 2 � i � n� 1, Q
#
i;1 is nonpositive if and only if

(n� i)
n�1X
j=0

(1� sj) �
n�1X
j=0

(1� sj)(n� 1� j): (3:3)

But (3.3) holds if and only if

n�1�iX
j=0

(1� sj+i)(j + 1) �
i�2X
j=0

(1� sj+2�i)(j + 1): (3:4)

Since 1 � sj+i � 1 � sj+2�i for each 0 � j � n � i� 1, it now follows that

if i � (n + 1)=2, then (3.4) always holds. Consequently, Q
#
i;1 � 0 whenever

i � (n+ 1)=2. 2

Several comments are in order. Theorem 1 shows that the sign change in

the �rst column of Q# always occurs somewhere before the b(n + 1)=2c{th
position. We �rst furnish an example to show that the sign change can occur

at any position after the �rst and prior to the (n + 1)=2{th if n is odd or

prior the b(n+1)=2c{th if n is even. Fix 2 � k < (n+1)=2. Let A be given

by (2.9) with

aj =

8<
:
� if j = k � 1

1� � if j = n

0 otherwise

;

where 0 < � < 1 is yet to be speci�ed. From (3.1) we �nd that

Q
#
k;1 � n � k �

Pn�1
j=0 (1� sj)(n� 1� j)Pn�1

j=0 (1� sj)

� �
�
k(k � 1)

2

�
+ (1� �)

�
(n� k)(n� k + 1)

2

�
:

Similarly,

Q
#
k+1;1 � n � k � 1�

Pn�1
j=0 (1� sj)(n� 1� j)Pn�1

j=0 (1� sj)

� �
�
k(k + 1)

2

�
+ � + (1� �)

�
(n� k)(n� k � 1)

2

�
:
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Now choose a positive � so that

n(n � 1� 2k)

(n� k)(n� k � 1)� 2
< � <

n(n+ 1� 2k)

(n� k)(n� k + 1)
< 1:

Then a straightforward exercise shows that Q
#
k;1 > 0 > Q

#
k+1;1 and that such

an � causes the sign change to occur at the desired admissible position.

Our next comment is motivated by the fact that if (a1 . . . an ) �
( â1 . . . ân ), then ( s1 . . . sn ) � ( ŝ1 . . . ŝn ). Consider the function

f(A) = f(a1; . . . ; an) = (Q
#
1;1 . . . Q

#
n;1 ) ; (3:5)

where the ai's, 1 � i � n, are nonnegative and sum to 1. Then is f an isotone

function? That in general the answer to this question is in the negative is

illustrated by the example

A =

0
@�=2 �=2 1� �

1 0 0

0 1 0

1
A and Â =

0
@ 0 � 1� �

1 0 0

0 1 0

1
A :

Notice that the top row of A majorizes the top row of Â for each 0 < � < 1.

However, as can be veri�ed, f(�=2; �=2; 1��) does not majorize f(0; �; 1��)
for all 0 < � < 1 since, in particular, for 0 < � < (27�

p
153)=16, (I�A)#1;1 >

(I � Â)
#
1;1, whereas when (27�

p
153)=16 < � < 1, (I � A)

#
1;1 < (I � Â)

#
1;1.

The following corollary shows that under certain conditions on A and Â,

there is an entrywise relationship between f(A) and f(Â):

COROLLARY 3.2 Let a = (a1 . . . an ) and â = ( â1 . . . ân ) be the

top rows of the irreducible stochastic Leslie matrices A and Â, respectively.

Suppose a � â. Then

Q
#
1;1 � (Q̂)

#
1;1 ) Q

#
i;1 � (Q̂)

#
i;1; 81 � i � n;

so that also f(A) � f(Â) and

Q
#
n;1 � (Q̂)

#
n;1 ) Q

#
i;1 � (Q̂)

#
i;1; 81 � i � n;

so that also f(A) � f(Â).

12



Proof: Since a � â we have from (3.1) that

Q
#
i;1 �Q

#
k;1 =

k � iPn�1
j=0 (1� sj)

� k � iPn�1
j=0 (1� ŝj)

= (Q̂)
#
i;1 � (Q̂)

#
k;1

for all 1 � i � k � n. Thus

Q
#
i;1 � (Q̂)

#
i;1 � Q

#
k;1 � (Q̂)

#
k;1

for all 1 � i � k � n from which the results follow. 2

Next we examine the behavior of the Perron root of a Leslie matrix as

a function of its entries on subdiagonal. From (1.5) and the preceding dis-

cussion we know that it su�ces to determine the signs of the superdiagonal

entries of Q#. As we shall see, determining expressions to represent these is

no more di�cult than determining expressions for the entries of Q# down its

�rst column. But determining the signs of the entries on the superdiagonal,

especially in the top �rst half, appears to be more di�cult than determining

the signs of Q# down the �rst column.

THEOREM 3.3 Let A be an n � n irreducible stochastic Leslie matrix

whose top row is given by (a1 . . . an ). Then, providing we interpret any

summation sign from a lower limit which exceeds an upper limit to be zero,

the entries in the super diagonal positions of the group inverse of Q = I �A

are given by

Q
#
k;k+1 = �

n�
1�sk
an

� h
n� k � 1 +��Pn�1

j=0

�
1�sj
an

�
(n� 2� j)

i
�Pn�1

j=k

�
1�sj
an

�o
; k = 1; . . . ; n� 1; (3.6)

where � and the sj's are given by (2.17) and (2.19), respectively. The positive

entries on the super diagonal of Q#, if any, appear consecutively from the

(1; 2){th entry and form a non increasing sequence. The (k; k+1){th entries,

where k � (n � 1)=2, are all negative and for k � (n + 1)=2 those entries

form a nondecreasing sequence.

Proof: For each 1 � k � n� 2, we �nd from (2.13) that

Q
#
k;k+1 = eTk [M

�1+�M�1erTM�1+�erTM�2+�2(rTM�2e)erTM�1]ek+1:

(3:7)
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Also recall the expression for rTM�2e given in (3.2). Examining each term

in the expansion of (3.7) and referring to (2.18) we �nd that

eTkM
�1eTk+1 =

1� sk

an
� 1;

eTkM
�1e =

n�2X
j=0

1� sj

an
� (n � k � 1);

rTM�1ek+1 = �1� sk

an
;

and

rTM�2ek+1 = (rTM�1)(M�1ek+1) = �

2
41� sk

an

n�2X
j=0

1� sj

an
�

k�1X
j=0

1� sj

an

3
5 :

A number of algebraic reductions now yield (3.6). A similar calculation

shows that (3.6) holds also when k = n � 1.

To see that the positive entries in the super diagonal positions of Q#,

if any, begin at the (1; 2) entry, are consecutive, and form a nonincreasing

sequence we need only show that if Q
#
k;k+1 � 0, then Q

#
k�1;k � Q

#
k;k+1. To

this end note that if Q
#
k;k+1 > 0, then, in particular, from (3.6) it follows

that

n � k � 1� �

n�1X
j=0

1� sj

an
(n� 2� j) > 0: (3:8)

But from (3.6) we �nd that

Q
#
k�1;k �Q

#
k;k+1 = �

sk � sk�1

an

2
4n � k � 1� �

n�1X
j=0

1� sj

an
(n� 2� j)

3
5 :
(3:9)

The claim now follows from (3.8).

Now let k � (n� 1)=2. From (3.6) we �nd that

Q
#
k;k+1 � (1�sk)

Pn�1
j=k (1� sj)(j � k)�Pk�1

j=0(1� sj)(k� j)Pn�1
j=0 (1� sj)

�
n�1X

j=k+1

(1�sj):

14



The numerator in the �rst term of the above expression can be rearranged

as
n�k�1X
j=1

j(sk�j � sk+j)�
kX

j=n�k

j(1� sk�j)

which is evidently nonpositive. Consequently Q
#
k;k+1 � 0. Next consider the

di�erence (3.9). Note that if Q
#
k;k+1 is nonpositive and if

n � k � 1� �

n�1X
j=0

1� sj

an
(n� 2� j) � 0; (3:10)

then, necessarily, Q
#
k�1;k � Q

#
k;k+1 � 0. But (3.10) holds if and only if

an(n� k) +
n�2X
j=k

(1� sj)[j � (k � 1)] �
k�1X
j=0

(1� sj)[(k� 1)� j]: (3:11)

If k � (n+1)=2, the terms in (3.11) can be paired{o� to yield the equivalent

expression:

[(k � 1)� an(n� k)]

+(sk � sk�2) � 1
+(sk+1 � sk�3) � 2

+ . . .

+(sn�2 � s2k�n)(n� 1� k)

+(1� s2k�(n+1))(n� k)

+ . . .

+(1� s1)(k � 2) � 0:

Observe that each of the terms on the left{hand{side above is nonnegative.

Since we already proved that Q
#
n�1;n � 0, the proof of the theorem is now

complete. 2

Note that Theorem 3.3 implies that either theQ
#
k;k+1's are all nonpositive

or there is an index k0, necessarily less than (n�1)=2, such that for 1 � k �
k0, Q

#
k;k+1 � 0 and for k0 + 1 � k � n � 1, Q

#
k;k+1 � 0. While we are not

able to show that there exist cases where k0 attains the value b(n � 1)=2c,
the following example shows that some Q

#
k;k+1 can be positive when n is

15



su�ciently large and when k is not too large compared with n. Speci�cally

consider the n� n stochastic Leslie matrix whose top row is given by

aj =

8<
:
� if j = k + 1

1� � if j = n

0 otherwise,

(3:12)

where � is yet to be speci�ed. From (3.6) we see that

Q
#
k;k+1 � (1� sk)

"Pn�1
j=0 (1� sj)(j + 1� k)Pn�1

j=0 (1� sj)

#
�

n�1X
j=k

(1� sj): (3:13)

Since sj = 0 for 0 � j � k and sj = � for k + 1 � j � n� 1, (3.13) implies

after some analysis that

Q
#
k;k+1 � �k(k+1)+(1��)(n2�4kn+3k2+5k�3n+2)�2(1��)2(n�k�1)2:

(3:14)

Choosing the value � = 17=20 and substituting it into (3.14), it follows that

Q
#
k;k+1 is positive as long as

� 119k2 � (102n+ 68)k+ 21n2 � 72n+ 51 > 0: (3:15)

Considering this as a quadratic in k, we �nd that Q
#
k;k+1 is positive provided

that

k <
�(102n+ 68) +

p
(102n+ 68)2+ 4(119)(21n2� 72n+ 51)

238
: (3:16)

For k = 1, (3.15) yields that the minimal value of n which guarantees that

for the matrix given by (3.12), Q
#
1;2 > 0, is n = 11. For k = 2, the minimal

such n is 17. As n!1, the right{hand{side (3.16) is asymptotic to

n

 
�102 +

p
20400

238

!
� 0:1715n: (3:17)

Let us now revert to a general Leslie matrix ~A. From the discussion in

Section 2 we see by (2.5) that the derivative of the Perron root with respect

to the entries in the top row at ~A is given by

@2�

@21;i
=

2

�

"
1Pn�1

j=0 (1� sj)

#�
P1P2 � � �Pi�1

�i�1

�2
Q
#
i;1; i = 1; . . . ; n; (3:18)
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where Q = I�A and A is as in (2.9) and (2.10). From this formula and the

results of Theorem 3.1 it follows that if � > max1�i�n�1 Pi, then

@2�

@21;i
� 0 ) @2�

@21;i
� @2�

@21;j
; j > i: (3:19)

In particular, for � as above,

max
1�i�n

@2�

@21;i
=

@2�

@21;1
: (3:20)

Similarly with respect to the subdiagonal entries we have that

@2�

@2k+1;k
=

2�

P 2
k

1� skPn�1
j=0 (1� sj)

Q
#
k;k+1; k = 1; . . . ; n� 1: (3:21)

In particular, if Pj � Pi and j > i, then

@2�

@2i+1;i
� 0 ) @2�

@2i+1;i
� @2�

@2j+1;j
: (3:22)

We wish now to discuss the implications of the results obtained in this

section on the population model which the Leslie matrix represents. First

the qualitative interpretations. Theorems 3.1 and 3.3 show that the asymp-

totic rate of increase can only be a convex function of the fecundity and

survival rates of younger age groups and that it is a concave function of

these rates in older age groups. This suggests that only changes in the vital

rates for younger age groups can yield a sharp change in the rate of increase

of the asymptotic growth rate of the population. In attempting to compare

the e�ects of changes in fecundity rates to changes in survival rates, we note

that Theorem 3.1 always guarantees that for some younger age groups the

asymptotic growth rate is a convex function of the fecundity. This is not

necessarily the case for the e�ects of changes in the survival rates. Indeed,

in our experience, it is di�cult to produce examples where the asymptotic

growth rate is a convex function of the survival rate of even the �rst age

group. In this sense, the example given after Theorem 3.3 is atypical. It

requires a peculiar fecundity distribution and, as we observe, a large number

of age groups in order for changes in survival rates to have a sharp e�ect on

the asymptotic growth rate.

17



Next we consider the quantitative implications of our results upon the

population model. Recall that Demetrius' result [6, p.134, eq.(8)] asserts

that if � > max1�i�n�1 Pi, then

@�

@1;i
>

@�

@1;j
; j > i: (3:23)

Our result in (3.19) reinforces (3.23) by showing that not only are the �rst

partial derivatives of the asymptotic growth rate with respect to the fecundi-

ties ordered, but so are the second partial derivatives, at least for younger age

groups. As for the e�ect of changes in the survival rates. Here Demetrius'

result [6, p.134, eq.(11)] is that

Pj � Pi and j > i ) @�

@i+1;i
� @�

@j+1;j
: (3:24)

Once again our result in (3.22) reinforces (3.24). Earlier we noted that the

condition @2�=@2i+1;i � 0 which appears in (3.22) can only occur for younger

age group if at all. However when this is the case, the hypothesis Pj > Pi for

j > i seems reasonable when i is small because the survival rate for newborns

is likely to be lower than that for slightly more mature individuals.
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4 THE PERRON VECTOR OF A LESLIE

MATRIX AS A FUNCTION OF TOP ROW

AND SUBDIAGONAL

In this section we shall examine the derivatives of the Perron vector of a

stochastic Leslie matrix with respect to the entries in the top row and sub-

diagonal of the matrix. We shall than infer implications concerning the

asymptotically stable age distribution vector of the general Leslie popula-

tion model.

Let ~A be an n�n general irreducible Leslie matrix whose Perron root is

� = �( ~A). Throughout its right Perron vector x = x( ~A) will be normalized

so that its �rst entry is equal to 1. Denote by y = y( ~A) the left Perron vector

of ~A normalized so that yTx = 1. Since now all the derivatives of the �rst

entry of that Perron vector are zero, it will be convenient for us to work with

the truncated form of x = (1 x2 . . . xn )
T , viz. �x = (x2 . . . xn )

T .

Before truncation all vectors which we shall work with in this section will

be in IRn and a bar over them shall indicate their truncation to an (n� 1){

dimensional vector by deleting their �rst entry. This notation is consistent

with [8] and for Leslie matrices, some results in that paper will also be gen-

eralized here.

In the interest of convenience we shall derive a basic relation for the

derivatives of the �x which in essence are already contained in [8]. Put ~Q =

�I� ~A. On di�erentiating the matrix{vector relation ~Ax = �x with respect

to the (i; j){th entry we obtain, on recalling (1.4), that

Ei;jx+ ~A
@x

@i;j
= xjyix+ �

@x

@i;j

or
@�x

@i;j
= xjN

�1
~Q
(ei � yi�x); (4:1)

where N ~Q
is the (n� 1)� (n� 1) trailing principal submatrix of ~Q.

For the special case of a stochastic Leslie matrix we obtain the following:

LEMMA 4.1 At the n�n irreducible stochastic Leslie matrix A whose top

19



row is given by (a1 . . . an ),

@�x

@1;i
= � 1Pn�1

j=0 (1� sj)

0
BBB@

1

2
...

n � 1

1
CCCA ; 1 � i � n; (4:2)

and

@�x

@k+1;k
=

1Pn�1
j=0 (1� sj)

0
BBBBBBBBBBB@

�(1� sk)

�2(1� sk)
...

�(k � 1)(1� sk)Pn�1
j=0 (1� sj)� k(1� sk)

...Pn�1
j=0 (1� sj)� (n� 1)(1� sk)

1
CCCCCCCCCCCA
; 1 � k � n�1;

(4:3)

where the si's are given in (2.19).

Proof: For the stochastic Leslie matrix A we have x(A) = ( 1 . . . 1 )T

and for Q = I � A,

N�1
Q =

0
BBB@
1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1

1
CCCA :

Furthermore, if y = y(A) is the left Perron vector of A normalized as above,

then

yT =
1Pn�1

j=0 (1� sj)
( (1� s0) (1� s1) . . . (1� sn�1) ) :

The expression for @�x=@1;i now follows on substituting these values of x; y

and N�1
Q into (4.1) and on noting that e1 = 0. The expression for @�x=@k+1;k

follows similarly. 2

Considering (4.2) we see that each entry of @�x=@1;i is negative for each

i = 1; . . . ; n. This fact is actually a consequence of a more general result

of Elsner, Johnson, and Neumann [10, Theorem 1]. In contrast to (4.2),

(4.3) shows that the signs of the entries of the @�x=@k+1;k are not necessarily

uniform. Clearly the �rst k� 1 entries are negative and the remaining ones
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form a decreasing sequence. The following argument shows that @�x=@k+1;k
always has at least one positive entry. Note that

n�1X
j=0

(1�sj)�(k+1)(1�sk) =
kX

j=0

(sk�sj)+
n�1X

j=k+1

(1�sj) > 0; 1 � k � n�2:

Thus we see that the k{th and (k + 1){th entries of @�x=@k+1;k are always

positive for 1 � k � n � 2. A similar argument shows that the last entry

of @�x=@n;n�1 is also always positive. From the above we see that either

the entries of @�x=@k+1;k in positions k through n� 1 are all nonnegative or

there is an index i0 � k + 1 such that the entries in positions k through

i0 are nonnegative and the remaining entries are nonpositive. To see that

each such sign pattern can be realized consider the stochastic Leslie matrix

whose top row has 0 < � < 1 in the (k + 1){th position and 1 � � in the

n{th position. It is readily veri�ed that each admissible sign pattern can be

obtained by a suitable choice of �.

We next investigate the sign pattern of the second partial derivatives of

�x with respect to the entries of the top row of a stochastic Leslie matrix.

THEOREM 4.2 Let A be an n � n irreducible stochastic Leslie matrix

whose top row is given by (a1 . . . an ) and let x = x(A) be its right

Perron vector normalized so that its �rst entry is 1. Then

 
@2�x

@21;i

!
l

= 2l

 
1Pn�1

j=0 (1� sj)

!2 "
l + 1

2
+ i�

Pn�1
j=0 (1� sj)(j + 1)Pn�1

j=0 (1� sj)

#

(4:4)

for all 1 � l � n � 1 and 1 � i � n and where the si's are as speci�ed

in (2.19). Furthermore, when i is �xed, there is at most one sign change

in the entries of @2�x=@21;i from minus to plus as l increases. Similarly,

when l is �xed and i is increased, there is at most one sign change in the

sequence formed from the l{th entries of the vectors @2�x=@21;i, i = 1; . . . ; n.

In particular,

l + 1

2
+ i � n+ 1

2
)

 
@2�x

@21;i

!
l

� 0 (4:5)

and an all pluses sign pattern is possible when either i or l is su�ciently

large.
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Proof: As usual let Q = I � A and let y be the left Perron vector of A

normalized so that yTx=1. From formula (4.13) in [8] we �nd that

@2�x

@21;i
= 2y1xi(y1xiN

�1
Q �Q

#
i;1I)N

�1
Q �x; i = 1; . . . ; n: (4:6)

Substituting in the expressions for x; y, and N�1
Q developed in Lemma 4.2

and using the formula for Q
#
i;1 given in (3.1) yields after some simpli�cation

(4.4). The claims concerning the sign patterns follows readily by inspecting

(4.4). That (4.5) holds can be established by the same argument given in

Theorem 3.1 which was used to show that Q
#
i;1 � 0 for i � (n+ 1)=2. 2

As in our remarks following Theorem 3.1 concerning the sign pattern of

the entries of the �rst column of Q#, examples can be constructed to show

that when i is �xed and l is increasing, the switch from minus to nonnegative

in (@2�x=@21;i)l can occur at any index l0 < n � 2i. A similar remark holds

for the sequence @2�x=@21;i when l is �xed and i is increasing.

In the spirit of Corollary 3.2 we can prove the following majorization

result for the second derivatives of the Perron vectors corresponding to two

stochastic Leslie matrices:

COROLLARY 4.3 Let a = (a1 . . . an ) and â = ( â1 . . . ân ) be the

top rows of the irreducible stochastic Leslie matrices A and Â, respectively.

Suppose a � â. Then

@2�x

@21;1
� @2�̂x

@21;1
) @2�x

@21;i
� @2�̂x

@21;i
; 1 � i � n;

and
@2�x

@21;n
� @2�̂x

@21;n
) @2�x

@21;i
� @2�̂x

@21;i
; 1 � i � n:

Proof: From (4.4) we have that

@2�x

@21;i
� @2�x

@21;j
= 2(i� j)

"
1Pn�1

j=0 (1� sj)

#20BBB@
1

2
...

n� 1

1
CCCA
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� 2(i� j)

"
1Pn�1

j=0 (1� ŝj)

#20BBB@
1

2
...

n� 1

1
CCCA =

@2�̂x

@21;i
� @2�̂x

@21;j

for 1 � j � i � n and where the si's are speci�ed in (2.19) and where the

ŝi's are similarly determined. Consequently

@2�x

@21;i
� @2�̂x

@21;i
� @2�x

@21;j
� @2�̂x

@21;j
; 1 � j � i � n;

from which the results follow. 2

We now return to a general Leslie matrix ~A. From (2.6) we have that

for the �rst partial derivatives of the Perron vector with respect to the top

row and subdiagonal,

@x( ~A)

@1;i
=

P1P2 � � �Pi�1
�i

ND

@x(A)

@1;i
; i = 1; . . . ; n; (4:7)

and

@x( ~A)

@k+1;k
=

1

Pk
ND

@x(A)

@k+1;k
; k = 1; . . . ; n� 1; (4:8)

where A is given by (2.9) and (2.10). Similarly, for the second partial deriva-

tives of the Perron vector with respect to the �rst row we have from (2.7)

that

@2x( ~A)

@21;i
=

"
1Pn�1

j=0 (1� sj)

#�
P1P2 � � �Pi�1

�i

�2
ND

@2x(A)

@21;i
(4:9)

for all i = 1; . . . ; n: From (4.8) we can conclude that

� � max
1�i�n�1

Pi and

0
@@x( ~A)

@k+1;k

1
A
j

� 0 )

0
@@x( ~A)

@k+1;k

1
A

j

�

0
@@x( ~A)

@k+1;k

1
A
l

; l � j:

(4:10)

In particular

max
1�j�n�1

0
@@x( ~A)

@k+1;k

1
A
j

=

0
@@x( ~A)

@k+1;k

1
A
k

: (4:11)
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We come now to interpret our results on the Perron vector for the pop-

ulation model. We begin with qualitative observations. For our analysis of

the behavior of the asymptotically stable age distribution vector to make

sense we have to choose a frame of reference, and the one we select is to

compare the sizes of any age group group to the size of the �rst age group.

(i) Formula (4.2) in Lemma 4.1 implies that raising the fecundity of any

age group decreases the ratio of the size of any age group beyond the

�rst to the size of the �rst age group.

(ii) Formula (4.3) in Lemma 4.1 shows that raising the survival rate of the

k{th age group has the e�ect of increasing the ratio of the size of the

(k+ 1){th age group to the size of the �rst age group and possibly of

raising those ratios for subsequent age groups while diminishing the

those ratios for age groups 2; . . . ; k.

In the way of quantitative interpretation of our results on the Perron

vector for the population model, the only de�nite conclusion that we can

draw follows from (4.3) and (4.11). Here we see that increasing the survival

rate at the k{th age group has the e�ect of raising the ratios of the sizes

of some age groups beyond the size of the �rst to the �rst age group while

decreasing others. However, when � � max1�i�n�1 Pi, it follows from (4.8)

that the ratio which increases the most corresponds to the (k + 1){th age

group.
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