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Abstract

The classical perturbation theory for Hermitian matrix eigenvalue and singular
value problems provides bounds on invariant subspace variations that are proportional
to the reciprocals of absolute gaps between subsets of spectra or subsets of singular
values. These bounds may be bad news for invariant subspaces corresponding to
clustered eigenvalues or clustered singular values of much smaller magnitudes than
the norms of matrices under considerations when some of these clustered eigenvalues
or clustered singular values are perfectly relatively distinguishable from the rest. In
this paper, we consider how eigenspaces of a Hermitian matrix A change when it is
perturbed to A = D*AD and how singular values of a (nonsquare) matrix B change
when it is perturbed to B = D} BD,, where D, D; and D, are assumed to be close
to identity matrices of suitable dimensions, or either D; or D, close to some unitary
matrix. It is proved that under these kinds of perturbations, the change of invariant
subspaces are proportional to the reciprocals of relative gaps between subsets of spectra
or subsets of singular values. We have been able to extend well-known Davis-Kahan
sind theorems and Wedin siné# theorems. As applications, we obtained bounds for
perturbations of graded matrices.

*This material is based in part upon work supported, during January, 1992-August, 1995, by Argonne
National Laboratory under grant No. 20552402 and by the University of Tennessee through the Advanced
Research Projects Agency under contract No. DAAL03-91-C-0047, by the National Science Foundation
under grant No. ASC-9005933, and by the National Science Infrastructure grants No. CDA-8722788 and
CDA-9401156, and supported, since August, 1995, by a Householder Fellowship in Scientific Computing
at Oak Ridge National Laboratory, supported by the Applied Mathematical Sciences Research Program,
Office of Energy Research, United States Department of Energy contract DE-AC05-360R 22464 with Lock-
heed Martin Energy Research Corp. Part of this work was done during summer of 1994 while the author
was at Department of Mathematics, University of California at Berkeley. Its first version was published
as Computer Science Division Technical Report UCB JCSD-94-856, University of California, Berkeley, CA
94720, December, 1994, as well as LAPACK working note # 85.




Ren-Cang Li: Relative Perturbation Theory 2

1 Introduction

Let A and A be two n x n Hermitian matrices with eigendecompositions

A = UAU*E(UI,Uz)‘( & Az)(g;) (1.1)
i- ﬁKﬁ‘s(ﬁl,ﬁg)(A‘ M)(g) (1.2)
2

where U, U € U, Uy, U, € C*** (1< k< n) and

A1 = diag(/\l, coog Ak), A2 = dia,g(/\k+1, coog /\n), (1.3)
A1 = diag(/\l, coog /\k), A2 = diag(Ak+1, coag An) (1.4)

Suppose now that A and A are close. The question is: How close are the eigenspaces
spanned by U; and U; ¢ This question has been well answered by four celebrated theorems
so-called siné, tan@, sin 20 and tan26 due to Davis and Kahan [2, 1970] for arbitrary
additive perturbations in the sense that _the perturbations to A can be made arbitrary
as long as A — A is kept small. It is proved that the changes of invariant subspaces are
proportional to the reciprocals of absolute gaps between subsets of spectra. This paper,
however, will address the same question but under multiplicative perturbations: How close
are the eigenspaces spanned by U; and U; under the assumption that A = D*AD for some
D close to I? Our bounds suggest that the changes of invariant subspaces be proportional
to the reciprocals of relative gaps between subsets of spectra. A similar question for
singular value decompositions will be answered also. To be specific, we will deal with
perturbations of the following kinds:

¢ Eigenvalue problems:

1. A and A = D*AD for the Hermitian case, where D is nonsingular and close to
the identity matrix.

2. A=S8*HS and A = S*H $ for the graded nonnegative Hermitian case, where
it is assumed that H and H are nonsingular and often that S is a highly graded
diagonal matrix (this assumption is not necessary to our theorems).

¢ Singular value problems:

1. Band B = D}BD,, where Dy and D; are nonsingular and close to identity
matrices or one of them close to an identity matrix and the other to some
unitary matrix.

2. B = GS and B = GS for the graded case, where it is assumed that G and
G are nonsingular and often that S is a highly graded diagonal matrix (this
assumption is not necessary to our theorems).
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These perturbations cover component-wise relative perturbations to entries of symmetric
tridiagonal matrices with zero diagonal [4, 9], entries of bidiagonal and biacyclic matrices
[1, 8, 4], and perturbations in graded nonnegative Hermitian matrices [5, 12], in graded
matrices of singular value problems [5, 12] and more [6]. Recently, Eisenstat and Ipsen [7,
1994] launched an attack towards the above mentioned perturbations except graded cases.
We will give a brief comparison among their results and ours.

This paper is organized as follows. We briefly review Davis-Kahan sin # theorems for
Hermitian matrices and their generalizations—Wedin sin @ theorems for singular value
decompositions in §3. We present in §4.1 our sin @ theorems for eigenvalue problems
for A and A = D*AD and for graded nonnegative Hermitian matrices. Theorems for
singular value problems for B and B = DiBD; and for graded matrices are given in §4.2.
We discuss how to bound from below relative gaps, for example, between A; and A, by
relative gaps between A; and A in §5. A word will be said in §6 regarding Eisenstat-
Ipsen’s theorems in comparison with ours. Detailed proofs are postponed to §§7, 8, 9, and
10. Finally in §11, we present our conclusions and outline further possible extensions to
diagonalizable matrices.

2 Preliminaries

Throughout this paper, we will be following notation we used in the first part of this series
Li [11]. Most frequently used are the two kinds of relative distances: g, and x defined for
a, a € C by

l

Qn

la — &] ja -

Q,d) = ——====—
)= e
with convention 0/0 = 0 for convenience.

Lemma 2.1 (Li) 1. Forp,v € C, gy(p,v) < 27YPx(p,v).

for1<p<o,and xa,a)=

b ]

e
3

2. Forp,v € R and v > 0, g,(1,v) < 0p(u?,v?) and 2x(u,v) < x(u?,v?).
3. pp is a metric on R.

4. For p, vy w 2 0, x(p,v) < x(ptsw) + x(w,¥) + §x (b, ¥)x (s w)x (w5 ).

Since this paper concerns with the variations of subspaces, we need some metrics to mea-
sure the difference between two subspaces. In this, we follow Davis and Kahan {2, 1970],
Stewart and Sun [14]. Let X, Xe C"xi (n > k) have full column rank k, and define the
angle matrix @(X, X) between X and X as

O(X, X) & arccos((X*X) 3 X* X (X X)X "X (X*X)~%)~5.

The canonical angles between the subspace X = R(X) and X = R(X) are defined to be
the singular values of the Hermitian matrix ©(X,X), where R(X) denotes the subspace
spanned by the column vectors of X. The following lemma is well-known For a proof of
it, the reader is referred to, e.g, Li [10, Lemma 2.1].
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Lemma 2.2 Suppose that (X,X,) € C*™*" is a nonsingular matriz, and
o o~ ' ~
(X, X)) ' = ( ) ) , Yecrk
4
Then for any unitarily invariant norm || - ||

Jsmotx. 0 = izt x|,

In this lemma, as well as many other places in the rest of this paper, we talk about the

“same” unitarily invariant norm || - || that applies to matrices of different dimensions at
the same time. Such applications of a unitarily invariant norm are understood in the
following sense: First there is a unitarily invariant norm || - || on CM*¥ for sufficiently

large integers M and N; Then for a matrix X € C™*" (m < M and N < n), || Xl is
defined by appending X with zero blocks to make it M x NV and then taking the unitarily

invariant norm of the enlarged matrix.
Taking X = U; and X = U; (see (1.1) and (1.2)), with Lemma 2.2 one has

G(Ul,ﬁl) = arccos(Ui"f/"lI.J"{'Ul)'lf2 and ”lsin @(Ul,ﬁl)m = "

(7;‘U1|" . (25)

For more discussions on angles between subspaces, the reader is referred to Davis and
Kahan (2] and Stewart and Sun [14, Chapters I and IIJ.

3 Davis-Kahan sin@ Theorems and Wedin sinf Theorems

3.1 Eigenspace Variations

Let A and A be two Hermitian matrices whose eigendecompositions are given by (1.1) and

(1.2):
_ oL Ay Us
A=UAU*= (Ul,Ug)( Ay ) ( U; ) (1.1)
icir =@M - V(U (1.2)
’ LI\T )

where U, U € Uy, Uy, U; € C*%k (1 £ k < n)and A;’s and Kj’s are defined as in (1.3)
and (1.4). Define
RY Av, - 1A, = (A - A, (3.1)

The following two theorems are the matrix versions of two sin # theorems due to Davis
and Kahan [2, 1970].

Theorem 3.1 (Davis-Kahan) Let A and A be two Hermitian mairices with eigende-

compositions (1.1), (1.2), (1.3), and (1.4). If6 & 1A = Arjl > 0, then

mm
1<i<k,1<j<n~k

_ A~ AWl
Al

|| sin ©(U1, Tl < "IZ"F (3.2)
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In this theorem, the spectrum of A, and that of A, are only required to be disjoint. In
the next theorem, they are required, more strongly, to be well-separated by intervals.

Theorem 3.2 (Davis-Kahan) Let A and A be two Hermitian matrices with eigende-
compositions (1.1), (1.2), (1.3), and (1.4). Assume there is an interval [, 3] and a § > 0
such that the spectrum of Ay lies entirely in [a, 3] while that of A4 lies entirely outside of
(a— 4,8+ d) (or such that the spectrum of Ag lies entirely in [a, 8] while that of A; lies
entirely outside of (a — §,8 + 8)). Then for any unitarily invariant norm ||| - ||

R (A - A,
<] é .

(3.3)

msin o(ln, Th)

3.2 Singular Space Variations

Now, turn to the perturbations of Singular Value Decompositions (SVD). Let B and B be
two m X n (m > n) complex matrices with SVDs

L, 0 .

B = UZV*E(ULUQ) 0 22 (“fl,, ), (3.4)
0 0 g
.00 ~

= —— . o vV

B = UEV*=(0h,U)| 0 £, (171*)’ (3.5)
0 0 &

where U, U € Up,, V, V € U, Uy, U; € C™*k V;,V; € C*** (1 < k < n) and
%1 = diag(o1,- -, Ok), )E]? = diag(Ok+1,°"*»0n)s (3.6)
2y = diag(y,---,0k%), X2 = diag(Fry1,-:+,0n) (3.7)
Define residuals i
BR¥ BV, - )T, =(B-BWi and R B'U, -WZ,=(B*-B);,. (3.8)
The following two theorems are due to Wedin {15, 1972].

Theorem 3.3 (Wedin) Let B and B be two mxn (m > n) complez matrices with SVDs

(3.4), (3.5), (3.6), and (3.7). If 6 dze‘min{ i — 6k+j|,1121}2k0,-} > 0, then

min
1<i<k,1<j<n~k

VI sin ©(Us, T)|2 + || sin ©(VA, 1)1 (3.9)
< VIERIE+IRLIE _ /lI(B ~ BYAllE + [[(B ~ B*)UAlE
= ) B 6 |
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Theorem 3.4 (Wedin) Let B and B be two mxn (m > n) complez matrices with SVDs
(3.4), (3.5), (3.6), and (3.7). If there ezist a > 0 and § > 0 such that

min ; >a+§é and max Ok < a
1<ick = 1<jonk FHI =D

then for any unitarily invariant norm || - ||

max {"Isin (U, ﬁr)lll , msin o4, Vl)m} (3.10)

. max (irall, 4Re) _ m2x{[|B - B [|(B - Bymilf}
= é )

4 Relative Perturbation Theorems

4.1 Eigenspace Variations

The following theorem is an extension of Theorem 3.1.

Theorem 4.1 Let A and A = D*AD be two n X n Hermitian matrices with eigende-
compositions (1.1), (1.2), (1.3), and (1.4), where D is nonsingular and close to I. If

02(Mis Ak;) > 0, then

min
1<i<k, 1<5<n—k

VI = DGR + I - D)UallE

(| sin ©(U1, T)||r <
72

(4.1)

By imposing a stronger condition on the separation between the spectra of Az and Ay, we
have the following bound on any unitarily invariant norm of sin @(Uy, Uy).

Theorem 4.2 Let A and A = D*AD be two n x n Hermitian matrices with eigendecom-
positions (1.1), (1.2), (1.8), and (1.4), where D is nonsingular and close to I. Assume
that there erist & > 0 and § > 0 such that the spectrum of A, lies entirely in [-a, o] while
that of A, lies entirely outside (—a — 8, a+8) (or such that the spectrum of A lies entirely
outside (—a — 6,c + 8) while that of A, lies entirely in [—a,a]). Then for any unitarily
invariant norm || - ||

YU = DU + NI - D) J?

Jinetw. o] < -

(4.2)

where 1 o ox{(a,a +6).

Now we consider eigenspace variations for a graded Hermitian matrix A = S*HS €

C"*" perturbed to A = S*HS. Set AH ' # - H.
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Theorem 4.3 Let A = S*HS and A = S*HS be two nxn Hermitian matrices with eigen-
decompositions (1.1), (1.2), (1.8), and (1.4). H is positive definite and |H ||3||AH||2 <

1. If o, déf1<i<knlﬂ<1}j<n—k X(A;,Xk+j) >0, then
- e 10 - D¢ 12l lAH ||g
sin (U, U < < 4.3

where D = (I + H-Y2(AH)H-1/?)1/2 = p*,

Theorem 4.4 Let A= S*HS and A = $*HS be two nxn Hermitian matrices with eigen-
decompositions (1.1), (1.2), (1.3), and (1.4). H is positive definite and ||H ~}||2||AH|2 <
1. Assume that there erist & > 0 and 6 > 0 such that

max A; < a and min Xk+j2a+6
1<i<k 1<j<n~k
or

mink AM>a+d and max X,:H.j < a.

1<i< 1<j<n—~k

Then for any unitarily inveriant norm || - ||

[o-D . (A7 famy

n o SViTETLREnL 0 Y

Jsnotw. ] <

where e x(a,a+8) and D = (I + H-Y}AH)H-Y/?)1/2 = D*,

4.2 Singular Space Variations

The following two theorems concern singular space perturbations.

Theorem 4.5 Let B and B = D}BD; be two m x n (m > n) (complez) matrices with
SVDs (3.4), (3.5), (3.6), and (3.7), where Dy and D, are nonsingular and close to iden-
tities. Let

def min {lSiSk],Jlnsl_$<n—k 92(0i7ak+j)9 l?ilgk 92(05,0)} ) me > n, e
T = ~= . e (4.5)
1<i Skffl’énj <nmk 02(0¢; Tky5) ¢ » otherwise.
Ifn2 > 0, then
Vllsin ©(Uy, )| + || sin ©(V3, Th) 13 . (4.6)

. VIl - DYTIIR + I - DT + I ~ DRVAIIE + I — D VAl

T2
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Theorem 4.8 Let B and B = D}BD; be two m X n (m > n) (complex) matrices with
SVDs (3.4), (3.5), (3.6), and (3.7), where Dy and D, are nonsingular and close to iden-
tities. If there ezist a > 0 and & > 0 such that

min o; > a+ 46 and max oOry; L o
1<i<k = 1<jsn—k FHI =

then for any unitarily invariant norm || - ||
ma.x{”lsin o(l,, (71)"' , msin o(v1, ‘71)"'} 4.7

< 2-max{ {fl= D WII+ 105 - W, T = DU+ W3 - DI

ﬁ)

( sin ©(Uy, T,)

Kl

where 2, def op(a,a + 8).

(4.8)

sin ©(V4, 1) )u
( (I- Dyt

(I-D;'W ) (I- D3 ) r

b

g
n

=

In Theorems 4.5 and 4.6, we assumed that both D; and D, are close to identity matrices.
But, intuitively D2 should not affect U/; much as long as it is close to a unitary matrix. In
fact, if D, € Uy, it does not affect U; at all. The following theorems indeed confirm this
observation.

Theorem 4.7 Let B and B = D{BD; be two m x n (m > n) (complez) matrices with
SVDs (3.4), (3.5), (3.6), and (3.7), where Dy and D, are close to some unitary matrices.
Let 2 be defined by (4.5) and set

min min 0iyOkss;), min x(o;, 0 ifm>n
def {15;5k,15j5n-k x(0i,k+), 15i5kX( » )}’ f ’

Mx = ) - . (4.9)
lsiskl.llusl}Sn—k x(0i,Fk+5) ¢ otherwise.
Assume! .
"> o7 max{||D] — Di*|lz, |D3 — D3|l2}. (4.10)
If D, is close to identity, then
, . VIt = DPYYU I3 + | - Dy)Un |13 &\ D3 - D7'le
“sm o, Ul)"F s T — 2-3/2¢, + (1 + Té"") 2% — @
(4.11)
, _ VI = DTYULRE + (1 - DY)l . ||D5 - Dy
[sin (U, D), < p— 7 t e (4.12)

This implies, by Lemma 2.1, 1y > § max{||D} — D; ||, ||D5 — D;*|l2}.
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If D, is close to identity, then

105 = D'l VI = DFYWAIlE + I - DIVillp
<1+ 6™ ) 2177x“€2 ny — 2-3/2¢,

”sin O(Vl’vl)”F <
(4.13)

1D - Dll||F+\/t|(I DFYWAIR + I - Dz)vlup

”sin @(Vl,i;'l)”[‘, Bl — 6 2 — 2-372¢;

(4.14)

where €, = ||D} — DT*|2 and e = ||D3 — D3|,

Inequalities (4.11) and (4.12) which differ slightly in their last term clearly says that D,
contributes to sin ®(Uy, U;) with its departure from some unitary matrix, and similarly
do (4.13) and (4.14).

Remark. When one of the D; and D; is [, assumption (4.10) can actually be weakened
to n2 > 0, as shall be seen from our proofs.

Theorem 4.8 Let B and B = D{BD; be two m x n (m > n) (complez) mairices with
SVDs (3.4), (3.5), (3.6), and (3.7), where Dy and D; are close to some unitary matrices.
Suppose that there exist @ > 0 and § > 0 such that

min o; > a+8§ and max o, < a.
1<i<k ' & 1<j<n—k FH =

Assume?

. 1 * - * -
oo, a+8) > oy max{||Dy — Dy iz 1105 — D3 |l2}- (4.15)

If Dy is close to identity, then for any unitarily invariant norm || - [|

- pw|[ + 1 - oo (1424 oz - 22

Jsnew. 0] <

n, - 2-1-1/p¢, 2, —a
(4.16)
3 |’ Hd - ppog? _p;!
RN [P Ll TN e NS

If D, is close to identitly, then

, 3 D; - D;?! s + ez - Dyl
R R e
(4.18)
y l|pz - o1 W[+ psyvale
mSi”@(V"Vl)m §|1+:/pr, _€2 1, __121“1 -1/p¢ = (4.19)

2This implies, by Lemma 2.1, 7, > i max{}|Df - Di|l2, || D3 — D72}
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where 7, % 0,(c,a+6), 1 x(a,a+9), and & = || D} - D[}z and & = || D5 - D5 .

Remark. If either D, or D; is I, (4.15) can actually be removed.

Now, Let’s briefly mention a possible application of Theorems 4.5, 4.6, 4.7 and 4.8. It
has something to do with deflation in computing the singular value systems of a bidiagonal
matrix. Taking account of the remarks we have made, we get

Corollary 4.1 Assume Dy = I and D, takes the form

I X
we(" ).

where X is a matriz of suitable dimensions. Let 1, be defined by (4.5), and 7, by (4.9).
If 92 > 0, then

Jsin 002, 00|, < U\/—)g"—" (4.20)
X
\/"sine(Ul,U'l)”;-i—"sin@(Vl,%)”; < ‘—/—2—'172{"—*’ (4.21)

Proof: Inequality (4.21) follows from (4.6). Inequality (4.20) follows from (4.11) and
- X x -
D; - Dy = ( x* ) = 1ID5 - D3 lls = V2 X[ls- '
Corollary 4.2 Assume Dy = I and D, takes the form

I X
e('5)

where X is a matriz of suitable dimensions. Let 1y be defined by ({.5), and n, by (4.9).
If 3 > 0, then

HsinO(Vl,fil)"F < %{E’
\/"sinO(Unﬁl)":‘-l-"sinG(Vhﬁl)": < _@l}:’i

Corollary 4.3 Assume Dy = I and D, takes the form

I X
D2=( I))

where X is a malriz of suitable dimensions. Suppose that there ezxist &« > 0 and § > 0
such that

min 0; > a+4d§ and max Or4; < a.
1<ick © < 1<5<n—k T
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Then

X

poow il (e ¥ )| Bosoriols L

p
where . & gy(e,a +8), 1 E x(a,a + ).

Proof: The first inequality in (4.22) follows from (4.16), and the second from (4.7). i
Corollary 4.4 Assume Dy = I and D, takes the form

I X
Dl=( I),

\

where X is a matriz of suitable dimensions. Suppose that there exist > 0 and 6 > 0
such that
i ;2> <
lrg_xélk o;>a+6 and max Grtj < Q.

te (e )

Now, we consider singular space variations for a graded matrix B = GS € C**" per-

turbed to B = GS € C™*" where G is nonsingular. Set AG % G—G. If AG)G™ Y|z < 1,
then G = G + AG = [I + (AG)G™1]G is nonsingular also.

Then
[lsin 0@, 01| < '%J s

def

where n, f oo{a,a +6), 1 7. = x(a, a4 6).

Theorem 4.9 Let B = GS € C™*™ and B = GS € C™™ with SVDs (3.4), (3.5), (3.6),
and (3.7), where G is nonsingular. Assume [|(AG)G™ Y2 < 1. If

def q -
= min CisOkysi) >0
2 1<i<kA<)<nk 02(73, k+J) )

then

\ﬂtsin 9(01,171)":, + |}sin G)(VI,VI)“: (4.23)

. VIAGIGUiIE + I + G—(AGYT1G—(AG) Ul

T
1 [1AG|lr

< uG“uz\/l T A-ICLIACTRY m
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and
- -1 _ —-1y—x
[snom, ), < I +(AG)G 2({1:(AG)G )~"lle (421)
< (M(AG)G“+G-*(AG)*HF RN [ CAX) e P >||(AG)G-‘||F
= I(AG)GTIr 1 - [(AG)G-T]; 27
1 IG 20 AGF
< <1+1—HG'1|I2I|AG|12) 2ne

where 7 ef min X(0:,Ck45)
X 7 1gicki<ign—k Rtk
Proof: Write B = GS = [I + (AG)G™Y)GS = D;BD,, where D} = I + (AG)G~! and

D, = I. Then apply Theorem 4.5 to get (4.23), and apply Theorem 4.7 to get (4.24). 1

Theorem 4.10 Let B = GS € C**" and B = GS € C™ " with SVDs (3.4), (3.5), (3.6),
and (3.7), where G is nonsingular. Assume [[(AG)G™Y|2 < 1. If there ezist a > 0 and
6 > 0 such that

121:‘?!: o;2a+6 and lg?gaf—k Ory; L

or, the other way around, i.e.,

max o; < a and min Ory; > a+6
1<i<k = 1<j<n—k K3 = ’

then for any unitarily invariant norm ||| - ||
s {sin 003, ) s 00, )} (425)

< max{{[(AG)G7'n||, [l + GT(AG) | "G (AG) UL ||}
B Moo

> IG~l2 lAGII
T 162l AGl 7

sin O(U, 1)
J(=°" owio )| =
. YIAG)GTHI + 1T + G—(AG) TG (AGY il
} 1,
. ] jacy
<le "’\/l ta-TieRIACh: 1,
and
msin O(Vl’ﬁ)m < I+ (AG)G! - (I+(AG)GTH) Y| (4.27)

2Qx
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< (ltl(AG)G-1+G-*<AG>*!||+ I(AG)G1{l2 )ln(AG)G-‘m
= IAG)GT] 1-A6)G )  2n,

1 G 2 AGY
< (+ oemEen) oy,

where 12, df op(a, a +8), and 7, & x(a, a + 6).

Proof: Again write B = GS = [I + (AG)G™!|GS = D;BD;, where D = I + (AG)G™!
and Dy = I. Then apply Theorem 4.6 to get (4.25) and (4.26), and apply Theorem 4.8 to
get (4.27). |
Remark. Inequalities (4.24) and (4.27) may provide much tighter bounds than (4.23)
and (4.25), especially when (AG)G™! is very close to a skew Hermitian matrix.

5 More on Relative Gaps

In the theorems of §4, various relative gaps play an md1spensable role. Those gaps are

imposed on either between A; and A2 or between ¥; and $,. In some applications, it may

be more convenient to have theorems where only positive relative gaps between A; and

A; or between £; and X, are assumed. Based on results of Ostrowski [13, 1959] (see also

[8, pp.224-225]), Barlow and Demmel {1, 1990}, Demmel and Veseli¢ [5, 1992], Eisenstat

and Ipsen [6, 1993], Mathias [12, 1994}, and Li [11, 1994], theorems in §4 can be modified

to accommodate this need. In what follows, we list inequalities for how to bound relative
gaps between A; and A; or between ¥; and §J2 from below for each theorem by relative
gaps between A; and A; or between I; and ¥,;. The derivations of these inequalities

depends on the fact listed in Lemma 2.1.

For Theorem 4.1: 7, > 1§i5kf]%i$%$n—k 02(Ai, Aka;) — /I = D*D)js.

For Theorem 4.2: Assume that there exist & > 0 and § > 0 such that the spectrum of
A; lies entirely in [~&,&] while that of A; lies entirely outside (—& — 6,a + &) (or
such that the spectrum of A, lies entirely outside (-& - 6,& + 8) while that of Ay
lies entirely in [~&,&]). If py(é&,& + 6) > ||I — D*DJjz, then there are a > 0 and
6 > 0 as the theorem requires, and

1, 2 05(6,& +8) = |[I = D* D}z

For Theorem 4.3: 7, > x(Xi, Ae+i) — 31D = D7Y)a.

min
1<i<k, 1<j<n—k

For Theorem 4.4: Assume that there exist & > 0 and é > 0 such that

max A\; < & and min _ Agy; > a+ 6
1<i<k 1<j<n—k
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or

min A; > & 6 and max A < a.
1<i<k i 1<j<n—k ki =

If x(6,6 +8) > 1||D — D72, then there are & > 0 and § > 0 as the theorem
requires, and
X(a &+6)- 1D - D72
I = + 12=Dk 5 (4, 4 + §)

For Theorem 4.5: 7; > 73 — ¢, where € = K‘]/?(”DI — DiYl2 + |1D3 = D3J2) (or € =
max{|1l — omin(D1)0min(D2)], |1 = Omax(D1)0max(D2)|}) and

min min 02(0;,0%+;), min p2(0;,0 fm>n
5 def {ISiSk,lsJ’sn-k 2(00,8h45) 2B, 02(e, )}’ ’

2 (5.1)

min min O Ok otherwise.
{tﬁsk,ls:'sn—k ez(os, “)}’

For Theorems 4.6: Assume there exist & > 0 and § > 0 such that

m1na>a+6 and max oks; < G
1<k | = 1<5en—k  F¥I =

K op(é, &+ 5) > ¢, then there are a > 0 and § > 0 as the theorem requires, and
1,2 0p(é&, 6 +8) ¢,
where € = ;o (|| D}~ D1 Hl2+| D3—D3 lz2) (or € = max{|1~0min(D1)0min(D2)l, |1~
Omax(D1)0max(D2)|})- '
For Theorems 4.7: Let 7, be defined by (5.1) and set

. def ) TR {lSiSkI,IIBSI}Sn-—k x(oi ok+s)s g, X(03, 0)} ,  dm>a, (5.2)

min O Okis otherwise.
1<i<k,1<j<n—k X( [ 3) k+1)} ’

If 2 > ﬁ;(ﬁ + €2 + max{e;, €2}), then

i~ 3e + &)/ (1+ Fae)
1 + ﬂx/ (1 + 6162)

~

1
ﬂzZﬂz-m(€1+€2) and ﬂxZ

For Theorems 4.8: Suppose that there exist & > 0 and § > 0 such that

min o; > &+ 6 and max opy; < a.
1<k T v 1<jen—k FH =

I g,,(o‘z,&+5) > m(el + €2 + max{e;, €2}), then there are @ > 0 and § > 0 as the
theorem requires, and

o 1 x(&,6 + 8) — (e + &)/ (1 + 3156162)
N 2 0p(G,a+6)———7(61+€2) and n_ > - .
dp = Cp 21+1/p “x 1+4¢ X(a,& +8)/ (1 + %6162)
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For Theorem 4.9: .
ix — €/2

1
M 2 flg— —=¢€ and 17 > —pr
* 1+ 750

2v2

min__ 02(0i,0k4s), ix =
1<i<k1<j<n—k 20 11 I/ X
D7z, and D = I +(AG)G™L.

def

where 7 = x(0i,0k45), € = || D* -

min
1<i<k, 1< <n~k

For Theorem 4.10: Suppose there exist & > 0 and > 0 such that

min o; > &+ 46 and max Oky; <&
1<i<k 1<j<n—k

or, the other way around, i.e.,

max o; < & and min  Ogy; > @+ 96,
1<i<k . 1<j<n—k

If pp(&, 6+ 5) > 2—13},7;6, then there are ¢ > 0 and 6 > 0 as the theorem requires,
and

A oA 1
Qp?_gp(a7a+5)—§m€ and QXZ

where € = ||D* — D !||; and D = I + (AG)G™!.

6 A Word on Eisenstat-Ipsen’s Theorems

Eisenstat and Ipsen (7, 1994] have obtained a few bounds on eigenspace variations for
A and A = D*AD and on singular space variations for B and = B = DiBD,. Their
bounds for subspaces of dimension k¥ > 1 contain a factor vk which makes their results
less competitive to ours. For this reason we will not compare their bounds for subspaces
of dimension k£ > 1 with ours.

For the problem studied in Theorem 4.1, Eisenstat and Ipsen [7, 1994] tried to bound
the angle §; between %; and R(U;), where %y, Ug,- -, Us are the columns of Uy. They
showed

+|If = Dllz, (6.1)

: I-D—*D-!
sng; < W=Dl

7

where -
[Ai=As{ N
8 €L ki Kl if 4 # 0,
00 otherwise.
Inequality (6.1) does provide a nice bound. Unfortunately it does not bound straightfor-
wardly || sin (U1, Uy)|}2, and generally,

sing; < ||sin©(U1,0h)||z forj=1,2,...,k
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and all of them may be strict. In the worst case, ||sin ©(Uy, U )||2 could be as large as
\/_ 121a<xk sin 8;. To make a fair comparison to our inequality (4.1), we consider the case

= 1. One infers from inequality (4.1) that®

ing, < VL= DB+ - D7}

25113 02(Xiy Ay)

(6.2)

It looks that (6.1) may be potentially sharper because §; may be much larger than
2r<r1,i21 02(Xi, A1). But this is not quite true because of the extra term ||I — DJ|; in (6.1)
n

which stays no matter how large 6; is. We present our arguments as follows.

1. These relative perturbation bounds are most likely to be used when the closest
eigenvalue A, among all {)\;}7, to A; has about the same magnitude as Ay, ie.,
when |\ = || and

8 = |h = Ail/ ] & V202(An Ar) & \/5215,@” 02(Ai, A1)

In such a situation, if I — D is very tiny, then

JII=D-3+|lI- D*|3 ~ V2I- D2+ O(II - DIi2),
I -D=*D'; ~ 2|I- Dljs+O(|I - D|3).

Hence asymptotically, inequalities (6.2) and (6.1) read, respectively

ingy, < YDl o7 py),
02(As, A1)
. 20 — D
sinf; < M + I = Dl + O(IlZ = D||3).

92(’\13 X1)
So our bound (6.2) is asymptotically sharper by amount ||I — Dj},.

2. On the other hand, if the closest eigenvalue A, among all {A;}, to ; has much
bigger magnitude than | A}, i.e., |A¢] 3> |1, then

zgng e2(Xi, A1) = 1.

Thus asymptotically, inequality (6.2) read
siny < V2||I - Dl|2 + O(||I - DJ)3)

which cannot be much worse than (6.1).

3By treating A and A symmetrically, one can see Theorem 4.1 remains valid with the relative gap n,

between A; and Az replaced by the relative gap IS'Skﬁlan —_ pg(A.,/\H,,) between A; and As.
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To be short, we have shown that it is possible for our inequality (6.2) to be less sharp than
(6.1) by a constant factor and in the case when these bounds are most likely to be used
in estimating errors (6.2) is sharper.

Another point we like to make is that we had given up some sharpness for elegantness
in the derivation of (6.2). Recall that we have, besides (7.1), also

MU;Uy - UpUsAg = MU = DY, + U2 (D* = I)UzA,. - (6.3)
When A; = 0, this equation reduces to ~U;Us = U7 (I — D*)U; which implies
[| sin ©(Uy, )|z < [|1D* = 1|2,
a better bound than (6.2), provided A; # 0 for j =k + 1,-- -, n. Equation (6.3) implies
WUy = TH(D™ = DUM(MT = Ag) ™Y + 851 — D*WUaAo(Ad — Ag)™ Y,
which can be used to obtain an identity for sin 8, = ||#;Uz||2! Generally (6.3) produces
|| sin ©(U1, T1)|2

X S\uns
< max 2y ppy omax Ll e g
1<i<k, 1<5<n—k [A; — Agy ;] 1<igk, 1<5<n—k | ); — ’\k+jl

which would be a better bound than (4.1) in the case when

ith X A Xi Akgil-
ei erlrgml il > T | Akl or llga-XI l<<1<m<m | Ak

Eisenstat and Ipsen {7, 1994] treated singular value problems in a very similar way as
they did to eigenspaces. This makes our arguments above apply to our bounds and their
bounds for singular value problems.

Eisenstat and Ipsen [7, 1994] did not study bounds in other matrix norms.

7 Proofs of Theorems 4.1 and 4.2
Let R = AUy — UjA; = (A — A)U; as defined in (3.1). Notice that
UsR U3 AUy — I7;U1A1 A T30y - T30 A,
UzR = U3(A- AU, =U;[D*AD - D*A+ D*A - AU,
= U; [D*AD(I - D) +(D* - DA 1y
= MU3(I - DY, + TU3(D* - DU1A,.

Thus, we have

A U3U, = UpU A = A U3 = DY, + U3(D* - DU A,. (7.1)

%
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Lemma 7.1 LetQ € C**2 and ' € C** be two Hermitian matrices, and let E, F € C**t,
If \()NAT) = 0, then matriz equation X — XT' = QF + FT has a unique solution,

< JIENR + I|IFN2/ 12, wh def i 7).
and moreover || X||r < /I ElI§ + |Fll§/ n2, where n, wex(é‘}fﬂex(r)“(“’ 7)

Proof: For any unitary matrices P € U, and @ € Uy, the substitutions
Q—PQP, T-Q'TQ, X—PXQ, E~PEQ, and F « P*'FQ

leave the lemma unchanged, so we may assume without loss of generality that
Q = diag(w;,ws,...,ws) and I' = diag(y1,72,- -+, 7t)-

Write X = (z;), E = (eij), and F = (f;;). Entrywise, equation X — XT = QE 4+ FT
reads w;z;; — z;;v; = wieij + fi;7;- Thus z;; exists uniquely provided w; # 7; which is
guaranteed by the assumption A(Q)NA(T) = 0, and moreover

wi — 7j)zi;]? = wizij — 2751 = lwieij + fijril* < (wil? + 7P lesl? + 1 £il%)

by the Cauchy-Schwarz inequality. This implies

leii|? < le;1* + |fijl: < les;| +21fijl2
[o2(wi, 75)] %
zles? + TUfi01°
¥ E|Z + || FlI3
= IXIE =Dy < 2 & _ IEl® 2” llp,
ij n UH
as was to be shown. | .

Proof of Theorem 4.1: By Lemma 7.1 and equation (7.1), we have
105 = DUl +1|03(D" -~ DR
7

1 -1 2 * 2
< o7 (I =Dl + (D" - DUAlE) -

A

103111

This completes the proof of Theorem 4.1, since || sin @(Uy, U1 )||r = [|U3U1||F- |

Lemma 7.2 LetQ € C**? and T € C*** be two Hermitian matrices, and let E, F € C**¢,
If there exist a > 0 and 6§ > 0 such that

i< e and T 2a+d

or
19717 2 @+6 and ||z <o,

then matriz equation QX — XT = QF + FT has a unique solution, and moreover for any

unitarily invariant norm || - |, §1X{| < YWEY® + §FII° / 1, where 7, ef op(a,a+ ).
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Proof: First of all, the conditions of this lemma imply A(Q2)NA(T) = @, thus X exists
uniquely by Lemma 7.1. In what follows, we present a proof of the bound for || X for the
case [|Q)); < a and ||T7Y|J;1 > a+6. A proof for the other case is analogous. Post-multiply

equation QX — XT = QE + FT by I'"1 to get
QXT ' - X =QFETr '+ F.

Under the assumptions [|Q]; < @ and [|[T7Y||7! > a+ 6 = ||T7Y||z < 345, we have

lexr-t-x|| > uxi-[jexr=t] > 1x1 - 1ol BxRIT 2
> WX0-alXl g = (1- 255) I,
and
leEr="+F|| < [[0ET*||+ 0FN < 12U NENIT ]2 + IFY
< allEl 5 + IF < Vl + (5‘;—5)— IEL + IIFII°-

By equation (7.2), we deduce that

o of q q 9
(1_ m) IxH < §/1+ r 7 VIEN + IF

from which the desired inequality follows.

Proof of Theorem 4.2: By Lemma 7.2 and equation (7.1), we have

oo < fiosa- ool + oser - nuf /
< IT-D7 DU + KD - DI / 1,
as required since msin O(Ul,ﬁ1)‘|‘ = "lﬁ{Ul m

8 Proofs of Theorems 4.3 and 4.4

Notice that

A

~

S*HS = (H'/*S)* H'/?S,

A = S*HYV¥I+ HY*AR)EVHHVS
((I + H—IIZ(AH)H-1/2)1/2H1/2S)"' (I + H—llz(AH)H—I/Z)IﬂHl/zS.

Il
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Set B = S*HY? and B = S*HY*I + H-YYAH)HVHY? ¥ BD, where
D= (I + H'1/2(AH)H'1/2)1/2. Given the eigendecompositions of A and A as in (1.1),
(1.2), (1.3), and (1.4), one easily see that B and B admit the following SVDs.

. A1/2 V>
B = UAY*V E(UI,U‘A’)( 1 AY? )(Vi)

- e - - ALz T
B = UA‘“V*E(UI,UQ)( b )(~‘,),
NP\ Vs

where U, U are the same as in (1.1) and (1.2), ¥4, ‘[71 € C"*k, Notice that
A-A=BB - BB =BD"B" - BD7'B" = B(D" - D™1)B".

Pre- and post-multiply the equations by U* and U , respectively, to get AU*U - U*UA =
AY2V*(D* — DY)V AY/? which yields

RT3U, - U3U0A, = RYP02 (D" - D-YYWAY, (8.1)

The following inequality will be very useful in the rest of our proofs.

|

(o - Dl < |

-]

<N+ B rama ) g ran a1
12 BAH]

 —/—————
- \/1 = "H'—TuzuA.Hug

Lemma 8.1 Let Q@ € C°%* and ' € C'™** be two nonnegative definite Hermitian ma-
trices, and let E € C**t. If \QNAT) = 0, then matriz equation QX — XT =
QY2ETY/? has a unique solution X € C***, and moreover || X||r < ||E|llr/ny, where

€ minx(@,7)
wEA(Q),ye ()

-0

(r+ B 2Am B — (14 B Am)E?) T

TIx
Proof: For any unitary matrices P € U, and @ € U, the substitutions
Q — P*QP, QY2 — (P*QP)'/?, T «Q*TQ, IY?(Q'TQ)'2,
X« P'XQ, and E ~ P'EQ

leave the lemma unchanged, so we may assume without loss of generality that
Q= d-ia'g(wlsw% . ~’ws) and ' = dia'g(71172’ .. "7t)-

Write X = (z;), E = (ei;). Entrywise, equation QX — XT = QY/2ETY/? reads
WiZij — Ti5Y; = /@i€ij(/T5- As long as w; # vj, zi; exists uniquely, and

125312 = less|?/x(wiy 75) < lesi 12/
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summing which over 1 < i< sand 1 < j < ¢ leads to the desired inequality. |

Proof of Theorem 4.3: Equation (8.1) and Lemma 8.1 imply

P30 = DYWille _ 10" = D

”sin O(Ul,ﬁl)n p S o ™

F i ~;U1“

as required. [ ]

Lemma 8.2 Let Q € C**® and I’ € C*** be two nonnegative definite Hermitian matrices,
and let E € C*%t, [f there ezist a > 0 and § > 0 such that

Q2 <« and |T7H7' 2 a+6
or

1975t > e+ é and Tk < o
then matriz equation QX — XT = QY2ETY/? has a unique solution X € C°**, and
moreover [|X|| < I E| /n,, where n % x(a,a+ ).

Proof: The existence and uniqueness of X are easy to see because the conditions of this
lemma imply A(Q)MT) = 0. To bound || X ||, we present a proof for the case |22 < o
and ||T-1|5! > a + 6. A proof for the other case is analogous. Post-multiply equation
QX — XT = Q/2ETY2 by T-1 to get

QXT~! - X = QY2ED-Y/2, (8.2)

Under the assumptions ||Qf] < @ and T3 > a+ 46 = [T} < a—l_’-_g, we have

loxT-! - X|| > (1 - -—3‘3) IX|| as in the proof of Lemma 7.2 and

a

”lQlli’Er—l/zm < 1YY WENIT- 32 < V| EJ) \/C'!‘lﬁ‘

By equation (8.2), we deduce that

(¢ 21
(1- =) i< e

from which the desired inequality follows. | |

Proof of Theorem 4.4: Equation (8.1) and Lemma 8.2 imply

|70 - 7wl _jo- - o

1, 1,

?

Jlsin 0023, B3] = |

o0 <

as required. |
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9 Proofs of Theorems 4.5 and 4.6

Let Rp = BV; - Uy = (B — B)V; and BL = B*U; - Vi3 = (B* — B*)U, as defined in
(3.8).

9.1 The Square Case: m=n
When m = n, the SVDs (3.4) and (3.5) read

[\

B = UEV‘E(Ul,Ug)(

l

~

F = 050 = (ﬁl,ﬁg)(

1 | %
T, V; ’
1 17

L2 vy )

UsRp = U;BV, — U313, = SV Vi — U3 UL 2y,

UijRp = U3(B- B)V, = U}(D;BD, - D;B + D;B - B);
= U3 [B( - D7Y) + (D} - 1)B| V4
= V(I - D3YWA + U3(D; - DI,

Notice that

to get
Vo - U3 Uh Ty = S,V (I — DWW 4 U (D; — DULE,. (9.1)

On the other hand,
ViR, = V;B'U, - V;WSy = 5,030, - Va5,
V;Ry, = V3(B*- B")U; = V;(D3B*D, — D3B* + D}B* - B*)U;
= V3 [B(I- DY)+ (D3 - DB Uy
= 8,031 - DTYU, + V(D3 - DV T,
which produce
52030 — VWS, = 5,031 - DYYU, + V(D3 - DS, (9.2)

Equations (9.1) and (9.2) take an equivalent forms as a single matrix equation with di-
mensions doubled.

£, U3U, U3, A
~ ~ - - 9.3
(s )05 o )= (7 o) (s @
. U3(I- DU,
A\ V(I - Dy'W,

4 U3(D; - DUy N
V(D3 - W o :

k{0
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Proof of Theorem 4.5: Notice that the eigenvalues of ( > %2 ) are £044; and these of
2

( 2 ) are +o;, and that
y

02(0;, —Ok+j) > 02(0:,0%4;) and  03(—0i,5k4;) 2 02(0:,Oksj)-
By Lemma 7.1 and equation (9.3), we have
WO5 UL liE + 1V valiE
1 1w = ey * 7= - 7= -
< ‘T’"g' [”Uz (I - DU + 11U (D5 = DUIE + [V (I = DI Y)VAllE + |1Vs (D3 — I)VIUIZ?]
1 - - 2 — -
< ) I = DTHYUIE + 1D = DULE + I = D3 )AlIE + 11(D; = DVAlIE]

which completes the proof. | |

Lemma 9.1 Let @ € C**° and T € C'** be two Hermitian matrices, and let
X,Y,E, E, F, F,€ C*%* satisfying

QX -YT =QE+FT and QY — XT = QF + FT.
If there ezist a > 0 and § > 0 such that
[Qlz< e and |T7Y5' 2 a+é

or
173" 2 a+6 and D2 < e,

then for any unitarily invariant norm || - ||,

max {J|X 1|, Y )} < _q‘—pmax{\q/mmnumqu, i E|||q+]|lf‘]|l"}, (9-4)

def
where n, = oy(a,a +6).

Proof: We present a proof for the case ||Q||z < @ and ||[T~1|;! > @ + §. A proof for the
other case is analogous. Consider first the subcase [|X || > ||Y]|. Post-multiply equation
QY — XT =QE + FT by I'"! to get

QYT - X = QEr!' + F. (9.5)
Then we have, by |||z < @ and |IT7}|5" > a+ § = ||[T7!|2 < S35, that
levr=t-x|| > §xg+- [oyr|| > ux - 12U BYHIT-}2

> 1X0- oYl 2 X0 - 2 lX0

(1- 25) 1
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and

JloBr=" + 7]

IA

llo2r=t]-+ [17]] < veta [ E[ e + |

el s + 17 < g1+ s VBN + B

By equation (9.5), we deduce that

(-5 s g i VIET 1T
which produce that if [IX| > Y, X1 < 3 /|| B + || F|". simitarly it hx0 < ¥ H,

from QX - YT = QE 4 FT we can obtain [Y] < 5- JIEJ® + I FII°. Inequality (9.4) now
' 4
follows. 1

Proof of Theorem 4.6: By equations (9.1) and (9.2) and Lemma 9.1, we have
max{{|Z01 ], ¥ ][}
< L mael 0ozl + s - o
i

< max{{/ iz = DEWAII + h(D; - DU, /I - DY + W(D; - I)vllaq} ,
e

IN

G- oo+ o - 0w}

as required. Turning to inequality (4.8), we have by equation (9.3) and Lemma 7.2 that

UsUy <L (lf Usa-DrHnn
i il 5,
9)1/9

V; (D3 - Vi )
since the conditions of Theorem 4.6 imply .

(s, ® )= [(= ™)

Since ﬁ;ql and sin O(Uy, U;) have the same nonzero singular values and so do 172“Vl and

sin ©(V4, 1),
sy 5
V;Vl -

q

‘72'(I—D2—1)Vl ) (96)

N ( 35 - DUy

< 1

< _—
= “a+é

2

2

(9.7)

sin O(U1, [71)
sin@(V1, %) /||




Ren-Cang Li: Relative Perturbation Theory 25

Note also

/

U3 - pihyoy _ (U _ ((I—D{‘)Ul )
Vi(I-D7'Wi ) 4 (I-D3h)n J’

U3(D; - DUy _ _ [T ((D;—I)Ul )
Vs (D3 - DVi v (D3 -y )

Thus, one has

(S| By (o ] A
( b3 (o - nvy S )w < m( O=0n )m ©9)
Inequality (4.8) is a consequence of (9.6), (9.7), (9.8) and (9.9). B

9.2 The Non-Square Case: m > n
Augment B and B by a zero block 0y ;—n t0 By = (B,0m m-n) and B, = (ﬁ,Om,m_,,).
From B = D{BD,, we get
B, =D;B, ( D, ) &' D;B,D,,.
y -

From the SVDs (3.4) and (3.5) of B and B, one can calculate the SVDs of B, and B,:

B, = ULV, = (Ul,Ug)( 1 . ) ( Ve ) (9.10)

oo ) () ow

= V; v;
Eazz( ’ Om—ﬂm—ﬂ)’val=(0m-'lﬂk)’va=( ’ Im—n )’

similarly for £,2, Va and V3. The following fact is easy to establish

Jin €V, Fan)] = [Jein 003, 70

’baz
i
h
[yl
-]
o
[
—
g
»

where

Applying the square case of Theorems 4.5 and 4.6 to m X m matrices B, and B, just
defined will complete the proofs.
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10 Proofs of Theorems 4.7 and 4.8

We have seen in §9 how to deal with the nonsquare case by transforming it to the square
case. So here we will only give proofs for the square case: m = n. Let B = D}B and

B = BD; and their SVDs be
£, vy
()

B = OSV*=(in, -2)( ) ‘ ) (‘12 ) (10.2)

where 7, U € Uy, V, V € Uy, Uy, U1 € C™*, 3, V; € C™*¥ and

~ ~

B

i
<
[Nl
<
*
i

E‘.:1 = dia'g(&lv Tt &k)a 22 = dia'g(&k+la Y a"n.)v
El =3 diag(élv M} 6/:)7 22 = dia'g(&k-i-ls MY &n)-

Partitionings in (10.1) and (10.2) shall be done in such a way that

max x(0i,5) < D3 — DT, Dax x(61) < 11D3 - D72,
(10.3)
-1 -1
Dax x(0i,6:) < 1|D3 — D7, o x(6:,5;) < 31D3 — Dyl

Such partitionings are possible because of the relative perturbation theorems proved in
Li [11). By the fact g,(£,¢) < 271/Px(£,¢) (see Lemma 2.1 below), these inequalities imply

= "~ -1
IIE&X 0,(04,0;) < ‘ﬁﬁ;”ljl Dj 1"2’ 112%1 05(0:,6;) < ﬁ;“DE - D3 |2,

_ L. _ (10.4)
s 25(9i,8i) < 71105 — D3 '|le, i ep(64,5:) < 53751105 — Drtla-
Consider B and B = BD,. We have

. A .. 32 rr=

B = vssror=0, o) 2 o, (8 ), (10.5)
X U3
~ - —~—— o~ ~ o~ 2 T

BB = ossir =@ X o, (Y ). (10.6)

Notice that s . o - R B .
BB* - BB* = BD}B* — BD;'B* = B(D; — D;)B*,

Pre- and post-multiply the equations by T a.nd U, respectively, to get S0 -*0%2 =
SV*(D3 - D;Y)VE which gives

$2030, - U30,32 = £.V3(Ds - D3Y)Wis,. - (10.7)
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Consider now B and B = D;B. We have

s - vesr e (8 ) (¥

BB = VEEV*= (W) L (7, (10.8)
22 VZ

I e - o~ [ 52 7\

BB = vz*zv*s(vl,vz)(gl iz)(‘fg). (10.9)
2 2

Notice that L o S .

B*B-B*B = B*D}{B - B*D{'B = B*(D} - D{!)B.
Pre- and post-multiply the equations by V* and V, respectively, to get SV Vv =
ZU“‘(D"‘ D7YYUE which gives

S22V, - V;Wis? = 5,05(D; - DY 5. (10.10)
Two other eigendecompositions that will be used later in the proofs are
2 x
BB* = UST'U* = (Uy,Uy) ( R ) ( e ) (10.11)
DX U3
* * ®x E% V'l*
B*B = VI*'ZV*= (W, W) . . (10.12)
X3 Vs

Proof of Theorem 4.7: Equations (10.7) and (10.10) and Lemma 8.1 produce

. .. V3 (D3 - DYV,
”sinO(U"l Ux)" _ 'Uln < 7 (D3 — D W F
L FoT (2}, 23)
s . U3(D: — DY,
ot ol = 757l < =
Nx\ 21 242
where? 7, (£2, 52) &f min x(62,52, ;) and 5, (52, 52) & min x(62,5%,,).
23 1<igk1<i<n—k L b0 kS AL agigkagign—k T TR

On the other ha.nd, applying Theorem 4.1 to BB* and BB* = D} BB* Dy leads to (see
(10.5) and (10.11))

VI - DYWL + (I - D})UA I3 -

712(23, ﬁg) -

q 2 ~2 ), : * B* D —
where 15(232,2 1<£5kr,11ngl}sn-k 02(0f, 6%, ;); Applying Theorem 4.1 to B*B and B*B =
DiB*BD, lea.ds to (see (10.8) and (10.12))

VI - DFYWAIR + i - D3Vl
m(Z}, 1) ’
*We abuse notation 7 here for convenience. As we recall, 5, has its own assignment in the statement

of Theorem 4.7. However, it is re-defined as a function in this proof. Hopefully, this would not cause any
confusion.

“sin o(ts, fjl)“F =

def

o0 o, <
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= def . ; o : -1
where 7,(Z2, $2) = min 02(02,6%, ): Let ¢ = i{D¥ - D and € = ||Df —
n2(21, L3 15i5k,15j5n-k'2( $90ipi )i 1 =Dy - DTl2 2 = ||D3
D3Y||,. We claim
2773;!21»52)-61

(22, 52) > 29 (£,,8) > { HEemEEa)’ (10.13)
23/2772(21, 22) — €.

This is because

x(62,5%,;) > 2x(64,5145) 2112 09(6, Bkt ) (by Lemma 2.1)
2372 [03(0i,5k4j) — 02(8:.03)] (02 is a metric on R)

23/2 [gz(ai,ﬁkﬂ') - 2"3/251] (by (10.4)

(AR AVARRAV)

and because

~ a ~ ~ 1 o 5:. O o
x(0i,Tk45) < x(0i,0i) + x(64,0k+5) + §X(0i’Ui)X("f"’k+J')X(‘7"’a’°+j)'
x(t;;,5k+j) — x(9i,6:) > X("ifkﬁ) =Gys (by (10.4)
+ §x(00,60)x(01,5k4) ~ 1+ §x(01r Fes i)

= x(6i,0k4j) 2 ]

Similarly, we have
27 21.52 —€2
(352 > 25,5y > { HEnELD)
23/2,(24,%3) — €,
772(2%, i)%) > 772(21, f)z) > n2(21,§2) - 2-3/262,
772(2%,23) > m(X4,X2) > 2(X1,2;) - 2-3/261.

The proof will be completed by employing

||sin@(U1,t7f1)||F < "sin@(Ul,f]l)"F+"sin@(f]l,ﬁl)“l__,
mowi ol < fimows ol + swoci, 5,

since || sin O( -, - )|lr is a metric on the space of k-dimensional subspaces [14]. |

Proof of Theorems 4.8: Denote 8 = a + 8. Let & and & be the largest positive numbers
such that

. 1. . - . 1,.. -
x(2,&) < 5|ID3 - D3z and  x(e,&) < S{IDF ~ D72
which guarantee that ||£,]|; < &, ||S2]}z < &, and

1

N x - < 1
op(@,&) < sy llD3 — D'llz and  gp(er, &) <

siri7pl 01 = D1z
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and let § and 3 be the smallest numbers such that
. 1., - - 1. ., -
X(8,8) < 31ID7 = Dyl and  x(B,8) < 5105 - D3 '|l2
which guarantee that |[E71]7! > 4, 7|5 > B, and
- 1 . - . 1 - -
05(8,8) < s ID1 = Di'lle and 058, 8) < 5371105 — D7 l2-

(4.15) implies min{4, 8} > @ and 8 > max{a, &}.
Equations (10.7) and (10.10) and Lemma 8.2 produce

|

V;(D; - Dy

o o] = oz < i
- . U3(D; - DYHU
finow o] = v < 12200

On the other hand, applying Theorem 4.2 to BB* and BB* = D:{BB*D; leads to (see
(10.5) and (10.11))

_ 7 .
Il - ooy + wa - oy
x(a2,6%) ’
Applying Theorem 4.1 to B*B and B*B = D3B*BD; leads to (see (10.8) and (10.12))

Jla-pw +4a - Dy
x(a?, ?) :

finoc ]

Jswo o] <

Notice that
2x{a,8)—€1

x(aza ﬁ2) 2> 2X(a7 B) > { l+i%x(avﬁ)’
2l+l/p9p(a, B) — e,

21+1/rg(a, B) - &,
0n(6%8Y) 2 05(@ ) 2 ep(a, B) — 2"+ /%6y,
2(6,6%) 2 04(&,8) > ep(a, B) - 2'¥/?¢y,
where €; = ||D}—D7!||; and €; = ||Dj—D3!||2. The proof will be completed by employing
w0 o] < fimotwn, bof +inetin 5.
w0l = et ol fusois .

x(e?,8%) > 2x(a,B)Z{

since ||sin ©( -, - )}j is a metric on the space of k-dimensional subspaces [14]. |
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11 Conclusions and Further Extensions to Diagonalizable
Matrices

We have developed a relative perturbation theory for eigenspace and singular space vari-
ations under multiplicative perturbations. In the theory, extensions of Davis-Kahan sin 8
theorems and Wedin sin # theorems from the classical perturbation theory are made. Qur
unifying treatment covers almost all previously studied cases over the last six years or so.

Using the similar technique in this paper, one can also develop a relative perturbation
theory for eigenspaces of diagonalizable matrices: A and A = DjAD, are diagonalizable,

where D; and D; are close to the identity matrix. We outline a way of doing this. Let
eigendecompositions of A and A be

~ o~ -~

AX=XAE(X1,X2)(A1 A ) and AX:X'T\E(X'I,)Q)(AI i )
2 2

where X, X € C™" are nonsingular, and Xj, X’l 2 (G (1<k<n)and

AI = dia'g(’\la Tt Ak), A2 = dja'g(’\k+1v ) Arl.),
Ki=diag(he -, M), A = diag(pgns -+ -5 dm).

A;’s and Xj ’s may be complex. Partition

Y > Yy
-1 _ 1 -1_( 41
X — ( }/2* ) and X ot ( }/2* ) ?

where Y7, Y: € C"%k_ Define R = AX, - XiM = (/I — A)X;. We have
?2‘R = ?2*A'X1 - }72*X1A1 = K‘zi};‘X‘l - ?2‘X1A1,
YR = Y;(A-A)X, =Y;(D]AD; - D;A+ DA - A)X;
= ¥;[AI- D3") + (D - DA] X,
= A Y7 (I - DY) Xy + V(D = D X1A,.
Thus we have the following perturbation equation
KoYy Xy - V7 XaAy = AV (I - D3V X + Y7 (D) - DX Ay

from which various bounds on sin ©( X3, X 1) can be derived under certain conditions. For

example, let 7, def gg(A;,Xk+j). If 52 > 0, then by Lemma 7.1 we have

. min
1€i<k, 1<j<n—k

Y5 Xalle

IA

1 % - ~* *
—,,;\/IIY;‘(I - DY Xu|2 + [F(D; - DX 2

IA

| S = "
7 2l X1llzy/Ilf = D52 + 11D} — I3
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Notice that by Lemma 2.2
Isin @0, Z)lle = (T %)~ 2% Xa (X7 X0) ™2 e
(Y5 ¥2) 2|20l Y7 Xallr (X7 X 1) ™ 2l2.

Then a bound on || sin (X1, X )||F is immediately available.

IA

Acknowledgement: I thank Professor W. Kahan for his consistent encouragement and
support, Professor J. Demmel and Professor B. N. Parlett for helpful discussions.

References

(1] J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant
matrices. SIAM Journal on Numerical Analysis, 27:762-791, 1990.

[2] C. Davis and W. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM Journal
on Numerical Analysis, 7:1-46, 1970.

(3] J. Demmel and W. Gragg. On computing accurate singular values and eigenvalues of matrices
with acyclic graphs. Linear Algebra and its Application, 185:203-217, 1993.

[4] J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM Journal
on Scientific and Statistical Computing, 11:873-912, 1990.

[5] J. Demmel and K. Veselié. Jacobi’s method is more accurate than QR. SIAM Journal on
Matriz Analysis and Applications, 13(4):1204-1245, 1992.

[6] S.C. Eisenstat and I. C. F. Ipsen. Relative perturbation techniques for singular value problems.
Research Report YALEU/DCS/RR-942, Department of Computer Science, Yale University,
1993.

[7] S. C. Eisenstat and I. C. F. Ipsen. Relative perturbation bOll;ldS for eigenspaces and singular
vector subspaces. In J. G. Lewis, editor, Proceedings of the Fifth SIAM Conference on Applied
Linear Algebra, pages 62-66, Philadelphia, 1994. SIAM Publications.

[8] R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press, Cambridge,
1985.
[9] W. Kahan. Accurate eigenvalues of a symmetric tridiagonal matrix. Technical Report CS41,
Computer Science Department, Stanford University, Stanford, CA, 1966. (revised June 1968).
{10] R.-C. Li. On perturbations of matrix pencils with real spectra. Mathematics of Computation,
62:231-265, 1994.
[11] R-C. Li. Relative perturbation theory: (i) eigenvalue variations. Technical Report
UCB//CSD-94-855, Computer Science Divison, Department of EECS, University of Cali-
fornia at Berkeley, 1994. (revised January 1996).

[12] R. Mathias. Spectral perturbation bounds for graded positive definite matrices. Manuscript,
Department of Mathematics, College of William & Mary, 1994.

[13] A. M. Ostrowski. A quantitative formulation of Sylvester’s law of inertia. Proc. National
Acad. Sciences (USA), 45:740-744, 1959.

{14] G. W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Academic Press, Boston, 1990.

[15] P-A. Wedin. Perturbation bounds in connection with singular value decomposition. BIT,
12:99-111, 1972.







