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Abstract. In this paper we find formulas for group inverses of Laplacians of weighted trees.
We then develop a relationship between entries of the group inverse and various distance functions
on trees. In particular, we show that the maximal and minimal entries on the diagonal of the group
inverse correspond to certain pendant vertices of the tree and to a centroid of the tree, respectively.
We also give a characterization for the group inverses of the Laplacian of an unweighted tree to be
an M -matrix.
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1. Introduction. In this paper, for a weighted tree on n-vertices, we bring
into focus the relationship between the inverse weighted generalized distance function
which is defined on its vertices and the entries of the group inverse of the Laplacian
matrix associated with the tree. In so doing we generalize and extend results which
we have obtained in a previous paper for unweighted trees. We also shift the frame of
reference for what we termed in that paper as bottleneck numbers for the tree to the
inverse weighted distance function. Other results follow.

An undirected weighted graph on n vertices is a graph, G, each of whose edges e
has been labeled by a positive real number, w(e), which is called the weight of the
edge e. Taking the vertices of G to be 1, 2, . . . , n, the Laplacian matrix of the weighted
graph G is the n×n matrix L = (�i,j) whose ith diagonal entry equals the sum of the
weights of the edges incident to vertex i, and whose (i, j)th off-diagonal entry equals
0 if there is no edge joining vertices i and j and equals the negative of the weight of
the edge joining vertices i and j otherwise.

Suppose now that G is a weighted tree on n vertices and recall that any two
vertices i and j are joined by a unique path Pi,j . We define the inverse weighted
distance from vertex i to vertex j as the sum

d̃(i, j) =
∑

e∈Pi,j

1

w(e)
;(1.1)

that is, d̃(i, j) is the sum of the reciprocals of the weights of the edges on the path
Pi,j . We define d̃i,i = 0 for all i = 1, . . . , n. For any vertex i, we define the inverse
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status of vertex i as the sum

d̃i =
∑
u∈T

d̃(u, i).(1.2)

Our terminology follows that of Harary [6] for unweighted graphs.

Recall that for an n × n matrix A, the group inverse of A, when it exists, is the
unique n× n matrix satisfying the matrix equations

(i) AXA = A, (ii) XAX = X, and (iii) AX = XA.

It is known that for real square matrix, A, the group inverse exists if and only if the
Jordan blocks of A corresponding to the eigenvalue λ = 0 are all 1×1. It is customary
to denote the group inverse of A by A#.

Now let G be a weighted tree on n vertices. It is readily seen from the definition
of the Laplacian of G that L is a symmetric matrix with nonpositive off-diagonal
entries and zero row sums. It follows now from the Perron–Frobenius theory, see, for
example, Berman and Plemmons [1], that L is a positive semidefinite and irreducible
M -matrix. In particular, the group inverse L# of L exists.

In section 3 we shall show that for some constant c,

(
L#

1,1, . . . , L
#
n,n

)
=

1

n
(d̃1, . . . , d̃n) + c1,

where 1 is the n-vector of all 1’s. Thus the maximal and minimal diagonal entries in
L# correspond to the vertices of maximal and minimal inverse status, respectively.
We shall further show that of necessity such vertices must be pendant and centroid
vertices of the tree, respectively. We also find a representation in terms of the inverse
status values for the off-diagonal entries of L# and show that its entries corresponding
to the edges along the same path emanating at any vertex decrease as we move away
from the vertex. This yields a characterization for L# to be an M -matrix itself, and
we analyze the unweighted trees whose Laplacian has a group inverse which is such a
matrix.

The development of distance formulas for the entries of the group inverse of the
Laplacian requires the preparation of some preliminary results for weighted trees of
certain parameters associated with the graph which, for unweighted trees, we called
bottleneck numbers. In section 2 we extend the notion and results on bottleneck
numbers in [7] to weighted graphs.

2. Formulas for L#. Recall that the Laplacian matrix of a weighted connected
graph is an irreducible singular M -matrix. In this section we establish general formu-
las for the group inverse of an irreducible singular M -matrix and then give combina-
torial descriptions in the case of weighted graphs.

We begin with the following block matrix description. Let A be an n × n irre-
ducible, singular M -matrix. Then there exists a positive vector x such that Ax = 0.
The vector x is called a right null vector of A. Similarly, a left null vector of A is a
positive vector y such that yTA = 0T . We also note, for k = 1, 2, . . . , n, that the prin-
ciple submatrix A[{k}, {k}] obtained from A by deleting its kth row and column is a
nonsingular M -matrix. The proof of the following is similar to that of Theorem 8.5.2
in [2].

Proposition 2.1. Let A be an irreducible singular M -matrix with right null
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vector x = (x1, x2, . . . , xn)T and left null vector y = (y1, y2, . . . , yn)T . Then

A# =
ŷTMx̂

(yTx)2
xyT +

⎡
⎢⎢⎣

M − 1
yT x

Mx̂ŷT − 1
yT x

x̂ŷTM −yn

yT x
Mx̂

−xn

yT x
ŷTM 0

⎤
⎥⎥⎦ ,

where x̂ = (x1, x2, . . . , xn−1)
T , ŷ = (y1, y2, . . . , yn−1)

T , and M = A[{n}, {n}]−1.
If A is an n × n irreducible singular M -matrix, we call the nonnegative matrix

A[{i}, {i}]−1 the bottleneck matrix of A based at i. Proposition 2.1 describes A# in
terms of the bottleneck matrix of A based at n. If A is the Laplacian matrix of a
weighted graph G, then we also refer to A[{i}, {i}]−1 as the bottleneck matrix of G
based at vertex i. The following is an immediate consequence of Proposition 2.1 and
the fact that 1 is a left and right null vector of the Laplacian matrix of a weighted
graph.

Proposition 2.2. Let L be the Laplacian matrix of a connected weighted graph
with n vertices. Then

L# =
1TM1

n2
J +

⎡
⎢⎣

M − 1
nMJ − 1

nJM − 1
nM1

− 1
n1TM 0

⎤
⎥⎦ ,

where M = L[{n}, {n}]−1 is the bottleneck matrix based at vertex n.
If A is an m × n matrix, the submatrix of A whose rows have index in α and

whose columns have index in β is denoted by A[α, β]. We use α and β to denote the
complement of α in {1, 2, . . . ,m} and of β in {1, 2, . . . , n}, respectively.

We now develop a combinatorial description of the entries of the bottleneck matrix
of a weighted graph. Let L be the Laplacian matrix of a connected weighted graph
G with vertices 1, 2, . . . , n. By the cofactor formula for the inverse, the (i, j)th entry
of the bottleneck matrix of L based at n equals

(−1)i+j detL[{j, n}, {i, n}]
detL[{n}, {n}] .(2.1)

Our description of the bottleneck matrix follows from (2.1) and a generalization of the
matrix-tree theorem obtained by Chaiken in [3]. The generalization is proven using
the Cauchy–Binet formulas and gives a combinatorial description of the determinants
of the square submatrices of a Laplacian matrix.

For the purpose of achieving the above, we need a few further graph theoretical
notions. A subgraph of G is a graph H whose vertices are a subset of 1, 2, . . . , n, and
whose edges are a subset of those of G. If G is a weighted graph and E is a subset of
edges of G, then the weight of E is denoted by w(e) and is the product of the weights
of the edges in E. The weight of a subgraph H is the weight of its set of edges and
the weight of a graph with no edges is defined to be 1. The set of all spanning trees
of G is denoted by S. We now define a special type of spanning forest. Let i, j,
and k be (not necessarily distinct) vertices of G. An ({i, j}, k)-spanning forest of G
is a spanning forest of G which has exactly two connected components, one of which
contains vertex k and the other of which contains the vertices i and j. The set of all

({i, j}, k)-spanning forests of G is denoted by S{i,j}
k .
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Chaiken’s all minors matrix tree theorem in [3] implies that

detL[{n}, {n}] =
∑
T∈S

w(T )

and

detL[{j, n}, {i, n}] =
∑

F∈S{i,j}
v

w(F ) for 1 ≤ i, j ≤ n− 1.

Therefore, (2.1) implies the following theorem.
Theorem 2.3. Let G be a connected weighted graph on vertices 1, 2, . . . , n. Let

v be a vertex of G. Then the bottleneck matrix M = [mi,j ] of G based at vertex v
satisfies

mi,j =

∑
F∈S{i,j}

v
w(F )∑

T∈S w(T )
.

Theorem 2.3 has numerous consequences. The first, which is immediate, is a
combinatorial formula for the bottleneck matrix of an unweighted graph.

Corollary 2.4. Let G be an unweighted connected graph with n vertices. Then
the bottleneck matrix, M = [mi,j ], based at vertex v satisfies

mi,j =
|S{i,j}

v |
|S| .

Let G be an unweighted connected graph with vertices 1, 2, . . . , n. Let i and j be

adjacent vertices. Adding the edge joining i and j to each forest in S{i,i}
j establishes

a correspondence between S{i,i}
n and the spanning trees of G which contain the edge

joining i and j. Hence, by Corollary 2.4, the (i, i)-entry of the bottleneck matrix of
G based at vertex j is equal to the fraction of spanning trees of G which contain the
edge joining i and j. An analogous result holds for weighted graphs and follows from
Theorem 2.3.

Let T be a weighted tree with vertices 1, 2, . . . , n. Let i and j be (not necessarily
distinct) vertices other than n of T . Each spanning forest F of T with exactly two
components can be obtained from T by removing exactly one edge e. Thus, a spanning
forest F of T is an ({i, j}, n)-spanning forest if and only if F is a spanning forest
obtained from T by removing one of the edges e which lies on the path from i to n

and on the path from j to n. Since w(F )
w(T ) = 1

w(e) , Theorem 2.3 implies the following.

Corollary 2.5. Let T be a weighted tree with vertices 1, 2, . . . , n. The bottle-
neck matrix, M = [mi,j ], of G based at vertex v satisfies

mi,j =
∑

e∈Pv
i,j

1

w(e)
,

where Pv
i,j is the set of all edges e which lie on the path from i to v and on the path

from j to v.
A direct proof of Corollary 2.5 is given in [8]. Note that if T is an unweighted

tree, then by Corollary 2.5, mi,j = |Pv
i,j |. This was shown in [7].
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Let A = [ai,j ] be an n × n matrix. The matrix A is combinatorially symmetric
provided ai,j = 0 whenever aj,i = 0. If A is combinatorially symmetric, then the
graph of A is the graph G with vertices 1, 2, . . . , n with an edge joining vertex i and
vertex j if and only if i �= j and ai,j �= 0. If A is symmetric, then the weighted graph
of A is the graph obtained from G by weighting the edge joining vertex i and j by
ai,j . The next result extends Corollary 2.5 to symmetric M -matrices whose graph is
a tree.

Corollary 2.6. Let A be a symmetric, singular M -matrix whose graph is a
tree T with n vertices. Let x be a right null vector of A. Then the bottleneck matrix,
M = [mi,j ], of A based at v satisfies

mi,j = xixj

∑
e={k,�}∈Pv

i,j

1

w(e)xkx�
.

Proof. Without loss of generality we take v = n. Let D be the n × n diagonal
matrix whose diagonal entries are the entries of x. Consider the matrix L = DAD. It
is easy to verify that L is the Laplacian matrix of the weighted tree obtained from T
by weighting the edge e by w(e) = w(e)xkx�, where k and � are the vertices incident
to e. Hence, by Corollary 2.5,

(L[{n}, {n}])−1 =
∑

e∈Pn
i,j

1

w(e)
=

∑
e={k,�}∈Pn

i,j

1

w(e)xkx�
.

The corollary now follows from the observation that

A[{n}, {n}]−1 = D̂(L[{n}, {n}])−1D̂,

where D̂ is the diagonal matrix obtained from D by deleting row and column n.
Corollary 2.6 can be extended to combinatorially symmetric singular M -matrices

whose graph is a tree. First, it is shown that every such matrix is diagonally similar
to a symmetric matrix. This implies that in studying the diagonal entries of the group
inverse of a combinatorially symmetric singular M -matrix, one may assume that the
matrix is in fact symmetric. The following lemma is, essentially, due to Parter and
Youngs [10], though the proof below is different.

Lemma 2.7 (see Parter and Youngs [10, Lemma 3]). Let A be a combina-
torially symmetric, singular M -matrix of order n whose graph is a tree T . Let
x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be right and left null vectors of A,

respectively. Let D = diag(
√
x1√
y1
,
√
x2√
y2
, . . . ,

√
xn√
yn

). Then D−1AD is a symmetric, singu-

lar M -matrix whose graph is T .
Proof. The proof is by induction on n. The result is clearly true if n = 1 or n = 2.

Now assume that n ≥ 3, and the result is true for any combinatorially symmetric,
singular M -matrix of order n − 1 whose graph is a tree. Consider the n × n matrix
A = [ai,j ] and its graph T . Without loss of generality we may assume that vertex n
is a pendant vertex in T and is adjacent to vertex n− 1. Since Ax = 0 and yTA = 0,

yn−1

yn
an−1,n = −an,n =

xn−1

xn
an,n−1.

Thus, it follows that the last row and column of D−1AD are transposes of each other.
The matrix

Â = A[{n}, {n}] − xn

xn−1
an−1,nEn−1,n−1,
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where En−1,n−1 is the n− 1 × n− 1 matrix with a 1 in position (n− 1, n− 1) and 0
elsewhere, is a singular M -matrix whose graph is the tree obtained from T by deleting
vertex n. In addition,

Â

⎡
⎢⎢⎢⎣

x1

x2

...
xn−1

⎤
⎥⎥⎥⎦ = 0 and

[
y1 y2 · · · yn−1

]
Â = 0.

Thus, it follows by induction that D̂−1ÂD̂ is symmetric where

D̂ = diag

(√
x1√
y1

,

√
x2√
y2

, . . . ,

√
xn−1√
yn−1

)
.

Since D̂−1A[{n}, {n}]D̂ = (D−1AD)[{n}, {n}], we conclude that D−1AD is sym-
metric.

Corollary 2.8. Let A be an n × n combinatorially symmetric, singular M -
matrix whose graph is a tree T and whose right and left null vectors are x = (x1, x2, . . . , xn)T

and y = (y1, y2, . . . , yn)T , respectively. Then the bottleneck matrix M = [mi,j ] of A
based at v satisfies

mi,j = xjyi
∑

e={k,�}∈Pv
i,j

1

ak�x�yk
.

Proof. Without loss of generality we assume that v = n. Let B = D−1AD, where

D = diag(
√
x1√
y1
,
√
x2√
y2
, . . . ,

√
xn√
yn

). By Lemma 2.7, B = [bi,j ] is a symmetric, singular

M -matrix whose graph is T . It is easy to verify that

z = (
√
x1y1,

√
x2y2, . . . ,

√
xnyn)T

is a right null vector of B, and that the weight of an edge joining vertices k and �

equals ak�
√
x�yk√
xky�

. Hence by Corollary 2.6, the (i, j)-entry of (B[{n}, {n}])−1 equals

√
xiyi

√
xjyj

∑
e={k,�}∈Pi,j

1(
ak�

√
x�yk√
xky�

√
xkyk

√
x�y�

)
,

which simplifies to

√
xixjyiyj

∑
e={k,�}∈Pi,j

1

ak,�x�yk
.

Since B[{n}, {n}] = D̂−1A[{n}, {n}]D̂, where D̂ = D[{n}, {n}],

mi,j = xjyi
∑

e={k,�}∈Pi,j

1

ak,�x�yk
.

Next we derive a formula for the diagonal entries of Laplacians of trees. Let T
be a tree. If e is an edge, then T \ e denotes the graph obtained from T by removing



DISTANCES IN WEIGHTED TREES 833

e. If i is a vertex of T , then we define βi(e) to be the set of vertices in the connected
component of T \ e which does not contain vertex i.

Lemma 2.9. Let A = [ai,j ] be an n × n symmetric, singular M -matrix whose
graph is a tree T and let x = (x1, x2, . . . , xn)T be a null vector of A. Then, for
v = 1, 2, . . . , n,

A#
v,v =

(xv)
2

(xTx)2

∑
e={k,�}∈T

1

w(e)xkx�

⎛
⎝ ∑

i∈βv(e)

x2
i

⎞
⎠

2

.

Proof. Without loss of generality we may assume that v = n. By Proposition 2.1,

A#
n,n =

(xn)2

(xTx)2
x̂TMx̂,

where x̂ is the vector obtained from x by deleting its last row. Therefore, by Corollary
2.6,

A#
n,n =

(xn)2

(xTx)2

⎛
⎝ ∑

1≤i,j≤n−1

x2
ix

2
j

∑
e={k,�}∈Pn

i,j

1

w(e)xkx�

⎞
⎠

=
(xn)2

(xTx)2

∑
e∈T

1

w(e)xkx�

⎛
⎜⎜⎝ ∑

1≤i,j≤n−1

e∈Pn
i,j

x2
ix

2
j

⎞
⎟⎟⎠

=
(xn)2

(xTx)2

∑
e∈T

1

w(e)xkx�

⎛
⎝ ∑

i∈βn(e)

x2
i

⎞
⎠

2

.

The last equality follows from the fact that i and j are vertices such that e ∈ Pn
i,j if

and only if both i and j belong to βn(e).
We have the following immediate consequence for the Laplacian matrix of a

weighted tree. The analogous result for the Laplacian matrix of an unweighted tree
is contained in Theorem 3.3 of [7].

Corollary 2.10. If L is the Laplacian matrix of a weighted tree T with n
vertices, then

L#
v,v =

1

n2

∑
e∈T

|βv(e)|2
w(e)

(2.2)

for v = 1, 2, . . . , n.
The analogous result for nonsymmetric matrices follows by a similar argument.
Corollary 2.11. If A is an n×n combinatorially symmetric, singular M -matrix

whose graph is a tree and x and y are right and left null vectors, respectively, of A,
then

A#
v,v =

xvyv
(yTx)2

∑
e={k,�}∈T

1

ak,�x�yk

⎛
⎝ ∑

i∈βv(e)

xiyi

⎞
⎠

2
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for v = 1, 2, . . . , n.
We now give a formula for the difference between certain diagonal entries.
Lemma 2.12. Let A = [aij ] be an n × n symmetric, singular M -matrix whose

graph is a tree T and let x = (x1, x2, . . . , xn)T be the null vector of A. Assume that
vertices i and j are joined by an edge e. Then

1

x2
i

A#
i,i −

1

x2
j

A#
j,j =

1

(xTx)2
1

w(e)xixj

⎡
⎢⎣
⎛
⎝ ∑

k∈βi(e)

x2
k

⎞
⎠

2

−
⎛
⎝ ∑

k∈βj(e)

x2
k

⎞
⎠

2
⎤
⎥⎦ .

Proof. Let f be an edge of T with f �= e. Then βj(f) = βi(f). The result now
follows from Lemma 2.9.

For weighted trees we have the following lemma.
Lemma 2.13. Let T be a weighted tree on n vertices with Laplacian matrix L.

Suppose that i and j are vertices of T joined by the edge e. Then

L#
i,i − L#

j,j =
1

nw(e)
(|βi(e)| − |βj(e)|).(2.3)

In particular, L#
i,i > L#

j,j if and only if |βi(e)| > |βj(e)|.
Proof. Since 1 is a null vector of L, and |βi(e)| + |βj(e)| = n, the result follows

from Lemma 2.12.
Finally, in the next section we shall also require a formula for the off-diagonal

entries of the Laplacian of a weighted tree.
Lemma 2.14. Let T be a weighted tree on n vertices with Laplacian matrix L.

Then, for i, j = 1, . . . , n with i �= j,

L#
i,j =

1

n2

∑
e∈T

|βj(e)|2
w(e)

− 1

n

∑
e∈Pi,j

|βj(e)|
w(e)

.(2.4)

Proof. Without loss of generality we can assume that j = n and i = 1, . . . , n− 1.
Then using the symmetry of L, it follows from Proposition 2.2 and Corollary 2.6 that

L#
n,i =

1

n2
1TM1 − 1

n

n−1∑
k=1

∑
e∈Pn

i,k

1

w(e)

=
1

n2

∑
e∈T

|βj(e)|2
w(e)

− 1

n

∑
e∈Pi,n

|βi(e)|
w(e)

.

3. Inverse weighted distances. We begin with the following auxilliary lemma.
Lemma 3.1. Let T be a weighted tree on n vertices. Let v0 and vl be vertices in

T with v1, v2, . . . , vl−1 as intermediate vertices on the path α which joins v0 to vl. For
1 ≤ i ≤ l, let ei be the edge between vi−1 and vi having weight θi. For 0 ≤ i ≤ l, let ti
be the number of vertices, including vi whose shortest path to α has terminal vertex
vi. Then

d̃v0
− d̃vl

=
l∑

i=0

ti

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.(3.1)
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Proof. For any one of the ti vertices u of T whose shortest path to α ends at vi,
we have that

d̃(u, v0) − d̃(u, vl) = d̃(vi, v0) − d̃(vi, vl).

Hence we find that

d̃v0 − d̃vl
=

l∑
i=1

ti

[
d̃(vi, v0) − d̃(vi, vl)

]
.

The result now follows on observing that

d̃(vi, v0) − d̃(vi, vl) =

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.

Lemma 3.1 leads us to the following theorem.
Theorem 3.2. Under the assumptions and notations of Lemma 3.1 we have that

n
(
L#
v0,v0

− L#
vl,vl

)
=

l∑
i=0

ti

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.(3.2)

Proof. From (2.2) we have that

n2L#
v0,v0

=
∑
e∈T

β2
v0

(e)

w(e)

and that

n2L#
vl,vl

=
∑
e∈T

|β2
vl

(e)|
w(e)

.

Now if e �∈ α, then |βv0
(e)| = |βvl

(e)| , while if e = em for some m = 1, 2, . . . , �, then

|βv0
(em)| = tm + · · · + tl

and

|βvl
(em)| = t0 + · · · + tm−1.

Hence,

n2
(
L#
v0,v0

− L#
vl,vl

)
=

∑l
m=1 (|βv0

(em)| + |βvl
(em)|) |βv0 (em)|−|βvl

(em)|
w(em)

= n
∑l

m=1
−t0−···−tm−1+tm+···+tl

θm
.

In the above sum, we collect terms in each ti to find that

n2
(
L#
v0,v0

− L#
vl,vl

)
= n

l∑
i=0

ti

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.
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Corollary 3.3. Let T be a weighted tree on n vertices and L be its Laplacian.
Then for some constant c,(

L#
1,1, . . . , L

#
n,n

)
=

1

n
(d̃1, . . . , d̃n) + c1.(3.3)

Proof. Let Z be the simple cycle permutation matrix sending 1 → n and i →
i− 1, i = 2, . . . , n. It follows from Lemma 3.1 and Theorem 3.2 that

(I − Z)

[(
L#

1,1, . . . , L
#
n,n

)T

− 1

n

(
d̃1, . . . , d̃n

)T
]

= 0

from which the conclusion easily follows.
This corollary shows that if i1, . . . , in are indices of entries in (L#

1,1, . . . , L
#
n,n)T

such that

L#
i1,i1

≥ L#
i2,i2

≥ · · · ≥ L#
in,in

,

then

d̃i1,i1 ≥ d̃i2,i2 ≥ · · · ≥ d̃in,in .

In particular we have the following conclusion.
Corollary 3.4. Let T be a weighted tree on n vertices and L its Laplacian.

Then a diagonal entry in L# occurs at an index which corresponds to an index of a
pendant vertex of T whose inverse status is maximal and a minimal diagonal entry in
L# occurs at an index which corresponds to vertex of T which is a centroid.

Proof. To prove the first part of the corollary, suppose that k is not a pendant
vertex, say with k adjacent to m, with edge e1 between them, and k is adjacent to l
with edge e2 between them. If L#

k,k − L#
m,m ≥ 0, then, by (2.3),

|βk(e1)| ≥ |βm(e1)|.
But as |βk(e1)| + |βm(e1)| = n, we find that

|βk(e1)| ≥ n

2
.

Now, as k ∈ βk(e1) ∪ βk(e2), we find that

|βk(e2)| ≤ n− 2

n
,

so that L#
k,k − L#

l,l < 0. Hence L#
k,k cannot be the maximal diagonal entry in L#. It

now follows that the maximal diagonal entry must occur at a pendant vertex.
To see that the minimal inverse status number occurs at a centroid, note first

that on the one hand vertex l is centroid if and only if

|βl(e)| ≤ n

2

for all edges e incident with l. On the other hand, because for any adjacent vertices
i and j, |βj(e)| + |βi(e)| = n, where e is the adjacent edge between i and j, in order
for vertex j to satisfy that

L#
j,j = min

1≤i≤n
L#
i,i,
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it is necessary, again by (2.3), that |βj(e)| ≤ n/2 for all edges incident with j. Our
proof is now complete.

For each edge e ∈ T , T \ {e} has two connected components, Je has je vertices
and N \ Je has n− je vertices.

Theorem 3.5.

n∑
i=1

d̃i = 2n
n∑

i=1

L#
i,i =

∑
e∈T

2je(n− je)

w(e)
.

Proof. From the definition of a inverse status number in (1.2) we have that

n∑
i=1

d̃i =
∑
v∈T

∑
u∈T

∑
e∈Pu,v

1

w(e)
.

For each edge e, there are 2je(n− je) unordered pairs of vertices u and v such that e
is on the path between them. Hence, each edge e contributes 2je(n− je)/w(e) to the
above sum so that

n∑
i=1

d̃i =
∑
e∈T

2je(n− je)

w(e)
.

Now from (2.2),

2n
n∑

i=1

L#
i,i =

2

n

∑
v∈T

∑
e∈T

|βv(e)|2
w(e)

=
2

n

∑
e∈T

∑
v∈T

|βv(e)|2
w(e)

.

If v ∈ Je, then

|βv(e)|2 = (n− je)
2,

while if v ∈ N \ Je, then

|βv(e)|2 = j2
e .

Consequently,

∑
e∈T

∑
v∈T

|βv(e)|2
w(e) =

∑
e∈T

1
w(e)

(∑
v∈Je

|βv(e)|2 +
∑

v∈N\Je
|βv(e)|2

)

=
∑

e∈T
1

w(e)

(
(n− je)

2je + j2
e (n− je)

)
=

∑
e∈T

nje(n−je)
w(e) .

The result now follows.
We can now give a precise value to the constant c of (3.3).
Corollary 3.6.

(
L#

1,1, . . . , L
#
n,n

)
=

1

n
(d̃1, . . . , d̃n)− 1

n2

∑
e∈T

je(n− je)

w(e)
1 =

1

n
(d̃1, . . . , d̃n)− 1

2n2

n∑
i=1

d̃i1.
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Proof.

c1 =
(
L#

1,1, . . . , L
#
n,n

)
− 1

n
(d̃1, . . . , d̃n),

so that

nc =
1

n

∑
e∈T

je(n− je)

w(e)
− 2

n

∑
e∈T

je(n− je)

w(e)
.

Solving for c now yields the result.
Remark. We comment that as the nonzero eigenvalues of the group inverse of the

Laplacian are the reciprocals of the nonzero eigenvalues of the Laplacian, Theorem
3.5 generalizes an equality for the Wiener index of an unweighted tree (see Merris [9,
Theorem 5.5] and references cited therein), namely, that

n∑
i=1

d̃i = n
∑

λ∈σ(L)\{0}

1

λ
,

where σ(·) denotes the spectrum of a matrix.
We next develop formulas, in terms of distances, for the off-diagonal entries in

L#.
Theorem 3.7. For i �= j, 1 ≤ i, k ≤ n,

L#
i,n =

d̃i + d̃k
2n

− 1

2
d̃i,k − 1

2n2

n∑
j=1

d̃j .(3.4)

Proof. Without loss of generality we can take k = n and i = 1, . . . , n − 1. First
we claim that

L#
i,i − L#

n,n = d̃i,n − 2

n

∑
e∈Pi,n

βn(e)

w(e)
.

To see this note that if e �∈ Pi,n, then its contribution to L#
i,i is the same as that to

L#
n,n. On the other hand, if e ∈ Pi,n, the contribution of e to L#

n,n is

1

n

βn(e)

w(e)
,

while its contribution to L#
i,i is

1

n

n− βn(e)

w(e)
.

Thus

L#
i,i − L#

n,n =
2

n

∑
e∈Pi,n

n− βn(e)

w(e)
= d̃i,n − 2

n

∑
e∈Pi,n

βn(e)

w(e)
,

as desired. Hence, for 1 ≤ j ≤ n, we have that

L#
j,j = d̃j,n − 2

n

∑
f∈Pi,n

βn(f)

w(f)
,
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and this yields that

L#
i,i − L#

j,j = d̃(i, n) − d̃(j, n) + 2

⎡
⎣ 1

n

∑
f∈Pj,n

βn(f)

w(f)
− 1

n

∑
f∈Pi,n

βn(e)

w(e)

⎤
⎦

= d̃(i, n) − d̃(j, n) + 2
(
L#
i,n − L#

n,n

)
.

It now follows that for some constant α,

2L#
i,n = L#

i,i − d̃(i, n) + α, 1 ≤ i ≤ n− 1.

To find α, note that

(n− 1)α = 2

n−1∑
i=1

L#
i,n − 2

n−1∑
j=1

L#
j,n +

n−1∑
i=1

d̃(i, n)

= −2L#
n,n −

n−1∑
i=1

L#
i,i + d̃n = −L#

n,n −
n∑

i=1

L#
i,i + d̃n

= − 1

n
d̃n +

1

2n2

n∑
j=1

d̃j − 1

2n

n∑
j=1

d̃j + d̃n

=
n− 1

n
d̃n − n− 1

2n2

n∑
j=1

d̃j .

Thus we have that

α =
1

n
d̃n − 1

2n2

n∑
j=1

d̃j ,

which yields

L#
i,n =

1

2

⎛
⎝L#

i,i − d̃(i, n) +
1

n
d̃n − 1

2n2

n∑
j=1

d̃j

⎞
⎠

=
1

2

⎡
⎣ 1

n

(
d̃i + d̃n

)
− d̃(i, n) − 1

n2

n∑
j=1

d̃j

⎤
⎦ ,

as desired.
In Deutsch and Neumann [5], the following problem was posed: characterize the

set of all n × n irreducible singular M -matrices whose group inverse is also an M -
matrix. In the circumstances of this paper we have the following result.

Corollary 3.8. Let L be the Laplacian of a weighted tree on n vertices. Then
L# is an M -matrix if and only if for every pair of adjacent vertices i and j we have
that

d̃i + d̃j ≤ n

w(ei,j)
+

1

n

n∑
k=1

d̃k.
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Proof. For vertices a and b with 1 ≤ a, b ≤ n− 1, we have from (2.4) that

L#
a,n − L#

b,n =
1

n

⎛
⎝ ∑

f∈Pb,n

βn(f)

w(f)
−

∑
e∈Pa,n

βn(e)

w(e)

⎞
⎠ ,

so we see that, in the nth row of L#, the entries are decreasing along paths away from
n. Hence L# is an M -matrix if and only if for any adjacent vertices i and j we have
that L#

i,j ≤ 0. Imposing this condition in (3.4) now yields the result.
For unweighted trees we can determine precisely which trees admit a Laplacian

whose group inverse is an M -matrix. For this purpose we require the following lemma.
Proposition 3.9. Let T be an unweighted tree on n vertices. Then the maximum

of d̃i + d̃j over all pairs of adjacent vertices i and j occurs for the adjacent vertices
of some pendant edge.

Proof. Let i and j be adjacent vertices with d̃i+ d̃j maximal. Assume that neither
i nor j is a pendant vertex. Then there exist vertices h �= j and k �= i such that h
is adjacent to i and k is adjacent to j. Let α, β, γ, and δ, respectively, be the set of
vertices v for which the path from v to the path h—i—j—k ends at h, i, j, and k,
respectively.

Note that the distance from a vertex in γ to either i or k is equal, the distance
from a vertex in δ to i is 2 more than its distance to k, and the distance from a vertex
in α ∪ β to k is 2 more than its distance to i. Thus,

d̃i − d̃k = 2(|δ| − |α| − |β|).(3.5)

Similarly,

d̃j − d̃h = 2(|α| − |γ| − |δ|).(3.6)

Since d̃i+ d̃j is maximal, it follows that d̃i− d̃k ≥ 0 and d̃j− d̃h ≥ 0. Adding equations
(3.5) and (3.6) yields

0 ≤ −2(|β| + |γ|).
This implies that β and γ are empty. However, this contradicts the fact that i ∈ β
and j ∈ γ. We conclude that either i or j is a pendant vertex.

We can now show that for unweighted trees, the only trees whose Laplacian has
a group inverse which is an M -matrix are the stars of all orders.

Theorem 3.10. Let L be the Laplacian of a tree T with n vertices. Then L# is
an M -matrix if and only if T is a star.

Proof. By Corollary 3.8,

di + dj ≤ n +
1

n

n∑
k=1

d̃k(3.7)

for each pair of adjacent vertices i and j. Let i be a pendant vertex and j the vertex
adjacent to i, and let e be the edge joining i and j. By counting the contributions of
each edge of T to d̃i + d̃j and to

∑n
k=1 d̃k we see that

d̃i + d̃j = n + 2
∑
f �=e

|βi(f)|
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and

n∑
k=1

d̃k = 2(n− 1) + 2
∑
f �=e

|βi(f)|(n− |βi(f)|).

Substituting into (3.7) and simplifying we obtain that∑
f �=e

βi(f)2 ≤ n− 1.

Since βi(f) ≥ 1 for f �= e, we conclude that βi(f) = 1 for f �= e. It now follows that
T is a star with center j.

We note that in Chen, Kirkland, and Neumann [4, Corollary 5.4] it is shown that
if n ≥ 5, then no weighted path of order n can yield a Laplacian whose group inverse
is an M -matrix. The following example, taken from [4], exhibits a weighted path of
order 4 whose group inverse is an M -matrix. Let

L =

⎡
⎢⎢⎢⎢⎢⎣

0.2 −0.2 0 0

−0.2 0.6 −0.4 0

0 −0.4 0.6 −0.2

0 0 −0.2 0.2

⎤
⎥⎥⎥⎥⎥⎦ .

Then

L# =

⎡
⎢⎢⎣

3.75 0.000 −1.25 −2.5
0.000 1.250 0.000 −1.250
−1.25 0.000 1.25 0.000
−2.50 −1.25 0.000 3.75

⎤
⎥⎥⎦ .
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