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AN ANALYSIS OF SPECTRAL ENVELOPE-REDUCTION

VIA QUADRATIC ASSIGNMENT PROBLEMS *

ALAN GEORGE_ AND ALEX POTHEN_

Abstract. A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope

size was described in [2]. The ordering is computed by associating a Laplacian matrix with the given matrix

and then sorting the components of a specified eigenvector of the Laplacian. In this paper we provide an

analysis of the spectral envelope reduction algorithm. We describe related 1- and 2-sum problems; the

former is related to the envelope size, while the latter is related to an upper bound on the work involved in

an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment

problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by

considering a projected quadratic assignment problem, and then show that finding a permutation matrix

closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction

algorithm. The lower bound on the 2-sum is seen to be tight for reasonably "uniform" finite element meshes.

We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.
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1. Introduction. A novel spectral algorithm to reduce the envelope of a sparse, sym-

metric matrix was described in a companion paper [2]. The algorithm associates a discrete

Laplacian matrix with the given symmetric matrix, and then computes a reordering of the

matrix by sorting the components of an eigenvector corresponding to the smallest nonzero

Laplacian eigenvalue. The results in [2] show that the spectral algorithm can obtain sig-

nificantly smaller envelope sizes compared to other currently used algorithms. All previous

envelope-reduction algorithms (known to us), e.g., the reverse Cuthill-McKee (RCM) algo-

rithm, the Gibbs-Poole-Stockmeyer (GPS) algorithm, the Gibbs-King (GK) algorithm, and

the Sloan algorithm [3, 14, 15, 23, 36], are combinatorial in nature, employing some variant

of breadth-first-search to compute the ordering. In contrast, the spectral algorithm is an

algebraic algorithm whose good envelope-reduction properties are somewhat intriguing and

poorly understood.

In this paper we attempt to provide a raison d'etre for the spectral envelope-reduction

algorithm. We describe problems related to envelope-reduction called the 1- and 2-sum prob-

lems, and then formulate these latter problems as quadratic assignment problems (QAPs).

We show that the QAP formulation of the 2-sum enables us to obtain lower bounds on the

2-sum (and related envelope parameters) based on the Laplacian eigenvalues. The lower

bounds seem to be quite tight for finite element problems whose mesh points are nearly all

of the same degree. Further, we show that a closest permutation matrix to an orthogonal

matrix that attains the lower bound is obtained by sorting the second Laplacian eigenvec-

tor components in monotonically increasing or decreasing order. This provides stronger

justification for the spectral envelope-reducing algorithm than has been provided earlier.

The computational results in [2] indicate that the spectral envelope reduction algorithm

is even more effective in reducing the work in an envelope factorization algorithm, due to the

observed quadratic dependence of the factorization time on the envelope size. The analysis

in this paper, in terms of the 2-sum problem, explains this phenomenon as well.

Although initially envelope-reducing orderings were developed for use in envelope schemes

for sparse matrix factorization, these orderings have been used in the past few years in sev-

eral other applications. The RCM ordering has been found to be an effective preordering

in computing incomplete factorization preconditioners for preconditioned conjugate-gradient

methods [4, 6]. Envelope-reducing orderings have been used in frontal methods for sparse

matrix factorization [7]. Such orderings have also been used in parallerhlatrix-vector multi-

plication and tridiagonalization of sparse symmetric matrices.

The wider applicability of envelope-reducing orderings prompts us to take a fresh look

at the reordering algorithms currently available, and to develop ne_v ordering algorithms.

Spectral envelope-reduction algorithms seem to be attractive in this context, since they

(i) compare favorably with existing algorithms in terms of the quality of the orderings [2],

(ii) extend easily to problems with weights, e.g., finite element meshes arising from dis-

cretizations of anisotropic problems, and

(iii) are fairly easily parallelizable.

Spectral algorithms are usually, but not always, more expensive than the other algorithms

currently available, but since the envelope-reduction problem requires only one eigenvector

computation (to a few decimal digits of precision), we believe the costs are not impractically



high. Improvementsto reducethe costsarebeing looked into aswell. Wefocusprimarily on
the classof finite elementmeshesarisingfrom discretizationsof partial differential equations.
Our goalsin this project are to developefficient softwareimplementingour algorithms, and
to proveresults about the quality of the orderingsgenerated.

The projection approachfor obtaining lower boundsof a QAP is due to Hadley,Rendl,
and Wolkowicz [17], and this approachhasbeenapplied to the graph partitioning problem
by the latter two authors [34]. In earlier work a spectral approachfor the graph (matrix)
partitioning problem has beenemployedto compute a spectral nesteddissectionordering
for sparsematrix factorization, for partitioning computationson finite elementmesheson a
distributed-memory multiprocessor[19, 31, 32, 35], and for load-balancingparallel compu-
tations [20]. The spectralapproachhasalsobeenusedto find a pseudo-peripheralnode [16].
Juvan and Mohar [21; 22] have provided a theoretical study of the spectral algorithm for
reducing p-sums, where p = 1, 2, and e_, and Helmberg et al. [18] obtain spectral lower

bounds on the bandwidth. A survey of some of these earlier results may be found in [29].

Paulino et al. [30] have also considered the use of spectral envelope-reduction for finite ele-

ment problems.

The following is an outline of the rest of this paper. In Section 2 we describe various

parameters of a matrix associated with its envelope, introduce the envelope size and envelope

work minimization problems, and the related 1- and 2-sum problems. Let A denote the

maximum number of offdiagonal nonzeros in a row or column of the given matrix (the

maximum degree of a vertex in the adjacency graph of the matrix). We prove that the

minimum 1-sum is bounded below by the minimum envelope size, and bounded above by

A times the minimum envelope size. A similar result holds for the minimum 2-sum and a

bound on the work in an envelope Cholesky factorization. We compute upper and lower

bounds for the envelope of a sparse symmetric matrix in terms of the eigenvalues of the

Laplacian matrix in Section 3. The popular RCM ordering is obtained by reversing the

Cuthill-McKee (CM) ordering, and usually the RCM ordering has smaller envelope size

and work than the CM ordering. We prove that reversing an ordering can improve or

impair the envelope size by at most a factor A, and the envelope work by at most A 2. In

Section 4, we formulate the 2- and 1-sum problems as quadratic assignment problems. We

obtain lower and upper bounds for the 2-sum problem in terms of the eigenvalues of the

Laplacian matrix in Section 5 by means of a projection approach that fe_axes a permutation

matrix to an orthogonal matrix with row and column sums equal to one. We also show

how the lower bound may be strengthened by permitting diagonal perturbations to the

Laplacian matrix. We justify the spectral envelope-reduction algorithm in Section 6 by

proving that a closest permutation matrix to an orthogonal matrix attaining the lower bound

for the 2-sum is obtained by permuting the second Laplaeian eigenvector in monotonically

increasing or decreasing order. In Section 7 we employ the lower bounds we have obtained

to study the asymptotic growth of envelope size and an estimate of the envelope work for

2- and 3- dimensional finite element meshes of bounded degree. We show that graphs with

good separators have small envelope parameters as well, by considering a modified nested

dissection ordering. We present computational results in Section 8 to illustrate that the 2-

sums obtained by the spectral reordering algorithm can be close to optimal for finite element



mesheswhose nodes have almost equal degrees. We make some Concludingremarks in
Section9. The Appendix containssomelower boundsfor the moregeneralp-sum problem,

where 1 < p < oc.

2. A menagerie of envelope problems.

2.1. The envelope of a matrix. Let A be an n x n symmetric matrix with elements

aij, whose diagonal elements are nonzero. Various parameters of the matrix A associated

with its envelope are defined below.

We denote the column indices of the nonzeros in the lower triangular part of the ith row

by

row(i) = {j'a,j 7_ 0 and 1 _< j _< i}.

For the ith row of A we define

fi(A) = min{j: j E row(i)}, and

r_(A) = i- f_(A).

Here f_(A) is the column index of the first nonzero in the ith row of A (by our assumption

of nonzero diagonals, 1 _< f_ _< i), and the parameter r_(A) is the row-width of the ith row

of A. The bandwidth of A is the maximum row-width

bw(A) = max{ri(A): i= 1,...,n}.

The envelope of A is the set of column indices

Env(A) = {(i,j)" fi(A) <_ j < i, i= 1,...,n}.

For each row, these indices lie in an interval beginning with the column index of the first

nonzero element and ending with (but not including) the index of the diagonal nonzero
element.

We denote the size of the envelope by Esize(A) = [Env(A)]. (This is also called the

profile of A.) The work in the Cholesky factorization of A that employs an envelope storage

scheme can be bounded by (1/2)_=2 r_(r_ + 3). This bound can differ significantly from

the actual work required on some problems, but for nearly uniform finite element problems

without appendages, it is usually a good measure of the work. (The computational results

on the work in an envelope factorization scheme in [2] indicate this is a good approximation

as well.) Hence hereafter we will use

Wbound(A) = _ r_
i=1

as a measure of the work in such a factorization.

A 3 x 3 7-point grid and the nonzero structure of the corresponding matrix A are shown

in Figure 2.1. A ' • ' indicates a nonzero element, and a ' • ' indicates a zero element

thai belongs to the lower triangle of the envelope in the matrix. The row-widths given in
3
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FIG. 2.1. An ordering of 7-point grid and the corresponding matrix. The lower triangle of the envelope

is indicated by marking zeros within it by asterisks.

ri

ci

1 2 3 4 5 6 7 8 9

0 1 i 3 4 4 3 4 4

3 4 3 4 4 3 2 1 0

TABLE 2.1

Row-widths and column-widths of the matrix in Figure 1.

Table 2.1 are easily verified from the structure of the matrix. The envelope size is obtained

by summing the row-widths, and is equal to 24. (Column-widths ci are defined later in this

section.)

The values of these parameters strongly depend on the choice of an ordering of the rows

and columns. Hence we consider how these parameters vary over symmetrically permuted

matrices pTAp, where P is a permutation matrix. We define Esize_in(A), the minimum

envelope size of A, to be the minimum envelope size among all permuted matrices pTAp.

The quantities Wboundmin(A) and bwmi_(A) are defined in similar fashion. Minimizing the

envelope size and the bandwidth of a matrix are NP-complete problems [25], and minimizing

the work bound is likely to be intractable as well. So one has to settle for heuristic orderings

to reduce these quantities.

It is helpful to consider a 'column-oriented' expression for the envelope size for obtaining

a lower bound on this quantity in Section 3. The width of a column j of A is the set of all

row indices in the jth column of the envelope of A. In other words,

cj(A) = I{k: k > j, and 3g <_ jgake ¢ 0}1.



(This is also called the jth front-width.) It is then easily seen that :the envelope size is

(2.1) Esize(A) = _ cj.
j----1

The work in an envelope factorization scheme is given by

n

Ework(A) = (1/2) E cj(cj + 3).
j=l

Hereafter, we will ignore the linear term in cj in computing the envelope work. The column-

widths of the matrix in Figure 2.1 are given in Table 2.1. These concepts and their inter-

relationships were considered earlier by Liu and Sherman [27], and are also discussed in the

text books [5, 13].

The envelope parameters can also be defined with respect to the adjacency graph G =

(V, E) of A. Denote nbr(v) = {v} U adj(v). In terms of the graph G and an ordering a of

its vertices, we can define

r(_,_) = max{.(,) -- _(w) :w e nbr(,),_(w) < _(,)},
/3(G,a) = max{a(v)-a(w): (v,w) • E).

Hence we can write the envelope size and work associated with an ordering c_ as

Esize(G,_) = Z _(v) =
vEV

Wbo.nd(C,_) = _ _(v)2 =
vEV

max{a(v) - a(w) " w E nbr(v),a(w) < a(v)}
vEV

max{(c_(v)- c_(w))2 : w E nbr(v),ct(w) < c_(v)}.
vEV

The goal is to choose a vertex ordering a : V H {1,..., n} to minimize one of the param-

eters described above. We denote by Esizem_n(G) (Wbouna_,(G)) the minimum value of

Esize(G, _) (Wbound(G, a)) over all orderings _. The reader can compute the envelope size

of the numbered graph in Figure 2.1, using the definition given in this paragraph, to verify

that Esize(G) = 24.

The jth front-width has an especially nice interpretation if we consider the adjacency

graph G = (V, E) of A. Let the vertex corresponding to a column j of A be numbered vj so

that V = {v_,...,v,}, and define V_ = {va,...,vj}. Denote adj(X) = (U,,exadj(v)) \ X, for

a subset of vertices X. Then cj(A) = ladj(V_)l.
To illustrate the dependence of the envelope size on the ordering, we include in Figure 2.2

an ordering that leads to a smaller envelope size for the 7-point grid. Again, a ' • ' indicates

a nonzero element, and a ' * ' indicates a zero element that belongs to the lower triangle of

the envelope in the matrix. This ordering by 'diagonals' yields the optimal envelope size for

the 7-point grid [24].

2.2. 1- and 2-sum problems. It will be helpful to consider quantities related to the

envelope size and envelope work, the i-sum and the 2-sum. We write the envelope size and
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Fro. 2.2. Another ordering of a 7-point grid and the corresponding matrix. Again the lower triangle of

the envelope is indicated by marking the zeros within it by asterisks.

(2.2)

1-sum, and the envelope work and the 2-sum in a way that shows their relationships:

n

e iz (A) = max (i- j),
i=z jsrow( i)

Te

(2.3) ax(A) = _ _ (i-j);

i=1 jerow(i)
7_

(2.4) Wbound(A) = _ max (i-j)2,
i=l jerow(i)

Tt

(2.5) cry(A) = y_. _ (i- j)2.

i---1 jEFOW(i)

The parameters crl,mi_(A) and a_,m;_(A ) are the minimum values of these parameters over

all permuted matrices pTAp.

More generally, for real 1 _< p < ec, we define the p-sum to be

=

n

a;(A)= _ _ (i-j)v.

j row(i)

The i-sum problem (p = 1) has also been called the optimal linear arrangement problem,

and the limiting case p = ec corresponds to the bandwidth problem; both these problems are

NP-complete.

We now consider the relationships between the envelope size problem and the i-sum

problem, and between the envelope work problem and the 2-sum problem. Let A denote

the maximum number of offdiagonal nonzeros in a row of A. (This is the maximum vertex

degree in the adjacency graph of A.)

6



THEOREM2.1. The minimum values of the envelope size, envelope work in the Cholesky

factorization, 1-sum, and 2-sum of a symmetric matrix A are related by the following in-

equalities:

(2.6) Esiz m  (A) <_  l,m n(A) <_AEsiz    (A);

(2.7) Wboundmi_(A) < a_,mi_(A ) < AWboundmi_(A);

(2.8) a2,m,_(A) <_ ch,m,,_(A) < _f_la2,m,_(A).

Proof. We begin by proving (2.7). Our strategy will be to first prove the inequalities

Wbound(A) <_ a_(A) < AWbound(A),

and then to obtain the required result by considering two different permutations of A.

The bound Wbound(A) < a_(A) is immediate from equations (2.4) and (2.5). If the

inner sum in the latter equation is bounded from above by

A max (i--j)2,
jErow(i)

then we get AWbound(A) as an upper bound on the 2-sum.

Now let X_ be a permutation matrix such that A_ - XTAX_, and Wbound(_) =

Wbound_,_(A). Then we have

a_,mi,_(A ) < a_(A_) < AWbound(_) = AWboundm,,_(A).

Further, let X2 be a permutation matrix such that A_ - XTAX2, and a_(_) = a_,mi_(A ).
Again, we have

Wboundmin(A) <_ Wbound(m2) <_ a_(A2) = a_,mi_(A ).

We obtain the result by putting the last two inequalities together.

We omit the proof of (2.6) since it can be obtained by a similar argument, and proceed

to prove (2.8). The first inequality a2(A) < a_ (A) holds since the p-norm of any real vector

is a decreasing function of p. The second inequality is also standard_ since it bounds the

1-norm of a vector by means of its 2-norm. This result was obtained earlier by Juvan and

Mohar [22]; we include its proof for completeness. Applying the Cauchy-Schwarz inequality

to a_(A) we have

2

,=a jcrow(i)

\_=a j_row(i) i=1 jerow(i)

We obtain the result by considering two orderings that achieve the minimum 1- and 2-sums.
D

7



3. Bounds for envelope size. In this sectionwepresentsomeboundsfor the envelope
sizeproblem. We will require somebackgroundon the Laplacianmatrix.

3.1. The Laplacian matrix. The Laplacianmatrix Q(G) of a graph G is the n × n

matrix D - M, where D is the diagonal degree matrix and M is the adjacency matrix of G.

If G is the adjacency graph of a symmetric matrix A, then we could define the Laplacian

matrix Q directly from A:

O1 if i ¢ j and aij 7_ O,
ifiCjand a 0=0,

qij

_,_1 Iqijl if i = j.
j¢i

Note that

(3.1)

x__TQx = x__TDx -- xTMx

= _ (xi-xj) 2.
j<i

a 0 ¢0

The eigenvalues of Q(G) are the Laplacian eigenvaIues of G, and we list them as _1(@) <_

_2(Q) 5... _< _,_(Q). An eigenvector corresponding to _k(Q) willbe denoted by mk, and will

be called a kth eigenvector of Q. It is well-known that Q is a singular M-matrix, and hence

its eigenvalues are nonnegative. Thus _1 (Q) = 0, and the corresponding eigenvector is any

nonzero constant vector c. If G is connected, then Q is irreducible, and then t2(Q) > 0; the

smallest nonzero eigenvalues and the corresponding eigenvectors have important properties

that make them useful in the solution of various partitioning and ordering problems. These

properties were first investigated by Fiedler [8, 9]; as discussed in Section 1, more recently

several authors have studied their application to such problems.

3.2. Laplaeian bounds for the envelope size. It would be helpful to work with

the 'column-oriented' definition of the envelope size. Let the vertex corresponding to a

column j of A be numbered vj in the adjacency graph so that V = {vl,...,v,_}, and let

Vj = {Vl,...,vj}. Recall that the width of a column j of A is cj(A) = ladj(Vj)l, and that

the envelope size is

n

Esize(A) = _ cj.
j=l

Recall also that A denotes the maximum degree of a vertex, and that given a set of vertices

S, we denote by 5(S) the set of edges with one endpoint in S and the other in V \ S.

We make use of the following elementary result, where the lower bound is due to Alon

and Milman [1] and the upper bound is due to Juvan and Mohar [22].

LEMMA 3.1. Let S c V be a subset of the vertices of a graph G. Then

  (Q)ISllV\SI  ls(S)l   (Q)lSllV\SI []
n n



THEOREM 3.2. The envelope size of a symmetric matrix A can be bounded in terms of

the eigenvalues of the associated Laplacian matrix as

As(e) (n_ _ 1) < Esize(A) < A_(Q) (n_ _ 1).
6A - - 6

Proof. From Lemma 3.1,

15(Vj)[ __ A2(Q)N(n-N).
n

Now cj(A) = [adj(Vj)[ > [_(Vj)[/A; substituting the lower bound for [5(Vj)[, and summing

this latter expression over all j, we obtain the lower bound on the envelope size.

The upper bound is obtained by using the inequality cj(A) <_ ]5(Vj)[ with the upper
bound in Lemma 3.1. []

Cuthill and McKee [3] proposed one of the earliest ordering algorithms for reducing the

envelope size of a sparse matrix. George [12] discovered that reversing this ordering often

leads to a significant reduction in envelope size and work. Since then the reverse-Cuthill-

McKee (RCM) ordering has become one of the most popular envelope size reducing orderings.

However, we do not know of any published quantitative results on the improvement that may

be expected by reversing an ordering, and here we present the first such result. For degree-

bounded finite element meshes, no asymptotic improvement is possible; the parameters are

improved only by a constant factor.

THEOREM 3.3. Reversing the ordering of a sparse symmetric matrix A can change

(improve or impair) the envelope size by at most a factor A, and the envelope work by at

most A 2, where A is the maximum number of offdiagonal nonzeros in a row (column) of A.

Proof. Let vj denote the vertex in the adjacency graph corresponding to the jth column

of A (in the original ordering) so that the jth column width cj(A) = [a#(Vj)[, where Vj =

{Vl,..., vj}. Let .4 denote the permuted matrix obtained by reversing the column and row

ordering of A. We have the inequality

c_(A) = [adj(V_) I < I,S(Vj)I _<Aladj(V \ Vj)] = Acn_j(.4).

Since Esize(A) = _j_=_ cj(A), summing this inequality over j from one to n, we obtain

Esize(A) < AEsize(_l). By symmetry, the inequality Esize(_i) <-AEsize(A) holds as
well.

The inequality on the envelope work follows by a similar argument from the equation
n 2 []Ework(A) = (1/2) _j=_ cj.

4. Quadratic assignment formulation of 2- and 1-sum problems. We formulate

the 2- and 1-sum problems as quadratic assignment problems in this section.

(4.1. The 2-sum problem. Let the vector p_ = 1 2 ... n , and let _ be a

permutation vector, i.e., a vector whose components form a permutation of 1, ..., n. We

may write _ = Xp_, where X is a permutation matrix with elements

1, ifj=c_(i)xij = 0, otherwise

9



It is easilyverifiedthat the (a(i), a(j)) element of the permuted matrix XTAX is the element

aij of the unpermuted matrix A. Let B = p__p_T; then b,j = ij. We denote the set of all

permutation vectors with n components by S_.

We write the 2-sum as a quadratic form involving the Laplacian matrix Q.

a_,m_(A ) = mina_(XTAX)
X

= min ___ (a(i) - a(j)) 2
Ct6 S_

o(_)_<,_(i)
aa(1),ck(j)_O

= min _TQa_
Ct6 S_

= min _ _ qij a(i)a(j).
____6Sn i=1 j=l

The transformation from the second to the third line makes use of (3.1).

This quadratic form can be expressed as a quadratic assignment problem by substituting

b_(o,_(j) = c_(i)c_(j):

min c_TQa = rain E E qo b,_(i)_,(j).
_6s. -- -- __6s. i=l j=]

There is also a trace formulation of the QAP in which the variables are the elements of

the permutation matrix X. We obtain this formulation by substituting Xp_ for __. Thus

min c__rQ__ = minpTXTQXp_.
___6S. X --

We may consider the last scalar expression as the trace of a 1 x 1 matrix, and then use the

identity tr MN = tr NM to rewrite the right-hand-side of the last displayed equation as

min tr QXp pTxT _ rain tr QXBX T.
X ---- X

This is a quadratic assignment problem since it is a quadratic in the unknowns xij, which

are the elements of the permutation matrix X. The fact that B is a rank-one matrix leads

to great simplifications and savings in the computation of good lower bbunds for the 2-sum

problem.

4.2. The 1-sum problem. Let M be the adjacency matrix of a given symmetric matrix

A and let S denote a 'distance matrix' with elements sq = li - Jl, both of order n. Then

ol,mi,_(A) = mina_(XTAX)
X

= min _ c_(i) - c_(j)
Ct6 S_

rnc4i),a(j)¢O

7% n

= (1/2)_a6s,min i_lZmij.== s_(i),_(d)

= (1/2) min tr MXSX T.

10



Unlike the 2-sum,the matrices involved in the QAP formulation of the 1-sumare both
of rank n. Hence the bounds we obtain for this problem by this approach are considerably
more involved.

5. Eigenvalue bounds for the 2-sum problem.

5.1. Orthogonal bounds. We have expressed the 2-sum problem as a QAP involving

the Laplacian matrix Q and the matrix B = p_pT, where p__is an n-vector with i-th component

equal to i. The trace formulation of the QAP is

min tr QXBX T,
X

where X ranges over the set of permutation matrices.

A technique for obtaining lower (upper) bounds for a QAP is to relax the requirement

that the minimum (maximum) be attained over the class of permutation matrices. Denote

the n-vector of all ones by u_. A matrix X of order n is a permutation matrix if and only if

it satisfies the following three constraints:

(5.1) Xu_ _ U, xTu = u;

(5.2) x =

(5.3) xij >_ O, i,j= l,...,n.

The first of these, the stochasticity constraint, expresses the fact that each row or column of

a permutation matrix has a single nonzero element with value one; the second states that a

permutation matrix is orthonormal; and the third that its elements are non-negative. The

simplest bounds for a QAP are obtained when we relax both the stochasticity and non-

negativity constraints, and insist only that X be orthonormal. The following result is from
[10]; see also [11].

THEOREM 5.1. Let the eigenvalues of a matrix be ordered

___ <

Then, as X varies over the set of permutation matrices, the following upper and lower bounds
hold:

n n

1i(Q)A_+l-i(B) < tr QXBX T <_ _ Ai(Q)A,(B).
i=1 i=l

[]

The Laplacian matrix Q has A,(Q) = 0; also hi(B) = 0, for i = i, ..., n- 1, and

A_(B) = _pT_p= (1/6)n(n + 1)(2n + i). Hence the lower bound in the theorem above is zero,

and the upper bound is (1/6)A,_(Q)n(n + 1)(2n + 1).

5.2. Projection bounds. Stronger bounds can be obtained by a projection technique

described by Hadley, Rendl, and Wolkowicz [i7]. The idea here is to satisfy the stochasticity

constraints in addition to the orthonormality constraints, and relax only the non-negativity

constraints. This technique involves projecting a permutation matrix X into a subspace

ortt_ogonal to the stochasticity constraints (5.1) by means of an eigen-projection.

11



From now on we normalize _u := (1/v/if)u , and let the n x n 1 matrix V be an

orthonormal basis for the orthogonal complement Of u. By choice of V, we have vTu__ = 0_,

and P = ( u_ V ) is an orthonormM matrix of order n.
Observe that

tlT xtl uT xv 1 0 T

where Y - vTxV.

This suggests that we take

(5.4)

X
10T)pT= P O_Y

= Uu T-I-VYV T.

Note that with this choice, the St0chasticity constraints Xu_ = u_u_,and xT__ = U are satisfied.

Furthermore, if X is an orthonormaI matrix of order n, then

1 fiT)pTxp = O_ Y

is orthonormal, and this implies that Y" is an orthonormal matrix of order n - 1. Conversely,

if Y is orthonormal of order n - 1, then the matrix X obtained by the construction above

is orthonormal of order n. The non-negativity constraint X >_ 0 becomes, from (5.4),

VYV T >__-u_ u__T. These facts will enable us to express the original QAP in terms of a

projected QAP in the matrix of variables Y.

To Obtain the projected QAP, we substitute the representation of X from (5.4) into the

objective function tr QXBX r. Since Qu_ = 0__by the construction of the Laplacian, terms of

the form Qu_ u_T--. vanish. Further,

tr Q vYV T Bu u T = tr u_TQ VYVC_ u,

where we use the identity tr MN = tr NM for an n x k matrix M and a k x n matrix

N. Again this term is zero since u__TQ = 0__T. Hence the only nonzero term in the objective

function is

tr Q VYV T B vyTv T

= tr (VrQV) Y (VTBV) yr

= tr (2Y[_Y T,

where M = VMV r.

We have obtained the projected QAP in terms of the matrix Y of order n - 1, where

the constraint that X be a permutation matrix now imposes the constraints that Y is or-

thonormaI and that VYV T >_ -u_ u_T. We obtain lower and upper bounds in terms of the

eigenvalues of the matrices 0 and/? by relaxing the non-negativity constraint again.

12



THEOREM 5.2. The following upper and lower bounds hold for the 2-sum problem:

(1/12)A2(Q)(n - 1)n(n + 1) < a_(A) < (1/12)A,_(Q)(n- 1)n(n + 1).

Proof. If we apply the orthogonal bounds to the projected QAP, we get

n-1 n-1

i=1 i=1

The vector u_u_is the eigenvector of Q corresponding to the zero eigenvalue, and hence eigen-

vectors corresponding to higher Laplacian eigenvalues are orthogonal to it. Thus any such

eigenvector x_j can be expressed as x4 = Vr__j. Substituting this last equation into the eigen-

value equation Qxj = _j(Q)x__j, and pre-multiplying by V T, we obtain (_rj = )_j(Q)r__j. Hence

for i = 2,..., n, we have _,(Q) = _,-I(Q). Also, An-l(/_) = pTVVTp, and all other eigen-

values are zero. Hence it remains to compute the largest eigenvalue of/3.

From the representation In = ppT = u u T + VV T, we compute

pTVVTp_ = pT p _ (pT u_) (U__T p)

= (1/6)n(n + 1)(2n + 1)-(1/4)n(n + 1) 2 = (1/12)(n - 1)n(n + 1).

We get the result by substituting these eigenvalues into the bounds for the 2-sum. []

For justifying the spectral algorithm for minimizing the 2-sum, we observe that the

lower bound is attained by the matrix Xo = u u T + VRSTV T, where R (S) is a matrix

of eigenvectors of Q (/_), and the eigenvectors correspond to the eigenvalues of (_ (/3) in

increasing (decreasing) order.

The result given above has been obtained by Juvan and Mohar [22] without using a QAP

formulation of the 2-sum. We have included this proof for two reasons: First, in the next

subsection, we show how the lower bound may be strengthened by diagonal perturbations

of the Laplacian. Second, in the following section, we consider the problem of finding a

permutation matrix closest to the orthogonal matrix attaining the lower bound.

5.3. Diagonal perturbations. The lower bound for the 2-sum can be further ira-

proved by perturbing the Laplacian matrix Q by a diagonal matrix Diag(d), where d is an

n-vector, and then using an optimization routine to maximize the smallest eigenvalue of the

perturbed matrix.

Choosing the elements of _d such that its elements sum to zero, i.e., u__Td= 0, simplifies

the bounds we obtain, and hence we make this assumption in this subsection. We begin by

denoting Q(d) = Q + Diag(d_), and expressing

f(X) = trQ XBX T = tr Q(d)XBX T - tr Diag(cl)XBX T.

The second term can be written as a linear assignment problem (LAP) since one of the

matrices involved is diagonal. Let the permutation vector _a = Xp, and let _dB denote the

n-vector formed from the diagonal elements of B.

n

tr Diag(d)XBX T = _ dib_(1),_(i) = tr ddBTX T.

i----1

13



We now proceed, as in the previous subsection, to obtain projected bounds for the

quadratic term, and thus for f(X). Note that Q(d)u_ = (1/v/'_)_d since Qu_ = 0; and

u_TQ(d)u_ = 0 since the elements of d sum to zero. We shall write Bu_ = (1/v/-n-)r_(B) to

denote the row-sum of the elements of B.

With notation as in the previous subsection, we substitute X = u_u_T + VYV T in the

quadratic term in f(X). The first term tr Q(d)u_ uTBu_ UT = tr u__TQ(d)u uTBu_ = 0. The

second and third terms are equal, and their sum can be transformed as follows:

2 tr Q(d)VYVTBu__u T = 2 tr uTQ(d)VYVTBu_

= (21n)trd_rVYVT _(B)= Vr _(B)d VY
= (2/n) tryTVTdr_(B)Tv = (2/n)tr dr(B)TvyTv T.

Note that this term is linear in the projected variables Y, and we shall find it convenient to

express it in terms of X by the substitution X r - u_u__T = vyTv T. Thus

(2/n) tr dr(B)TvYTV r = (2/n)tr d r_(B)T(x T -- ILzt T) = (2/n) tr dr(B)Tx T,

since the second term is equal to tr u_T d r_(B)Tu, which is zero by the choice of d_.

Finally, the fourth term becomes trQ(d)YBY T, where _)(d)= VTQ(d)V, and as before

[_ = VT BV.

Putting it all together, we obtain

f(X) = trQ(d)YBY T + tr ((2/n)VTd_r__(B)Tx T -dd_sTxT) .

Observe that the first term is quadratic in the projected variables Y, and the remaining terms

are linear in the original variables X. Our lower bound for the 2-sum shall be obtained by

minimizing the quadratic and linear terms separately.

We can simplify the linear assignment problem by noting that B = p pT. Thus rB,i =

i_j_=lj = (1/2)n(n + 1)i, and hence (2/n)r__(B)= (n + 1)p. Further, _dB = sq(p), the vector

with ith component equal to i 2. Hence the final expression for the linear assignment problem

is

tr_ + -- q(J) XT"

Let L denote the minimum value of this problem (over the set of permutation matrices X,

for a given _d), which can be computed as the solution of a transportation problem.

The eigenvalues of/? can be computed as in the previous subsection. We may choose d

to maximize the smallest eigenvalue of the matrix Q(d). Thus this discussion leads to the

following result.

THEOREM 5.3. The minimum 2-sum of a symmetric matrix A can be bounded as

ag,m{_(A) k m__x(1/12)ll(O(d))(n- i)n(n + 1) + L,

where the components of the vector d sum to zero. []
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6. Computing an approximate solution from the lower bound. Consider the
problemof finding a permutation matrix Z "closest" to an orthogonal matrix X0 that attains

the lower bound in Theorem 5.2. We show in this section that sorting the second Laplacian

eigenvector components in non-increasing (also non-decreasing) order yields a permutation

matrix that solves a linear approximation to the problem. This justifies the spectral approach

for minimizing the 2-sum.

Since X0 attains the lower bound in Theorem 5.2, Xo = u u T + VRSTV T, where R (S)
A _ A A

is a matrix of eigenvectors of Q (B) corresponding to the eigenvalues of Q (B) in increasing

(decreasing) order. We begin with a preliminary discussion of some properties of the matrix

X0 and the eigenvectors of Q. For j = 1, ..., n - 1, let the jth column of R be denoted

by r_j, and similarly let s__jdenote the jth column of S. Then s_1 = vTp_, and for j = 2, ...,

n - 1, the vector s_j is orthogonal to VTp, i.e.,

(6.1) s jTvTp -_ O.

Recall from the previous section that a second Laplacian eigenvector x 2 = Vr_ 1.

Now we can formulate the "closest" permutation matrix problem more precisely.

minimum 2-sum problem may be written as

min II(Q+  I)l/2Zpl12
Z

The

We have chosen a positive shift a to make the shifted matrix positive definite and hence

to obtain a weighted norm by making the square root nonsingular. It can be verified that

the shift has no effect on the minimizer since it adds only a constant term to the objective
function.

We substitute Z = Xo + (Z - X0) and expand the 2-sum about X0 to obtain

II(Q+ M)I/2zp__II22 =

(6.2) II(Q +  I)a/ Xop_ll: + 2tr p__Z(Z - xo)T(Q + _I)Xop__+ II(Q + o_I)1/2( z - Xo)pll2

The first term on the right-hand-side is a constant since X is a given orthogonal matrix;

the third term is a quadratic in the difference (Z - X0) and hence weneglect it to obtain a

linear approximation. It follows that we can choose a permutation matrix Z close to X0 to

approximately minimize the 2-sum by solving

(6.3) mintr pT zT(Q + c_I)Xop : min tr (Q + c_I)XoBZ T.
Z -- -- Z

Substituting for X0 from (5.4) in this linear assignment problem and noting that Qu = 0_,
we find

(6.4)

rain tr (Q + aI)XoBZ T = min tr (Q + aI) (u u T + VRsTVT)BZ T
Z Z

= min tr QvRsTVTBZ r + _tr u uTBZ T + (_tr vRsTvTBz T.
Z

15



The secondterm on the right-hand-sideis a constant since

tr u uT B Z T

= iv)tr p_rZr
= (U T p) tr ZTupT

= (ur io) .

Here we have substituted ZTu = u_ from (5.1). We proceed to simplify the first term in (6.4),

which is

tr QVRST BZ T =

From (6.1) we find that s_jTVTp : O, for j = 2, ..., n - 1, and hence only the first term in

the sum survives. Noting that s__1 = VTE, and V_r x = x__2,this term becomes

tr Qx_s ivTvvTp__p_T z T = As(Q)(p__TvvTp__) tr z_s p_f Z T'

The third term in (6.4) can be simplified in like manner, and hence ignoring the constant

second term, this equation becomes

(Az(Q) + c_)(pTVVTp_) min tr z_2 pTzT.
Z

Hence we are required to choose a permutation matrix Z to minimize tr x_.2p__TzT =

tr ZTx2 pT. The solution to this problem is to choose Z to correspond to a permutation

of the components of x__2 in non, increasing order, since the components of the vector iv are

in increasing order. Note that -x_ is also an eigenvector of the Laplacian matrix, and

since the positive or negative signs of the components are chosen arbitrarily, sorting the

eigenvector components into non-decreasing order also gives a permutation matrix Z closest

to the orthogonal matrix X0.

Similar techniques can be used to show that if one is interested in rr_ximizing the 2-sum,

then a closest permutation matrix to the orthogonal matrix that attains the upper bound

in Theorem 5.2 is approximated by sorting the components of the Laplacian eigenvector x_,_

(corresponding to the largest eigenvalue A_(Q))in non-decreasing (non-increasing) order.

7. Implications. In this section we consider the implications of the spectral lower

bounds that we have obtained. We denote the eigenvalues As(Q) by A2 and A_(Q) by A_

for the sake of brevity in this section. We make use of the following result whose proof

may be found in [33]. Let {Gn} represent a family of graphs with parameter n representing

the number of vertices, and let G be a graph on n vertices from this family. Then G has

an f(n)-separator S if ]S] : O(f(n)), and S separates G \ S into two parts A, B with

hn < [A[,]B] _< (1- h)n, where 0 < h < 1. (Thus A and B have O(n) vertices.) For

instance, planar graphs have x/_-separators.

16



THEOREM7.1. If the family {Gn} has f(n)-separators, then

A_ < KA(n) f(n),
n

where K is a constant independent of n, and A(n) is the maximum degree of any vertex in

G. D

Results of this nature, involving separator properties of graphs, provide the tightest

known upper bounds for the second eigenvalue. Other results [8] that bound A2 in terms of

the edge or vertex connectivity lead to an upper bound equal to at least one.

We can use information about the asymptotic behavior of the second eigenvalues together

with the bounds we have obtained to predict the behavior of envelope parameters. For the

envelope size, we make use of Theorem 3.2; for the estimate of the envelope work Wbound(A),

we will need to combine Theorem 5.2 and Theorem 2.1 to obtain the following result.

THEOREM 7.2. The estimate of the minimum work in an envelope factorization scheme

of a symmetric positive definite matrix A is bounded by

1

Wboundmi,_(A) >_ 1-_ A2(Q)(n- 1)n(n + 1). []

(Note that we have chosen to use the simpler bounds in Theorem 5.2 rather than the

bound from Theorem 5.3.)

The bound on envelope size is tight for rather dense graphs and matrices. For instance,

the full matrix (the complete graph) has A2 = A + 1 = n, and hence Esizemin(A) = O(n2).

Similarly we find that the bound on the envelope work Wboundm_,_(A) = @(n3). Moreover,

the predicted lower bound is within a factor of three of the envelope size. These bounds are

also asymptotically tight for random graphs where each possible edge is present in the graph

with a fixed probability p, since the second Laplacian eigenvalue satisfies [21]

A2 = pn - @([p(1 - p)n log n]1/2).

We are interested in understanding the implications of these bounds for finite element

meshes in two and three dimensions, with the maximum degree A bounded independent

of n. For planar meshes, since f(n) = O(na/2), we have that A2 = 0(n-1/2). Note that

'well-shaped' two-dimensional finite element meshes have A2 = O(h 2) _ G(n-a), where h is

the (uniform) distance between two successive points of the mesh along the x- or y-axis. For

three-dimensional meshes that possess n 2/a separators, we have A2 = O(n-X/3). Again for

'good' three-dimensional meshes, we have A2 = G(h 2) = O(n-2/3).

Plugging in the bounds above for A2 into the envelope size and envelope work bound,

we find that for planar meshes that have A2 = @(n-I/2), the envelope size Esizemi,_(A) =

f_(na/2), and the work bound is Wboundm,n(A) = f_(nS/2). For planar meshes with A2 =

O(n-1), we obtain the lower bounds Esizem,n(A) = fl(n), and Wboundm,.(A) = fi(_). For

three-dimensional meshes that have A_ = @(n-I/a), we have Esize_i,_(A) = f_(n s/a) and

Wboundmi,_(A) = fl(nS/a). Again for 'good' three-dimensional meshes with A2 = ®(n-2/3),

we have Esizem_n(A)= f_(n 4/3) and Wbound_i,(A)= f2(nT/3).

It is easy to establish that ,k_ _< 2A for all graphs, by considering the eigenvalue equa-

tion Qx__ = Anx_. Since we are considering bounded-degree finite element meshes, from
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Theorem 3.2, Theorem 5.2, and Theorem 2.1, the upper bound on the envelope size is

esize(A) = O(n 2) and that on the work bound is B%ound(A) = O(n3). Notice that the

gap between the lower bound and the upper bound on these parameters is quite large.

How good are the lower bounds on the envelope size and estimate of the envelope work?

To answer this question, we prove upper bounds for these parameters from a "modified

nested dissection" ordering of graphs with good separators. At each level, if a separator S

separates the current graph G into two parts A, B, then in this ordering vertices in A are

numbered first, then the vertices in S, and finally the vertices in B. (See the ordering in

Figure 2.1, where S corresponds to the set of vertices in the middle column.) For simplicity

of exposition, initially consider the class of planar graphs.

THEOREM 7.3. The minimum envelope size of a symmetric matrix of order n, M, whose

adjacency graph G is a bounded-degree planar graph, satisfies Esize,_n(M) = O(nlS).

Proof. Let a separator S separate G into parts A and B, with IA[ = an _> IBI =/3n, and

tSI = cv/_, where c_ +/3 = 1. From the planar separator theorem [26], (_ is bounded between

1/2 and 2/3. Consider the modified nested dissection ordering that numbers vertices in A

first, then vertices in S, and finally vertices in B. The contribution to the envelope size

made by vertices in S is at most cv/na n, since each of them has row-width at most IA].

Also, there are at most ACv/-ff vertices in B adjacent to vertices in S; each of these vertices

has row-width at most/3n since they may be numbered last in B, and hence such vertices

contribute at most Cv:ffAfln to the envelope size.

The reasoning above leads to the recurrence

E(n) _< E(an) + E(_n) + c(a + _,:,) n 1'5.

Let a = a 15 + :_1.5. Then it is easy to show that a < 1 since a +/3 = 1. The solution to the

recurrence is

a

< 1-5.
-- 1--a

This completes the proof. []

This technique can be used to prove that Wbound(A) = O(n 25) for matrices whose

adjacency graphs are bounded-degree planar graphs. For matrices whose adjacency graphs

(i) have bounded-degree, (ii) are embeddable in three dimensions, an, d (iii) possess n 2/a-

separators, the upper bounds are Esize(A)= O(n s/a) and Wbound(A) = O(nS/3). These

results show that the lower bounds on the minimum envelope size (and the estimate of the

work-bound) are asymptotically tight for two-dimensional meshes with A2(G) = @(n-'/2),

and for three-dimensional meshes with A2(G) = @(n-a�3). Upper bounds as in the previous

theorem can also be established for the class of bounded-degree overlap graphs embedded

in d-dimensional space [28]; these graphs have O((d- 1)/d)-separators that separate them

into two parts with at most ((d + 1)/(d + 2))n vertices in the larger part.

The broader implication of the result above is that if a problem possesses good separators,

then it has small envelope size and work. In practice, there exist orderings with smaller

envelope parameters than the modified nested dissection ordering.

We conclude that for problems in dimensions greater than two, asymptotically envelope

factorization schemes are not competitive with iterative methods or direct methods that
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IVl IE[

18 48

66 192

258 768

1,026 3,072

4,098 12,270

16,386 49,152

2.00

6.25e-1

1.65e-1

4.17e-2

1.05e-2

2.60e-3

Spectral Spectral Gap(%)

LB 2-sum

969 978 0.9

1.50e+4 1.54e+4 2.6

2.36e+5 2.53e+5 6.9

3.75e+6 4.05e+6 7.4

6.00e+7 6.44e+7 7.3

0.953e+9 1.03e+9 9.1

TABLE 8.1

2-sums from the spectral reordering algorithm and lower bounds for triangulations of the sphere.

store and operate on only the nonzero elements. (For the latter, the storage requirements

are O(nlogn) and work is O(n ls) for a two-dimensional problem; in three dimensions,

these are O(n4/31ogn) and O(n2).) But when a two-dimensional mesh possesses a small

second Laplacian eigenvalue, envelope methods may be expected to work well. Similar

conclusions should hold for three-dimensional problems when the number of mesh-points

along the third dimension is small relative to the number in the other two dimensions, and

for two-dimensional surfaces embedded in three-dimensional space.

8. Computational results. We present computational results to verify how well the

spectral ordering reduces the 2-sum. We report results on two sets of problems.

The first set of problems, shown in Table 8.1, is obtained from John Richardson's (Think-

ing Machines Corporation) program for triangulating the sphere. The spectral lower bounds

reported are from Theorem 5.2. The results show that the spectral reordering algorithm

computes values within a few percent of the optimal 2-sum, since the gap between the 2-sum

lower bounds and the spectral 2-sums is within that range.

Table 8.2 contains the second set of problems, taken from the Boeing-Harwell and Nasa

collections. Here the bounds are weaker than the bounds in Table 8.1. These problems

have two features that distinguish then from the sphere problems. Many of them have

less regular degree distributions--e.g., NASA1846 has maximum degree 41 and minimum

degree 5, though NACA is an exception. They also represent more-homplex geometries.

Nevertheless, these results imply that the spectral 2-sum is within a factor of two of the --

optimal value for these problems.

The gap between the computed 2-sums and the lower bounds could be further reduced

in two ways. First, a local reordering algorithm applied to the ordering computed by the

spectral algorithm might potentially decrease the 2-sum. Second, the lower bounds could be

improved by incorporating diagonal perturbations to the Laplacian. We will consider both

these issues in future work.

9. Conclusions. The lower bounds on the 2-sums show that the spectral reordering

algorithm can yield nearly optimal values. To the best of our knowledge, these are the first

results providing reasonable bounds on the quality of the orderings generated by a reordering

algorithm for minimizing envelope-related parameters. Earlier work had not addressed the
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-Problem [V[ [El A2

CAN1072 1,072 5,686

NASA1824 1,824 18,692

NASA2146 2,146 35,052

NACA 4,224 12,416

BARTH4 6,019 17,473

BARTH 6,691 19,478

7.96e-2

2.71e-1

1.35e-1

3.57e-3

1.756-3

2.62e-3

Spectral Spectral Gap(%)

LB 2-sum

8.17e+6 9.02e+6 9.4

1.37e+8 1.74e+8 21

1.11e+8 1.32e+8 16

2.24e+7 2.70e+7 17

3.19e+7 5.41e+7 41

6.55e+7 1.39e+8 53

TABLE 8.2

2-sums from the spectral reordering algorithm and lower bounds for some problems from the Boeing-
Harwell and Nasa collections.

issue of the quality of the orderings generated by the algorithms. The lower bounds for the

envelope size and envelope work are not useful in assessing the quality of envelope-reducing

orderings, but are asymptotically tight for certain classes of 2- and 3-dimensional meshes. It

remains to be seen if lower bounds obtained via the QAP formulation of the 1-sum problem

lead to better results for the envelope size. Designing local reordering algorithms to improve

the quality of the spectral orderings is another priority.
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Appendix

A. Lower bounds on the minlmum p-sum. We prove tWO lower bounds on the

minimum p-sums. We make use of Lemma 3.1 in proving the first result. In the following

Bin(x) is the mth Bernoulli polynomial, and Bm is the ruth Bernoulli number.

THEOREM A.1. For 1 < p < 0% the minimum p-sum of a graph G on n vertices

satisfies

1

or,p _> p+l--(B'+l(s + 1) - B,+I)

where s = (_2/4A)n.

Proof. Consider any ordering a of the vertices of G. Partition the vertices into two sets:

A consisting of the lowest-numbered n/2 vertices, and B consisting of the highest-numbered

n/2 vertices. By Lemma 3.1 the number of edges joining A and B, [5(A, B)], is

IS(A,B)] >_ )_2(n/2)2.
n

Hence at least s = I_(A,B)I/A verticesin=B: are adjacent to vegtices in A- Each vertex

in this subset of B has the least row-width when it is adjacent to the highest-numbered

vertex in A and to no other vertices in A. Hence these s vertices make a contribution of at

least I p + ... + s p to the p-sum, and this sum can be expressed in terms of the Bernoulli

polynomials as stated. []

From an expansion of the Bernoulli polynomial, we find that asymptotically

p>
O'p __

1

(p+ 1)(4A)P+a _2P+XnP+a + O((:_¢lzX')n').

We proceed to obtain another lower bound on the minimum p-sum.

The next result makes use of the following Lemma A.2 recently proved by Helmberg et

al. [18]. Define the following symmetric function of the two positive integers rnx, rn2 (with

rnl + rn2 < n) and parameters _2, ,kn:

(A.1) f(ml,m2) =

2n [(_-t- _/(n--ml)(n--m2))_2-t- (_--_/(n--ml)(n--m2)))_n].

LEMMA A.2. Let 5"a, 5"2 be two disjoint subsets of the vertices of a graph G on n vertices,

with [5'i1 =- si, for i = 1, 2. Then the number of edges joining S_ and 5'2, 15(5'1, 5'2)1, satisfies

&)l _>f(sl, 82). []
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TttEOREM A.3. For 1 5 p < _x_, the minimum p-sum of a graph G satisfies

I _2 p+I

_ - 2p+IA(_o+ _,p+2(2_-; + _)(_ + 2A_)np+l

Proof. Consider any ordering a of the vertices of G, and consider a tripartition A, B,

C: We choose A to consist of the lowest-numbered a = (n - b)/2 vertices, C to consist of

the highest-numbered (n - b)/2 vertices, and B to contain the remaining b vertices in the

'middle'. Here b, the size of B, is a parameter that will be determined later to obtain a large
lower bound.

From Lemma A.2, I_(A,C)I, the number of edges joining A and C, is at least f(a,a),

where the symmetric function f(.,.) is defined in (A.1). Hence there are at least sc =

f(a, a)/A vertices in C adjacent to vertices in A. Each of these vertices has row-width at

least b.

Initially, consider the contribution to the envelope size Esize(G) made by these vertices
to obtain a suitable value for b.

(A.2) Esize(G) > f(a'a) b
- A

1

- 4nb(n - b)(_ - (b/n)_).

n-b+ 2
n + b ._,_ _

2 A

We choose b to maximize the lower bound on the envelope size. Differentiating the cubic

polynomial in (A.2) with respect to b and simplifying, we obtain the quadratic equation

2 w m

1_2 22 A2 + Annb+ = O.
3 ;_ -_n

From the quadratic we find that the maximizer is, to first order, bm= (1/2)()_2/(_,, + _))n.

Now we consider the contribution to the p-sum made by the sc vertices in C adjacent

to vertices in A. Each of these vertices contributes at least/_ to the p-sum, and thus a lower

bound on the minimum p-sum is

i

_(a) > _(n - b)(;2 - (_/_);.) b,.

It is not easy to find a maximizer of the right-hand-side in the bound above on the p-sum

since the polynomial in b is of degree p + 2. Hence we choose b equal to the maximizer of the

envelope size. We obtain the bound stated in theorem by substituting b =bm in the bound
above. []

Juvan and Mohar [22] have proved upper bounds for the p-sums. The techniques in this

Appendix can be used to compute bounds on Esize(A) and Wbound(A), but the results are
weaker than those obtained in Section 3.
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