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Abstract 
The classical perturbation theory for Hermitian matrix eigenvalue and singular 

value problems provides bounds on invariant subspace variations that are proportional 
to the reciprocals of absolute gaps between subsets of spectra or subsets of singular 
values. These bounds may be bad news for invariant subspaces corresponding to 
clustered eigenvalues or Clustered singular values of much smaller magnitudes than 
the norms of matrices under considerations when some of these clustered eigenvalues 
or clustered singular values are perfectly relatively distinguishable from the rest. In 
this paper, we_consider how eigenspaces of a Hermitian matrix A change when it is 
perturbed to A = D'AD and how singular values of a (nonsquare) matrix B change 
when it is perturbed to E = DiBD2, where D, D1 and D2 are assumed to be close 
to identity matrices of suitable dimensions, or either D1 or D2 close to some unitary 
matrix. It is proved that under these kinds of perturbations, the change of invariant 
subspaces are proportional to the reciprocals of relative gaps between subsets of spectra 
or subsets of singular values. We have been able to extend well-known Davis-Kahan 
sine theorems and Wedin sin6 theorems. As applications, we obtained bounds for 
perturbations of graded matrices. 

'This material is based in part upon work supported, during January, 1992-August, 1995, by Argonne 
National Laboratory under grant No. 20552402 and by the University of Tennessee through the Advanced 
Research Projects Agency under contract No. DAAL03-91-(3-0047, by the National Science Foundation 
under grant No. ASC-9005933, and by the National Science Infrastructure grants No. CDA-8722788 and 
CDA-9401158, and supported, since August, 1995, by a Householder Fellowship in Scientific Computing 
at Oak Ridge National Laboratory, supported by the Applied Mathematical Sciences Research Program, 
Office of Energy Research, United States Department of Energy contract DGAC05-960R22464 with Lock- 
heed Martin Energy Research Corp. Part of this work was done during summer of 1994 while the author 
was at  Department of Mathematics, University of California at Berkeley. Its first version was published 
as Computer Science Division Technical Report UCB//CSD-94-856, University of California, Berkeley, CA 
94720, December, 1994, as well as LAPACK working note # 85. 
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1 Introduction 
Let A and 2 be two n x n Hermitian matrices with eigendecompositions 

where U, 0 E Un, U1, 01 E Cnxk  (1 5 k < n) and 

2 

Suppose now that A and 2 are close. The question is: How close are the eigenspaces 
spanned by Ui and oi? This question has been well answered by four celebrated theorems 
so-called sine, tan@, sin20 and tan28 due to  Davis and Kahan [2, 19701 for arbitrary 
additive perturbations in the sense thakthe perturbations to  A can be made arbitrary 
as long as - A is kept small. It is proved that the changes of invariant subspaces are 
proportional to the reciprocals of absolute gaps between subsets of spectra. This paper, 
however, will address the same question but under multiplicative perturbations: How close 
are the eigenspaces spanned b y  Ui and 0; under the assumption that 2 = D*AD for some 
D dose to I ?  Our bounds suggest that the changes of invariant subspaces be proportional 
to the reciprocals of relative gaps between subsets of spectra. A similar question for 
singular value decompositions will be answered also. To be specific, we will deal with 
perturbations of the following kinds: 

0 Eigenvalue problems: 

1. A and 2 = D'AD for the Hermitian case, where D is nonsingular and close to 
the identity matrix. 

2. A = S*HS and A = S*BS for the graded nonnegative Hermitian case, where 
it is assumed that H and fi are nonsingular and often that S is a highly graded 
diagonal matrix (this assumption is not necessary to our theorems). 

0 Singular value problems: 

1. B and = DTBD2, where D1 and D2 are nonsingular and close to identity 
matrices or one of them close to an identity matrix and the other to some 
unitary matrix. 

2. B = GS and B = ZS for the graded case, where it is assumed that G and 
are nonsingular and often that S is a highly graded diagonal matrix (this 

assumption is not necessary to our theorems). 
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These perturbations cover component-wise relative perturbations to entries of symmetric 
tridiagonal matrices with zero diagonal [4, 91, entries of bidiagonal and biacyclic matrices 
[l, 3, 41, and perturbations in graded nonnegative Hermitian matrices [5, 121, in graded 
matrices of singular value problems [5, 121 and more [6]. Recently, Eisenstat and Ipsen [7, 
19941 launched an attack towards the above mentioned perturbations except graded cases. 
We will give a brief comparison among their results and ours. 

This paper is organized as follows. We briefly review Davis-Kahan sine theorems for 
Hermitian matrices and their generalizations-Wedin sin 8 theorems for singular value 
decompositions in $3. We present in $4.1 our sin8 theorems for eigenvalue problems 
for A and = D*AD and for graded nonnegative Hermitian matrices. Theorems for 
singular value problems for B and 5 = D;BD2 and for graded matrices are given in $4.2. 
We discuss how to bound from below relative gaps, for example, between A, and i 2  by 
relative gaps between AI and A2 in $5.  A word will be said in $6 regarding Eisenstat- 
Ipsen's theorems in comparison with ours. Detailed proofs are postponed to  $57, 8, 9, and 
10. Finally in $11, we present our conclusions and outline further possible extensions to 
diagonalizable matrices. 

2 Preliminaries 
Throughout this paper, we will be following notation we used in the first part of this series 
Li [ll]. Most frequently used are the two kinds of relative distances: ep and x defined for 
cy, 6 E C by 

with convention 0/0 = 0 for convenience. 

Lemma 2.1 (Li) 1. For p, v E C, ep(p ,v )  5 2- l /Px(p , v ) .  
2 2  2 2  2. For P, v E R and pv 2 0, e p ( w )  5 e& ,v and ~ x ( P , v )  5 X(P , v 1. 

3. ep is a metric on R. 

4. For P, v, w 2 0, X ( P A  5 X(P,4 t x(w,v) 4- ~x(P,4x(fwJ)X(w,y). 
Since this paper concerns with the variations of subspaces, we need some metrics to mea- 
sure the difference between two subspaces. In this, we follow Davis and Kahan (2, 19701, 
Stewart and Sun [14J Let X, 2 E Cnxk ( n  > k )  have full column rank k, and define the 
angle matrix O ( X , X )  between X and as 

O(X,  2) $9 arcc*s( (X*X) - 3 X * 3 (  X*Z)-lX*x( X'X) - 3)- 3. 
The canonical angles between the subspace X = RAX) and if = R(3) are defined to  be 
the singular values of the Hermitian matrix O ( X , X ) ,  where R(X) denotes the subspace 
spanned by the column vectors of X. The following lemma is well-known. For a proof of 
it, the reader is referred to, e.g, Li [lo, Lemma 2-11. 
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I -  

Lemma 2.2 Suppose that (X,X,) E CnX" is a nonsingular matriz, and 

Then for any unitarily invariant n o m  111 - 111 

In this lemma, as well as many other places in the rest of this paper, we talk about the 
"same" unitarily invariant norm 111 - 111 that applies to matrices of different dimensions at 
the same time. Such applications of a unitarily invariant norm are understood in the 
following sense: First there is a unitarily invariant norm 111 - 111 on C M x N  for sufficiently 
large integers M and N ;  Then for a matrix X E CmXn ( m  5 M and N 5 n) ,  lllXlll is 
defined by appending X with zero blocks to make it M x N and then taking the unitarily 
invariant norm of the enlarged matrix. 

Taking X = U1 and 3 = 31 (see (1.1) and (1.2)), with Lemma 2.2 one has 

For more discussions on angles between subspaces, the reader is referred to Davis and 
Kahan [2] and Stewart and Sun [14, Chapters I and 111. 

3 Davis-Kahan sin6 Theorems and Wedin sin6 Theorems 
3.1 Eigenspace Variations 

Let A and 2 be two Hermitian matrices whose eigendecompositions are given by (1.1) and 
(1.2): 

where U, 0 E Un, U1, 01 E Cnxk (1 5 k < n) and Ai's and A j 7 S  are defined as in (1.3) 
and (1.4). Define 

R = AU1- Uihl= (A" - A)Ui. (3.1) 
dd - 

The following two theorems are the matrix versions of two sine theorems due to Davis 
and Kahan [2, 19701. 

Theorem 3.1 (Davis-Kahan) Let A and 2 be two Hermitian matrices with eigende- 
compositions (l.l),  (1.2), (1.31, and (1.4). If 6 ef min 

1 <i<k,l< j<n-k 
I A i  - Xk+jl > 0, then 
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In this theorem, the spectrum of A1 and that of x 2  are only required to  be disjoint. In 
the next theorem, they are required, more strongly, to be well-separated by intervals. 

Theorem 3.2 (Davis-Kahan) Let A and A be two Hermitian matrices with eigende- 
compositions ( l . l ) ,  (1.2), (1.3), and (1.4). Assume there is an interval [a,p] and a 6 > 0 
such that the spectrum of A1 lies entirely in [a,p] while that of& lies entirely outside of 
(a  - 4, /3 + 4) (or such that the spectrum of lies entireely in [a, /31 while that of A1 lies 
entirely outside of ( a  - 4, p + 4)). Then for any unitarily invariant norm 111 - 111 

3.2 Singular Space Variations 

Now: turn to the perturbations of Singular Value Decompositions (SVD). Let B and is; be 
two m x n ( m  2 n) complex matrices with SVDs 

B = U E V * w J 2 ) (  7 0 0  "y ) ( ;), (3.4) 

- 
--- 

is; = u C v * ~ ( o ~ 7 0 z )  ( :2) ( $ ) ,  
0 0  

(3.5) 

where U,  0 E Urn, V, E Un, U1, 01 E Cmxk, V1,Vl E Cnxk (1 I IC < n) and 

Define residuals 

RR %8V1 - UICl = (s - B)Vl and RL d'dB*Ul-  V,& = (8* - B*)Ul. (3.8) 

The following two theorems are due to Wedin 115, 19721. 

Theorem 3.3 (Wedin) Let B and 
(3.4), (3.5), (3.6), and (3.7). If 6 ef min 

be two m x n (m 2 n) complex matrices with SVDs 
miq la; - &+jl, min Oj > 0, then { l<i<k,l<j<n-k l < i l k  } 

JII sin o(u1, fi1)11; + 11 sin o(v1,V;)lla 
@&ii%- - Jll@ - will; + lKB* - B*)Ulll; 

6 
- 

6 I 

(3.9) 
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Theorem 3.4 (Wedin) Let B and 8 be two m x n (m 2 n)  compEex matrices with SVDs 
(3.4)) (3.5)) (3.6)) and (3.7). If there exist CY > 0 and 6 > 0 such that 

(3.10) 

4 Relative Perturbation Theorems 
4.1 Eigenspace Variations 

The following theorem is an extension of Theorem 3.1. 

Theorem 4.1 Let A and 2 = D*AD be two n x n Hermitian matrices with eigende- 
compositions (1.1)) (1.2)) (1.3), and (l.4), where D is nonsingular and close to I .  If 

By imposing a stronger condition on the separation between the spectra of x a  and AI,  we 
have the following bound on any unitarily invariant norm of sin O(U1, @I). 

Theorem 4.2 Let A and 3 = D*AD be two n x n Hermitian matrices with eigendecom- 
positions (l.l), ( l . Z ) ,  (1.3)) and (1.4), where D is nonsingular and close to I .  Assume 
that there exist a > 0 and S > 0 such that the spectrum of A1 lies entirely in [-&,a] while 
that of xz lies entirely outside (-a - 6, a + 6 )  (or such that the spectrum of AI lies entirely 
outside (-a - 6, a + 6) while that of & lies entirely in [-a,a]). Then for any unitarily 
invariant norm 111 - 111 

def where = ep(a, a + 6). 
Now we consider eigenspace variations for a graded Hermitian matrix A = S*HS E 

dzf .., Cnxn perturbed to 2 = S*ES. Set AH - H - H .  
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Theorem 4.3 Let A = S'HS and A = S ' i S  be two n x n  Hermitian matrices with eigen- 
decompositions (l.i), (1.2), (1.3), and (1.4). H is positive definite and llH-'11211AH112 < 

def min, ~ ( A ; , i k + j )  > 0, then If" - I s i < k , l < j < n - k  

where D = ( I  + H-1/2(AH)H-1/2)1/2 = D'. 

Theorem 4.4 Let A = S*HS and 2 = S ' k S  be two n x  n Hermitian matrices with eigen- 
decompositions (i.l), (1.2), ('1.3), and (1.4). H a's positive definite and IIH-lll2llAHll2 < 
1. Assume that there exist Q > 0 and b > 0 such that 

I 

~n X j  2 c y + &  and max Xk+; sa. 
1 l r I k  I I j < n - k  

Then for any  unitarily invariant norm 111 111 

def where 7 = x(a, a -+ 6) and D = ( I  f H-'/2(AH)H-1/2)1/2 = D*. 
-X 

4.2 Singular Space Variations 

The following two theorems concern singular space perturbations. 

Theorem 4.5 Let B and E = DTBD2 be two m x n (m 2 n) (complex) matrices with 
SVDs (3.4), (3.5), (3.6), and (3.7), where D1 and D2 are nonsingular and close to iden- 
tities. Let 

If 1 ~ 2  > 0, then 
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Theorem 4.6 Let B and 8 = D;BDz be two m x n (m 1 n )  (complex) matrices with 
SVDs (3.4)) (3.5), (3.6), and (3.7), where D1 and 0 2  are nonsingular and close to iden- 
tities. If there exist cr > 0 and 5 > 0 such that 

def where q - ep(cr,cr + 6). -P 

In Theorems 4.5 and 4.6, we assumed that both D1 and Dz are close to identity matrices. 
But, intuitively D 2  should not affect Ul much as long as it is close to a unitary matrix. In 
fact, if D2 E U,, it does not affect U1 at all. The following theorems indeed confirm this 
observation. 

Theorem 4.7 Let B and = D;BDz be two m x n (m 2 n )  (complex) matrices with 
SVDs (3.4), (3.5)) (3.6), and (3.7), where D1 and D 2  are close to some unitary matrices. 
Let 772 be defined by (4.5) and set 

Assumel 
(4.10) 

If D1 is close to identity, then 

(4.11) 

(4.12) 
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If D2 is close to identity, then 

(4.13) 

where €1 = 110; - D;'112 and €2 = 110; - D,'112. 

Inequalities (4.11) and (4.12) which differ slightly in their last term clearly says that D2 
contributes to sin @ ( U l , o ~ )  with its departure from some unitary matrix, and similarly 
do (4.13) and (4.14). 

Remark. When one of the D1 and D2 is I. assumption (4.10) can actually be weakened 
to 172 > 0. as shall be seen from our proofs. 

Theorem 4.8 Let B and 8 = DtBD2 be two m x n (m 2 n) (complex) matrices with 
SVDs (3.4), (3.5)) (3.6), and (3.7), where D1 and 0 2  are close to some unitary matrices. 
Suppose that there exist cy > 0 and S > 0 such that 

(4.15) 

If D2 is close to identity, then 

(4.16) 

(4.18) 
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def where gp - ep(a, a + S), 7 %f x(a, a + S ) ,  and €1 = 110; - Dl'112 and €2 = 110; - DF' 112. 

Remark. If either D1 or D2 is I, (4.15) can actually be removed. 
Now, Let's briefly mention a possible application of Theorems 4.5,4.6,4.7 and 4.8. It 

has something to  do with deflation in computing the singular value systems of a bidiagonal 
matrix. Taking account of the remarks we have made, we get 

-X 

Corollary 4.1 Assume D1 = I and Dz takes the form 

where X is a matrix of suitable dimensions. Let 72 be defined by (4.5), and qx by (4.9). 
If 72 > 0,  then 

(4.20) 

Proof: Inequality (4.21) follows from (4.6). Inequality (4.20) follows from (4.11) and 

(4.21) 

I 

Corollary 4.2 Assume D2 = I and D1 takes the form 

where X is a matrix of suitable dimensions. Let q 2  be defined by (4.5), and qx by (4.9). 
If Q > 0,  then 

Corollary 4.3 Assume D1 = I and Dz takes the form 

where X is a matrix of suitable dimensions. Suppose that there ezist a > 0 and 6 > 0 
such that 

@n 0; 2 a+6 and &+j 5 a. 
l<t<k 1<3<n-k 
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Then 

(4.22) 

dzf dzf 
where -P rl - ep(a,a + 61, zx - x(a,a + 6). 

Proof: The first inequality in (4.22) follows from (4.16), and the second from (4.7). I 

Corollary 4.4 Assume D2 = I and D1 takes the form 

where X is a matrix of suitable dimensions. Suppose that there exist (Y > 0 and b > 0 
such that 

min 6; 2 a + b  and m u  8k+j 5 (Y. 
l < z < k  153 <n- k 

Then 

Now, we consider singular space variations for a graded matrix B = GS E Cnxn  per- 
turbed to 5 = 5s E Cnxn ,  where Gis nonsingular. Set AG gf 5-G. If Il(AG)G-'112 < 1, 
then 5 = G + AG = [I + (AG)G-'JG is nonsingular also. 

Theorem 4.9 Let B = GS E Cnxn and 
and (3.7), where G is nonsingular. Assume Il(AG)G''l12 < 1. If 

= GS E Cnxn with SVDs (3.4), (3.5), (3.6), 

then 

(4.23) 
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and 

(4.24) 

Proof: Write 5 = GS = [ I t  (AG)G-']GS = DiBD2, where 0; = I + (AG)G-' and 
D2 = I. Then apply Theorem 4.5 to get (4.23), and apply Theorem 4.7 to get (4.24). I 

Theorem 4.10 Let B = GS E CnX" and 8 = GS E CnXn with SVDs (3.4), (3.5), (3.6), 
and (3.71, where G is nonsingular. Assume /I(AG)G-'112 < 1. If there etist a'> 0 and 
6 > 0 such that 

min a; 2 a+S and 1 < j  max In-k &+j 5 cr 
' < i l k  

or, the other way around, ;.e., 

then for any unitarily invariant n o m  111 111 

(4.26) 

and 

(4.27) 
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Proof: Again write 8 = (?S = [I  + (AG)G-']GS = D;BD2, where D; = I + (AG)G-' 
and D2 = I .  Then apply Theorem 4.6 to get (4.25) and (4.26), and apply Theorem 4.8 to 

Remark. Inequalities (4.24) and (4.27) may provide much tighter bounds than (4.23) 
and (4.25), especially when (AG)G-' is very close to a skew Hermitian matrix. 

get (4.27). a 

5 More on Relative Gaps 

In the theorems of $4, various relative gaps play an indispensable role. Those gaps are 
imposed on either between A, and x 2  or between C1 and 2 2 .  In some applications, it may 
be more convenient to have theorems where only positive relative gaps between A1 and 
A2 or between C1 and C2 are assumed. Based on results of Ostrowski [13, 19591 (see also 
IS, pp.224-225]), Barlow and Demmel [l, 19901, Demmel and VeseliC IS, 19921, Eisenstat 
and Ipsen [6, 19931, Mathias [12, 19941, and Li [ll, 19941, theorems in 54 can be modified 
to accommodate this need. In what follows, we list inequalities for how to bound relative 
gaps between A1 and i 2  or between C1 and E2 from below for each theorem by relative 
gaps between A1 and A2 or between and C2. The derivations of these inequalities 
depends on the fact listed in Lemma 2.1. 

For Theorem 4.2: Assume that there exist 6 > 0 and 8 > 0 such that the spectrum of 
A1 lies entirely in [-6, &] while that of A2 lies entirely outside (-6 - $, & + 8) (or 
such that the spectrum of A, lies entirely outside ( -6  - 8,ii + 8) while that of A2 
lies entirely in [-&,&I). If ep(ii,6 + 8) > (11 - D*DI/z, then there are a > 0 and 
S > 0 as the theorem requires, and 

For Theorem 4.4: Assume that there exist 6 > 0 and 8 > 0 such that 
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or 
and 

For Theorems 4.6: Assume there exist & > 0 and 8 > 0 such that 

mjn Q; 1 & + a  and lpax o k + j  5 6. 
l<r<k 1 SJ<n- k 

If ep(&, ii + 8 )  > E ,  then there are a > 0 and 6 > 0 as the theorem requires, and 
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For Theorem 4.9: 

15 

For Theorem 4.10: Suppose there exist ii > 0 and 8 > 0 such that 

or, the other way around, i.e., 

If ep(b,ii + 8) > &E, then there are CY > 0 and 6 > 0 as the theorem requires, 
and 

where E = llD* - D-'112 and D = It (AG)G-'. 

6 A Word on Eisenstat-Ipsen's Theorems 
Eisenstat and Ipsen [7, 19941 have obtained a few bounds on eigenspace variations for 
A and 2 = D*AD and on singular space variations for B and = E = DiBDz.  Their 
bounds for subspaces of dimension IC > 1 contain a factor f i  which makes their results 
less competitive to ours. For this reason we will not compare their bounds for subspaces 
of dimension 6 > 1 with ours. 

For the problem studied in Theorem 4.1, Eisenstat and Ipsen 17, 19941 tried to bound 
the angle 8j between Zj and R(Ul), where GI, i i 2 , - - . , &  are the columns of 01. They 
showed 

where 

b otherwise. 

Inequality (6.1) does provide a nice bound. Unfortunately it does not bound straightfor- 
wardly 11 sin Q(U1,01)112, and generally, 

sin8j 5 ~ ~ s i n @ ( U 1 , ~ 1 ) ~ ~ 2  f o r i  = 1,2, ..., k 
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and all of them may be strict. In the worst case, IIsinO(Ul,fi1)112 could be as large as 
f i  max sin 0,. To make a fair comparison to our inequality (4.1), we consider the case 

k = 1. One infers from inequality (4.1) that3 
1 9 l k  

It looks that (6.1) may be potentidy sharper because 61 may be much larger than 
min ez(A;,X,). But this is not quite true because of the extra term 111 - D i l 2  in (6.1) 

which stays no matter how large 61 is. We present our arguments as follows. 
2<t<n 

1. These relative perturbation bounds are most likely to be used when the closest 
has about the same magnitude as 11, Le., eigenvalue A t  among all {A;):==, to 

when 1x41 M 1x11 and 

Hence asymptotically, inequalities (6.2) and (6.1) read, respectively 

2. 

So our bound (6.2) is asymptotically sharper by amount 111 - 0112.  

On the other hand, if the closest eigenvalue XI among all (Xi}?==, to  1 1  has much 
bigger magnitude than ]&I, i.e., IXtl >> 1x11, then 

Thus asymptotically, inequality (6.2) read 

which cannot be much worse than (6.1). 

'By treating 4 and symmetrically, one can see Theorem 4.l_remains d i d  with-the relative gap 
between AI and A2 replaced by the relative gap min 

l s i s k ,  l s j s n - k  
~ ( A i , X r + j )  between A1 and An. 
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To be short, we have shown that it is possible for our inequality (6.2) to be less sharp than 
(6.1) by a constant factor and in the case when these bounds are most likely to be used 
in estimating errors (6.2) is sharper. 

Another point we like to make is that we had given up some sharpness for elegantness 
in the derivation of (6.2). Recall that we have, besides (7.1), also 

When = 0, this equation reduces to -0:U2 = 8:(I  - D*)U2 which implies 

II sinOtU1,01)112 I llD* - 4 1 2 ,  

a better bound than (6.2), provided X j  # 0 for j = k + l , . . .  . n. Equation (6.3) implies 

G;U2 = G;(D-' - I ) U 2 i l ( i l I  - i\2)-' + %;(I - D*)U2A2(3;1I- 

which can be used to obtain an identity for sin81 = llii;U2112! Generally (6.3) produces 

II sin@(U1,@1)Il2 

which would be a better bound than (4.1) in the case when 

Eisenstat and Ipsen [7, 19941 treated singular value problems in a very similar way as 
they did to  eigenspaces. This makes our arguments above apply to our bounds and their 
bounds for singular value problems. 

Eisenstat and Ipsen [7, 1994) did not study bounds in other matrix norms. 

7 Proofs of Theorems 4.1 and 4.2 

Let R = A"U1 - U1A1 = (A" - A)U1 as defined in (3.1). Notice that 
5 -  

D'R = O;AIUl - D;U1Al = A2U;Ui - O;UlAl, 
DZR = D;(X - A)U1 = O' [D*AD - D*A + D'A - A] U1 

= 0; [D*AD(I - D-') + (D* - I )A]  U1 - = X2U,*(I - D")Ui + G;(D* - I)UlAl .  

Thus, we have 
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Lemma 7.1 Let 52 E Csxs and I' E CtXt be two Hermitian matrices, and let E ,  F E Csxt.  

Proof: For any unitary matrices P E Us and Q E Ut, the substitutions 

R t P*RP, I' t Q*I'Q, X c P*XQ, E t P*EQ, and F t P*FQ 

leave the lemma unchanged, so we may assume without loss of generality that 
R = diag(w1 ,w2,. . . , w,) and r = diag(.yl, 7 2 , .  . . , rt). 

Write X = (x i j ) ,  E = (e;j) ,  and F = ( f i j ) .  Entrywise, equation OX -XI' = RE + FI' 
reads W j Z j j  - Z i j r j  = w;e;j -I- f i j r j .  Thus xij exists uniquely provided W; # 7j which is 
guaranteed by the assumption X(R) nA(I') = 0, and moreover 

/(ai - yj)Xijl2 = Iaixij - Zijyj12 = Iwieij + fijyjl2 L (]Oil2 + Ir12)(leij12 + l f i j I 2 )  

by the Cauchy-Schwarz inequality. This implies 

as was to be shown. 

Proof of Theorem 4.1: By Lemma 7.1 and equation (7.1), we have 

This completes the proof of Theorem 4.1, since 11 sin O(U1, &)llF = IlO;UlllF. I 

Lemma 7.2 Let SZ E Csxa and I' E CfXf  be two Hermitian matrices, and let E ,  F E Csxt.  
If there exist a > 0 and 6 > 0 such that 

or 
c. IIQ-lll;l 2 a + S and llrll2 5 a, 

then matrix equation s2X - XI' = QE + FI' has a unique solution, and mornover for any 
unitarily invariant norm 111 111, ixll5 i/-/%, whem y+ = 4(a ,  a + 6). det 
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Proof: First of all, the conditions of this lemma imply A(R)nA(r) = 8, thus X exists 
uniquely by Lemma 7.1. In what follows, we present a proof of the bound for lllXlll for the 
case llRll2 _< a and 11;' 2 ~ + 6 .  A proof for the other case is analogous. Post-multiply 
equation R X  - XI' = RE + FI' by I'-' to get 

By equation (7.2), we deduce that 

from which the desired inequality follows. 

Proof of Theorem 4.2: By Lemma 7.2 and equation (7.1), we have 

8 Proofs of Theorems 4.3 and 4.4 

Notice that 

I 

I 
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Set B = S*H1/2 and = S*H1/2(I + H-1/2(AH)H-1/2)1/2 def B D ,  where 

D = ( I t  H-1/2(AH)H-1/2)1/2. Given the eigendecompositions of A and 2 as in (l.l), 
(1.2)? (1.3), and (1.4)? one easily see that B and j admit the following SVDs. 

where U, 3 are the same as in (1.1) and (1.2)? VI,  ?1 E Cnxk.  Notice that 

A - A = g @  - BB* = gD*a* - SD-'B* = E(D* - D-')B*. 

Pre- and post-multiply the equations by o* and U, respectively, to get i o * U  - G*UA = 
n1/2c*(D* - D-1)VA1/2  which yields 

- 1 / 2 -  X20lU1 - 6;U1111 = A, V;(D* - D-1)V1Ai'2. (8.1) 

The following inequality will be very useful in the rest of our proofs. 

Proof: For any unitary matrices P E U, and Q E U t ,  the substitutions 

R t P*OP, R1j2 t ( P * R P ) f / 2 ,  I' t Q*rQ,  I'll2 c (Q*I'Q)1/2, 

X t P * X Q ,  and E t P * E Q  
leave the lemma unchanged, so we may assume without loss of generality that 
R = diag(u1,02,. . .,us) and I' = diag(yl,'y2,. . ., yt) .  

Write X = (Zi j ) ,  E = (e i j ) .  Entrywise, equation RX - XI' = Q1/2EI'1/2 reads 
W . 2 "  1 $3 - Zijyj = f i e i j f i .  AS long a~ ~i # y j ,  ~ i j  exists uniquely, and 

lzij12 = Ieij12/x(ui,Yj) I Ieij12/qx 
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summing which over 1 5 i 5 s and 1 5 j 5 t leads to the desired inequality. 

Proof of Theorem 4.3: Equation (8.1) and Lemma 8.1 imply 

21 

B 

as required. B 

Lemma 8.2 Let Q E Csxs and l? E C t X t  be two nonnegative definite Hermitian matrices, 
and let E CYxt.  If there exist Q > 0 and 6 > 0 such that 

Proofi The existence and uniqueness of X are easy to see because the conditions of this 
lemma imply A(Q)nA( I '>  = 0. To bound lllXll1, we present a proof for the case IlQll2 5 Q 

and ~ ~ 1 ' - 1 ~ ~ ~ '  2 a + 6. A proof for the other case is analogous. Post-multiply equation 
QX - Xr = Q1/2EI'1/2 by I'-l to get 

Qxr-' - X = Q1/2Er-1/2. (8.2) 

from which the desired inequality follows. B 

Proof of Theorem 4.4: Equation (8.1) and Lemma 8.2 imply 

I 

as required. B 
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9 Proofs of Theorems 4.5 and 4.6 

Let RR = E& - U1C1 = (8 - B)V1 and RL = k U 1 -  V1Cl = (5% - B*)U1 as defined in 
(3.8). 

9.1 

When m = n, the SVDs (3.4) and (3.5) read 

The Square Case: m = n 

Notice that 

to get 

- -  
V - R L  = V;B*u1 - V;v1cl = C ~ U , * U ~  - V;v1cl. 
V-RL = V;@* - B*)U, = V;(D;B*D1- D;B* + D;B* - B*)Ul 

EzO;(I - D,')Ul+ v;(D; - I)V& 

= F; [B*(I - DT') + (0; - I)B*] u, 
= 

which produce 

Equations (9.1) and (9.2) take an equivalent forms as a single matrix equation with di- 
mensions doubled. 
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which completes the proof. I 

Lemma 9.1 Let S l  E Csxs and I' E CtXt be two Hermitian matrices, and let 
X, Y, E ,  E ,  F, F ,  E Csxt satisfying 

s2x -yr = m + F r  and RY - x r  = nE+Pr. 
If there exist Q > 0 and 6 > 0 such that 

-1 -1 llnll2 5 Q and Ilr 112 L Q + 6 

or 
IIQ-~II;~ 2 Q + 6 and liril2 i Q, 

then for any unitarily invariant norm 111 . 111, 
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and 

By equation (9.5), we deduce that 

which produce that if IllXIII L IllYlll, lllxal I + f q ~ ~ E ~ ~ ~ y  + p~~~y.  Similarly if IllXIII < IllYIII, 
-P 

from RX - Y I? = R E  + F r  we can obtain lily 111 5 {m. Inequality (9.4) now 
follows. I 
Proof of Theorem 4.6: By equations (9.1) and (9.2) and Lemma 9.1, we have 

-P 

as required. Turning to inequality (4.8), we have by equation (9.3) and Lemma 7.2 that 

since the conditions of Theorem 4.6 imply 

Since 0;.!71 and sin Q( UI, 01) have the same nonzero singular values and so do v$V' and 
sin @(VI, VI), 
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Note also 

Thus, one has 

Inequality (4.8) is a consequence of (9.6), (9.7), (9.8) and (9.9). I 

9.2 

Augment B and B by a zero block Om,m--n to Ba = (B,Om,m-n) and Ba = (B,Om,m-n). 
From 5 = D ; B D ~ ,  we get 

The Non-Square Case: rn > n - -. I 

From the SVDs (3.4) and (3.5) of B and 8, one can calculate the SVDs of Ba and Ba: 

(9.10) 

(9.11) 

Im-n 1. 
where 

Om-n,m-n Om-n,k 

Applying the square case of Theorems 4.5 and 4.6 to rn X n matrices Ba and &, just 
defined wiu complete the proofs. 
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10 Proofs of Theorems 4.7 and 4.8 

We have seen in $9 how to deal with the nonsquare case by transforming it to  the square 
case. So here we will only give proofs for the square case: rn = n. Let B = D;B and 
B = BD2 and their SVDs be 

(10.1) 

(10.2) 

where 0, U E U,, c, v E Un, U1, 01 E Cnxk, Vi, VI E Cnxk and 

Partitionings in (10.1) and (10.2) shall be done in such a way that 

Such partitionings are possible because of the relative perturbation theorems proved in 
Li Ell]. By the fact ep([, C) ,< 2-'/Px([, C) (see Lemma 2.1 below), these inequalities imply 

Consider B and = BD2. We have 

(10.5) 

(10.6) 
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Consider now B and = DTB. We have 

(10.8) 

(10.9) 

5 -  
Notice that 

Pre- and post-multiply the equations by t* and V ,  respectively, to get C2V*V - ?*Vt2 = 
B*B - PB = B*D;B - E*DT'B = 2*(D: - DT')B. - -  

E6*(D; - Dil)U% which gives 
I -  

E2 -2v*v 2 1 - t *v  2 1 $2 1 = E2u;(D;-D~1)01%. (10.10) 

Two other eigendecompositions that will be used later in the proofs are 

BB* = UCC*U* E (Ui,u2) 

B*B = VC*CV* f (V1,v2) ( ) ( ) - 
(10.11) 

(10.12) 

Proof of Theorem 4.7: Equations (10.7) and (10.10) and Lemma 8.1 produce 

2 , 9 2  g miq , 0 2 ( 4 ,  &i+j); Applying Theorem 4.1 to B*B and B*B = where rlz(cl 2, l<i lk, l<t<n-k 
D:B*BD2 leads to (see (10.8) and (10.12)) 

'We abnse notation g, here for convenience. As we recall, qx has its own assignment in the statement 
of Theorem 4.7. However, it is redefined as a fnnction in thia proof. Hopefdy, this would not cause m y  
confusion. 

.- 

e 

. 
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This is because 

(10.13) 

and because 

Similarly, we have 

The proof will be completed by employing 

since 11 sin@( -, - ) / I F  is a metric on the space of k-dimensional subspaces [14]. I 

Proof of Theorems 4.8: Denote p = a + 6. Let & and Cir be the largest positive numbers 
such that 

1 1 
X(Q,&) I p; - D,'112 and x(a,h) I p; - D 3 1 2  
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and let f i  and p be the smallest numbers such that 

(4.15) implies min(fi,& > a and p > max(&,&). 
1 Equations (10.7) and (10.10) and LemmE 8.2 produce 

On the other hand, applying Theorem 4.2 to BB* and l?h* = D;BB*D1 leads t o  (see 
(10.5) and (10.11)) 

Applying Theorem 4.1 to B*B and B*B = D;B*BD2 leads to (see (10.8) and (10.12)) 

Notice that 
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11 Conclusions and Further Extensions to Diagonalizable 
Matrices 

We have developed a relative perturbation theory for eigenspace and singular space vari- 
ations under multiplicative perturbations. In the theory, extensions of Davis-Kahan sin 8 
theorems and Wedin sin 6 theorems from the classical perturbation theory are made. Our 
unifying treatment covers almost all previously studied cases over the last six years or so. 

Using the similar technique in this paper, one can also develop a relative perturbation 
theory for eigenspaces of diagonalizable matrices: A and 2 = DiAD2 are diagonalizable, 
where D1 and 0 2  are close to the identity matrix. We outline a way of doing this. Let 
eigendecompositions of A and A be 

where X, 2 E Cnxn are nonsingular, and XI, 21 E Cnxk  (1 5 IC < n)  and 

Xi's and Xj 's  may be complex. Partition 

X-' = ( ) and z-'= ( ) , 
def - where Y1, f Cnxk .  Define R = AX1 - XlAl = (A" - A)X1. We have 

Thus we have the following perturbation equation 

from which various bounds on sin @(XI, 21) can be derived under certain conditions. For 
example, let miq ~a(A;,"x+,). If > 0, then by Lemma 7.1 we have 

l<i<k,  l < j + a - k  
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