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Abstract. Backward errors and condition numbers are defined and evaluated for eigenvalues
and eigenvectors of generalized eigenvalue problems. Both normwise and componentwise measures
are used. Unstructured problems are considered first, and then the basic definitions are extended so
that linear structure in the coefficient matrices (for example, Hermitian, Toeplitz, Hamiltonian, or
band structure) is preserved by the perturbations.
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1. Introduction.

1.1. Backward error and condition. Backward errors and condition numbers
play an important role in modern numerical linear algebra. Backward errors reveal
the stability of a numerical method. Condition numbers explain the sensitivity of the
solution of a problem to perturbations in the data, and, in the case where this per-
turbation is a backward error, the product of condition number times backward error
provides a first order error bound for the computed solution. The theory of backward
error and conditioning is now well developed for linear systems and least squares prob-
lems. For eigenproblems, although there is a large literature on perturbation theory
(see [30] and the references therein), a number of aspects of backward errors and con-
dition numbers have not been considered, particularly for the generalized eigenvalue
problem. Our aim here is to give a thorough development of backward error and con-
dition for the generalized eigenvalue problem, for both normwise and componentwise
measures, with particular emphasis on respecting structure in the coefficient matrices.

We consider the generalized eigenvalue problem Ax = λBx, where A,B ∈ Cn×n.
If x 6= 0 then we say that λ is an eigenvalue and x the corresponding eigenvector of the
pair (A,B). We develop backward errors for approximate eigenpairs and condition
numbers for eigenvalues and eigenvectors. We do not treat deflating subspaces (the
appropriate generalization of invariant subspaces), leaving this important topic to
future work; for existing results on deflating subspaces see Stewart and Sun [30,
Section VI.2.4] and K̊agström and Poromaa [21].

In section 2 we develop normwise backward errors and condition numbers for a
general class of normwise measures of the perturbations to A and B. In particular, we
show that, for the 2-norm, requiring the perturbations to respect Hermitian structure
in A and B has no effect on the backward error of an approximate eigenpair corre-
sponding to a real approximate eigenvalue and has no effect on the condition number
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of an eigenvalue of a definite pair. It is widely appreciated that for problems with
badly scaled or sparse data componentwise analysis can yield much stronger results
than normwise analysis [18]. In section 3 we give a treatment analogous to that of
section 2 but for componentwise measures.

Many applications lead to eigenproblems containing matrices with linear struc-
ture, and only perturbations that preserve the structure may be physically meaningful
[31]. For example, the quadratic eigenvalue problem has the form

(λ2C + λD + E)v = 0, C,D,E ∈ Cn×n.(1.1)

By writing u = λv we can express the problem as a generalized eigenvalue problem:[
D E
E 0

] [
u
v

]
= λ

[−C 0
0 E

] [
u
v

]
.(1.2)

The coefficient matrices are clearly highly structured, and arbitrary perturbations to
these matrices do not correspond to perturbations of the original quadratic eigen-
value problem—we must respect the structure in order to obtain meaningful results.
Another highly structured eigenproblem is that of a Hamiltonian matrix

H =

[
F G
H −FT

]
, F ∈ Rn×n, G = GT ∈ Rn×n, H = HT ∈ Rn×n.

It has been a long-standing open problem to develop numerical methods for the Hamil-
tonian eigenproblem that require only O(n3) operations and for which the computed
eigenvalues or invariant subspaces are the exact ones of a nearby Hamiltonian matrix;
that is, the backward error preserves the Hamiltonian structure. Benner, Mehrmann,
and Xu [4] have developed a numerical method that comes close to satisfying these
requirements, having a Hamiltonian backward error with respect to a Hamiltonian
matrix related to H. For testing this method and deriving error bounds it is there-
fore useful to have backward errors and condition numbers that respect Hamiltonian
structure.

In section 4 we define backward errors and condition numbers that respect arbi-
trary linear structure in the matrices A and B. The backward error is characterized
as the minimum norm solution to a rectangular system, while explicit formulas are
obtained for the condition numbers. We have previously carried out similar analysis
for linear systems [17]; there we used a Kronecker product-based approach, but here
we use a different technique based on “pattern matrices.”

Brief numerical experiments are reported in section 5 in order to illustrate the
analysis.

1.2. Preliminaries. For the backward error analysis we make no assumptions
on A and B, but for the definition and derivation of condition numbers we assume
that the pair (A,B) is regular, that is, that det(A− λB) is not identically zero in λ.

Significant advantages accrue from treating the generalized eigenvalue problem in
the form βAx = αBx, where an eigenvalue is now defined by a pair of scalars (α, β)
[30, p. 272]. For example, when B is singular a nonzero null vector of B is an eigen-
vector with (α, β) = (α, 0), whereas in the original formulation we have an eigenvalue
λ = ∞. The (α, β) framework thus elegantly handles infinite eigenvalues and treats
A and B symmetrically. Moreover, perturbation expansions of α and β individually
provide complete information about eigenvalue sensitivity [29], [30, p. 293], although
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some of this information is inevitably lost in the definition of a single condition num-
ber. We have chosen to derive and state all our results in terms of λ for three main
reasons. First, λ is the desired quantity in most practical applications of the general-
ized eigenvalue problem. Second, analysis with the (α, β) form is naturally carried out
using the chordal metric, but this metric is scale dependent (see section 2.2). Finally,
the standard eigenproblem (B = I) is an important special case and we would like
our results to be directly applicable to it.

For parts of the analysis we will consider a Hermitian pair (A,B) (that is, a pair
in which A and B are Hermitian) and assume that it is definite, that is, that

min
{ (

(x∗Ax)2 + (x∗Bx)2
)1/2

: x ∈ Cn, ‖x‖2 = 1
}

is positive, which is certainly true if A or B is positive definite. A definite pair (A,B)
has the property that there is a nonsingular matrix X such that X∗AX and X∗BX
are diagonal. For details of the theory of the generalized eigenvalue problem see [16,
Sections 7.7, 8.7], [25, Chap. 15], or [30, Chap. 6].

We require some definitions involving norms. The norm ‖ · ‖D dual to a given
vector norm ‖ · ‖ on Cn is defined by

‖x‖D = max
w 6=0

|w∗x|
‖w‖ ,

and we say that z is a vector dual to y if

z∗y = ‖z‖D‖y‖ = 1.

The mixed subordinate matrix norm ‖ · ‖α,β on Cn×n is defined by

‖A‖α,β = max
x6=0

‖Ax‖β
‖x‖α .

The generality obtained by allowing α 6= β causes no complications in the statements
and proofs of our results and permits coverage of the potentially useful norms

‖A‖1,β = max
j
‖A(: , j)‖β , ‖A‖α,∞ = max

i
‖A(i, : )∗‖Dα ,

which include the special case ‖A‖1,∞ = maxi,j |aij |. We note for later reference that

‖xy∗‖α,β = ‖x‖β‖y‖Dα .

For complex α we define

sign(α) =


α

|α| , α 6= 0,

0, α = 0.

The sign of a vector z is defined componentwise as sign(z) = (sign(zi)).
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2. Normwise analysis.

2.1. Backward errors. We begin by considering backward errors for the gen-
eralized eigenvalue problem. The formulas obtained are useful for testing the stability
of practical eigensolvers [1], [8], [21].

The normwise backward error of an approximate eigenpair (x̃, λ̃) is defined by

η(x̃, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ‖∆A‖α,β ≤ ε‖E‖α,β ,
‖∆B‖α,β ≤ ε‖F‖α,β },(2.1)

where E and F are given matrices of tolerances. Note that if A and B are real and λ̃
is nonreal, the optimal perturbations in (2.1) may be nonreal. How to restrict to real
perturbations is considered at the end of section 4.

The following theorem, which is a straightforward modification of a result of Rigal
and Gaches on the normwise backward error for a linear system [26], gives an explicit

expression for η(x̃, λ̃). For the case α = β, this theorem and the following lemma are
given by Frayssé and Toumazou [14].

Theorem 2.1. The normwise backward error η(x̃, λ̃) is given by

η(x̃, λ̃) =
‖r‖β

(‖E‖α,β + |λ̃|‖F‖α,β)‖x̃‖α
,(2.2)

where r = λ̃Bx̃−Ax̃.
Proof. It is straightforward to show that the right-hand side of (2.2) is a lower

bound for η(x̃, λ̃). This lower bound is easily seen to be attained for the feasible
perturbations

∆A =
‖E‖α,β

‖E‖α,β + |λ̃|‖F‖α,β
rz∗, ∆B = − sign(λ̃)

‖F‖α,β
‖E‖α,β + |λ̃|‖F‖α,β

rz∗,(2.3)

where z is a vector dual to x̃ with respect to the α-norm.
If we are interested only in the approximate eigenvalue λ̃ and are not concerned

about x̃, then a more appropriate measure of backward error may be

η(λ̃) := min
x̃6=0

η(x̃, λ̃).

This quantity has a closed-form expression, as shown by the next result.
Lemma 2.2. If λ̃ is not an eigenvalue of the pair (A,B) then

η(λ̃) =
1

‖(λ̃B −A)−1‖β,α (‖E‖α,β + |λ̃|‖F‖α,β)
.

Proof. The result follows from Theorem 2.1 on using the equality, for nonsingular
C ∈ Cn×n, minx6=0 ‖Cx‖β/‖x‖α = ‖C−1‖−1

β,α.

Similarly, for a given x̃ we can consider minimizing the backward error over all λ̃:

η(x̃) = min
λ̃

η(x̃, λ̃) = min
λ̃

‖λ̃Bx̃−Ax̃‖β
(‖E‖α,β + |λ̃|‖F‖α,β)‖x̃‖α

.(2.4)
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This optimization problem appears to be analytically intractable, even for the 2-norm
(α = β = 2). However, we can obtain an upper bound for η(x̃) by choosing λ̃ to mini-

mize the numerator in (2.4) only; for the 2-norm this value of λ̃ is x̃∗B∗Ax̃/(x̃∗B∗Bx̃)
if Bx̃ 6= 0.

If A and B are Hermitian then it is desirable that the perturbations ∆A and ∆B
in the definition of backward error preserve this property. Therefore the following
backward error is of interest:

ηH(x̃, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ∆A = ∆A∗, ∆B = ∆B∗,
‖∆A‖α,β ≤ ε‖E‖α,β , ‖∆B‖α,β ≤ ε‖F‖α,β }.(2.5)

Clearly, ηH(x̃, λ̃) ≥ η(x̃, λ̃), and the optimal perturbations for η(x̃, λ̃) in (2.3) are not

Hermitian in general. We wish to determine by how much ηH(x̃, λ̃) can exceed η(x̃, λ̃).
The following result, which is an adaptation of a result of Bunch, Demmel, and Van
Loan [5] for linear systems, shows that requiring the backward error perturbations to

be Hermitian has no effect on the backward error in the 2-norm, provided that λ̃ is
real. The same result has also been obtained by Smoktunowicz [28], where it is stated
only for definite pairs.

Theorem 2.3. If A and B are Hermitian and λ̃ is real, then, for the 2-norm
(α = β = 2), we have ηH2 (x̃, λ̃) = η2(x̃, λ̃).

Proof. Let r = λ̃Bx̃−Ax̃. We first find a Hermitian H that satisfies the constraint
Hx̃ := (∆A− λ̃∆B)x̃ = r in (2.5). We take H := (‖r‖2/‖x̃‖2)P , where P is a suitably

chosen Householder matrix—such a P exists since λ̃ real implies x̃∗r real (if r = x̃,

we have to take H = I instead). To satisfy H = ∆A− λ̃∆B with Hermitian ∆A and
∆B, we define

∆A =
‖E‖2

‖E‖2 + |λ̃|‖F‖2
H, ∆B = − sign(λ̃)

‖F‖2
‖E‖2 + |λ̃|‖F‖2

H.(2.6)

Now

‖H‖2 = ‖r‖2/‖x̃‖2 = η2(x̃, λ̃)(‖E‖2 + |λ̃|‖F‖2),

using (2.2). From (2.6) it follows that ηH2 (x̃, λ̃) ≤ η2(x̃, λ̃). But ηH2 (x̃, λ̃) ≥ η2(x̃, λ̃)
by definition, so equality must hold.

Note that if B is Hermitian positive definite, the perturbation ∆B that achieves
ηH2 (x̃, λ̃) in (2.5) does not necessarily keep B+∆B positive definite. However, B+∆B
certainly will be positive definite if

ηH2 (x̃, λ̃)‖F‖2 = ‖∆B‖2 < λmin(B),(2.7)

where λmin denotes the smallest eigenvalue.

It is worth pausing to discuss the significance of Theorem 2.3. One way to solve
the generalized eigenvalue problem is by the QZ algorithm, which computes the gen-
eralized Schur decomposition and is normwise backward stable. If the QZ algorithm
is applied to a Hermitian pair (A,B) then it does not preserve Hermitian structure.
Theorem 2.3 implies that, nevertheless, each computed eigenpair containing a real
eigenvalue is exact for a Hermitian pair that is a slight perturbation of (A,B), with
the perturbation being different, in general, for each eigenpair.
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Definitions and results analogous to those above hold for the backward error
corresponding to an approximate eigenvalue λ̃ and corresponding left eigenvector ỹ
(ỹ∗A ≈ λ̃ỹ∗B).

Also of interest is the normwise backward error of a triple (x̃, ỹ, λ̃), where ỹ is an
approximate left eigenvector. For the 2-norm, this backward error is defined by

η(x̃, ỹ, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ỹ∗(A+∆A) = λ̃ỹ∗(B +∆B),

‖∆A‖2 ≤ ε‖E‖2, ‖∆B‖2 ≤ ε‖F‖2 }.
This backward error is evaluated explicitly in the following result.

Theorem 2.4. For the 2-norm (α = β = 2), we have

η2(x̃, ỹ, λ̃) =
1

‖E‖2 + |λ̃|‖F‖2
max

{ ‖r‖2
‖x̃‖2 ,

‖s‖2
‖ỹ‖2

}
,

where r = λ̃Bx̃−Ax̃ and s∗ = λ̃ỹ∗B − ỹ∗A.
Proof. By taking 2-norms in the equations r = ∆Ax̃− λ̃∆Bx̃ and s∗ = ỹ∗∆A−

λ̃ỹ∗∆B, we find that the claimed expression for η2(x̃, ỹ, λ̃) is certainly a lower bound
for it. We must show that this lower bound is attained.

Let G = ∆A− λ̃∆B. Then G satisfies the constraints

Gx̃ = r, ỹ∗G = s∗, and ỹ∗r = s∗x̃.(2.8)

A result of Kahan, Parlett and Jiang [22, Thm. 2′] (see also Saad [27, Thm. 3.10])
shows that the minimum value of ‖G‖2 subject to G satisfying the constraints (2.8)
is

max

{ ‖r‖2
‖x̃‖2 ,

‖s‖2
‖ỹ‖2

}
.

Let Gopt be a matrix that achieves this minimum, and define

∆A =
‖E‖2

‖E‖2 + |λ̃|‖F‖2
Gopt, ∆B = − sign(λ̃)

‖F‖2
‖E‖2 + |λ̃|‖F‖2

Gopt.

Then ∆A− λ̃∆B = G,

‖∆A‖2 =
‖E‖2

‖E‖2 + |λ̃|‖F‖2
max

{ ‖r‖2
‖x̃‖2 ,

‖s‖2
‖ỹ‖2

}
,

and ‖∆B‖2 satisfies the analogous equality. We have therefore shown that the lower

bound for η2(x̃, ỹ, λ̃) is attained.

We remark that the formula for η2(x̃, ỹ, λ̃) in Theorem 2.4 is the maximum of

η2(x̃, λ̃) and the analogous backward error for (ỹ, λ̃).

2.2. Condition numbers. Let λ be a simple, finite, nonzero eigenvalue of the
pair (A,B), with corresponding right eigenvector x and left eigenvector y, so that
Ax = λBx and y∗A = λy∗B. A normwise condition number of λ can be defined as
follows:

κ(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

‖∆A‖α,β ≤ ε‖E‖α,β , ‖∆B‖α,β ≤ ε‖F‖α,β
}
.(2.9)
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This definition is a little loose, because if λ′ is an eigenvalue distinct from λ with
corresponding eigenvector x′, then we can take ∆A = ∆B = 0, x + ∆x ≡ x′, and
λ + ∆λ ≡ λ′ to obtain κ(λ) = ∞. The definition therefore needs to be augmented
with the requirement that ∆x → 0 as ε → 0. For simplicity of presentation we omit
this requirement from the definitions of condition numbers.

From the definition of κ(λ) we have, for the perturbed system in (2.9),

|∆λ|
|λ| ≤ κ(λ)ε+O(ε2).(2.10)

Expanding the constraint in (2.9) and premultiplying by y∗ lead to

∆λ =
y∗∆Ax− λy∗∆Bx+ y∗∆A∆x− λy∗∆B∆x

y∗Bx+ y∗B∆x+ y∗∆Bx+ y∗∆B∆x

=
y∗∆Ax− λy∗∆Bx

y∗Bx
+O(ε2).(2.11)

To evaluate κ(λ) we need to obtain a sharp bound for the first order term in this
expansion. The following result is given in [14] for the case α = β.

Theorem 2.5. The normwise condition number κ(λ) is given by

κ(λ) =
‖y‖Dβ ‖x‖α(‖E‖α,β + |λ|‖F‖α,β)

|λ||y∗Bx| .

Proof. The given expression is clearly an upper bound for κ(λ). We now show that
the bound is attained. Let G = ‖x‖αuv∗, where u is of unit β-norm and satisfies u∗y =
‖y‖Dβ and v is dual to x with respect to the α-norm. Then y∗Gx = ‖x‖α‖y‖Dβ and
‖G‖α,β = 1. Let ∆A = ε‖E‖α,βG and ∆B = − sign(λ)ε‖F‖α,βG. Then ‖∆A‖α,β ≤
ε‖E‖α,β and ‖∆B‖α,β ≤ ε‖F‖α,β and the modulus of the first order term in (2.11) is

ε‖y‖Dβ ‖x‖α(‖E‖α,β + |λ|‖F‖α,β)/|y∗Bx|; dividing (2.11) by ε|λ| and taking the limit
as ε→ 0 then gives the desired equality.

If λ is infinite then κ(λ) is not defined, but one can consider the problem λ−1Ax =
Bx, which has a corresponding zero eigenvalue. For zero eigenvalues κ(λ) is also
undefined, and the absolute condition number (defined as in (2.9) but with |∆λ|/ε as
the quantity to be maximized) is then the appropriate one to consider.

As for the backward error, if A and B are Hermitian it is natural to restrict the
perturbations ∆A and ∆B in (2.9) to be Hermitian. The next lemma shows that for
a definite pair this has no effect on the condition number in the 2-norm.

Lemma 2.6. Let the Hermitian pair (A,B) be definite. Let κH(λ) denote the
condition number defined as in (2.9) but with the additional requirement that ∆A and
∆B are Hermitian. Then, for the 2-norm (α = β = 2), κH2 (λ) = κ2(λ).

Proof. Since (A,B) is a definite pair, we can take y = x. For the 2-norm, the
matrix G constructed in the proof of Theorem 2.5 is therefore G = ‖x‖−2

2 xx∗, which
is Hermitian. The result is immediate.

It is instructive to compare the condition number κ(λ) with one of Stewart and
Sun [30, pp. 293–294] (cf. [14]). In our notation, they derive the approximate bound
(correct to first order)

χ(λ, λ̃) :=
|λ− λ̃|√|λ|2 + 1

√
|λ̃|2 + 1

<∼
‖x‖2‖y‖2√|y∗Ax|2 + |y∗Bx|2 ‖ [∆A ∆B ] ‖2,(2.12)
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where λ̃ = λ+∆λ, and they regard the first factor in the upper bound as a condition
number. The function χ is the chordal metric and has the property that χ(λ, µ) =
χ(λ−1, µ−1), which is appropriate for the generalized eigenvalue problem since Ax =
λBx and λ−1Ax = Bx are equally valid representations. Note also that the bound
(2.12) is symmetric in A and B. Unfortunately, the chordal metric is scale dependent:

χ(αλ, αµ) 6= χ(λ, µ) in general. Hence χ(λ, λ̃) tends to differ greatly from the relative

error when |λ| and |λ̃| are both large or both small.
A normwise condition number for the eigenvector x corresponding to the simple

eigenvalue λ can be defined by

κ(x) := lim
ε→0

sup

{
‖∆x‖α
ε‖x‖α : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

g∗Bx = g∗B(x+∆x) ≡ 1,

‖∆A‖α,β ≤ ε‖E‖α,β , ‖∆B‖α,β ≤ ε‖F‖α,β
}
.(2.13)

Because an eigenvector corresponding to a simple eigenvalue is unique only up to
scalar multiples, it is important to normalize the eigenvectors for the perturbation
theory. We use a linear normalization in (2.13) based on a constant vector g, which
could, for example, be x or the left eigenvector y. The matrix B is included in the
normalization equation because it simplifies the subsequent analysis; if B is nonsin-
gular then we can set g∗ := g∗B−1 in order to remove B. See Chaitin-Chatelin and
Frayssé [6, Section 4.4.2] and Stewart and Sun [30, pp. 240–241] for discussions of the
normalization issue.

The next result gives an expression for the condition number; it generalizes a result
in [6, Section 4.4.2], [7, Section 4.2.1] that applies to the standard eigenproblem.

Theorem 2.7. The normwise condition number κ(x) is given by

κ(x) = ‖V (W ∗(A− λB)V )−1W ∗‖β,α
(‖E‖α,β + |λ|‖F‖α,β

)
,(2.14)

where the full rank matrices V,W ∈ Cn×(n−1) are chosen so that g∗BV = 0 and
W ∗Bx = 0.

Proof. From Theorem A.1 in the appendix we see that we have to find a sharp
bound for ‖V (W ∗(A−λB)V )−1W ∗(∆A−λ∆B)x‖α/(ε‖x‖α). This quantity is clearly
bounded by the claimed expression for κ(x). Writing Z = V (W ∗AV − λI)−1W ∗,
equality is attained for

∆A = ε‖E‖α,β‖x‖αph∗, ∆B = − sign(λ)ε‖F‖α,β‖x‖αph∗,

where p satisfies ‖p‖β = 1 and ‖Zp‖α = ‖Z‖β,α, and h is dual to x with respect to
the α-norm.

Note that the expression for κ(x) in (2.14) is finite and does not depend on the
particular choice of V and W , as shown in the appendix.

As a comparison, we recall that Golub and Van Loan [16, p. 346] and Wilkinson
[32, pp. 68–70] give perturbation expansions for the eigenvector corresponding to a
simple eigenvalue, in the case B = I. These expansions do not readily lead to the
identification of a condition number. Indeed, as Wilkinson notes [32, pp. 70, 85],
examination of individual terms can give a misleading impression of the sensitivity
because of the possibility of cancellation in the overall sum.
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We show how Theorem 2.7 leads to an informative bound for κ(x) when A is
Hermitian, B is Hermitian positive definite, and we take g = x. In this case there is
a nonsingular X so that

X∗BX = I, X∗AX = D = diag(λ1, λ2, . . . , λn).

It is easy to verify that we can set X =: [x V ] and W = V . Putting E = A and
F = B and using the 2-norm, we have

κ2(x) = ‖V (V ∗X−∗(D − λI)X−1V )−1V ∗‖2(‖A‖2 + |λ|‖B‖2)

= ‖V diag(λ2 − λ, . . . , λn − λ)−1V ∗‖2(‖A‖2 + |λ|‖B‖2)

≤ ‖V ‖22
minλi 6=λ |λ− λi|

(‖A‖2 + |λ|‖B‖2).

In the case of the standard eigenvalue problem, where B = I, we can take ‖V ‖2 = 1
(and we would take F = 0, so that there would be no |λ|‖B‖2 term).

3. Componentwise analysis.

3.1. Backward errors. The componentwise backward error of an approximate
eigenpair (x̃, λ̃) is defined by

ω(x̃, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, |∆A| ≤ εE, |∆B| ≤ εF },(3.1)

where E and F are now assumed to have nonnegative entries and inequalities hold
componentwise.

The Oettli–Prager theorem [24] gives an explicit expression for the componentwise
backward error of an approximate solution to a linear system. The next result is an
analogue of that result for the eigenvalue problem and is given for the special case
B = I, F = 0 in [10].

Theorem 3.1. The componentwise backward error is given by

ω(x̃, λ̃) = max
i

|ri|(
(E + |λ̃|F )|x̃|)

i

,(3.2)

where r = λ̃Bx̃−Ax̃, and ξ/0 is interpreted as zero if ξ = 0 and infinity otherwise.
Proof. It is easy to show that the right-hand side of (3.2) is a lower bound for

ω(x̃, λ̃) and that this bound is attained for the feasible perturbations

∆A = D1ED2, ∆B = − sign(λ̃)D1FD2,(3.3)

where D1 = diag
(
ri/((E + |λ̃|F )|x̃|)i

)
and D2 = diag

(
sign(x̃)

)
.

As for the normwise backward error, it is also of interest to consider the minima
of ω(x̃, λ̃) over all x̃ and over all λ̃:

ω(λ̃) = min
x̃6=0

ω(x̃, λ̃), ω(x̃) = min
λ̃6=0

ω(x̃, λ̃).

We have been unable to derive any useful bounds for ω(λ̃) and ω(x̃).
Drmac̆ [11] derives an algorithm for solving the generalized eigenvalue problem

when A ∈ Rn×n and B ∈ Rn×n are both symmetric positive definite. He shows that
the computed eigenvalues are the exact ones of a pair (A+∆A,B +∆B) satisfying

|∆aij | ≤ f(n)u
√
aiiajj , |∆bij | ≤ f(n)u

√
biibjj ,
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where u is the unit roundoff. To test an implementation of this method it is therefore
appropriate, for each computed eigenpair (x̂, λ̂), to compare ω(x̂, λ̂) with a suitable
multiple of u, taking eij =

√
aiiajj , fij =

√
biibjj .

3.2. Condition numbers. A componentwise condition number for a simple
eigenvalue λ analogous to the normwise condition number (2.9) is defined by

cond(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

|∆A| ≤ εE, |∆B| ≤ εF
}
.(3.4)

From this definition it follows that, for the perturbed system in (3.4),

|∆λ|
|λ| ≤ cond(λ)ε+O(ε2).(3.5)

A special case of the following result with B = I, E = |A|, and F = 0 is given by
Geurts [15].

Theorem 3.2. The componentwise condition number cond(λ) is given by

cond(λ) =
|y∗|E|x|+ |λ||y∗|F |x|

|λ||y∗Bx| .

Proof. The proof is analogous to the proof of Theorem 2.5. The perturba-
tions that are used to show that the expression for cond(λ) is attained are ∆A =
εD1ED2 and ∆B = − sign(λ)εD1FD2, where D1 = diag(sign(y∗)) and D2 =
diag(sign(x)).

We consider briefly the special case where A ≥ 0 is irreducible and B is diagonal
with positive diagonal entries. Here, the generalized eigenvalue problem is equivalent
to the standard eigenvalue problem for B−1A. Since B−1A is nonnegative and irre-
ducible, the Perron–Frobenius theory can be applied [20, Thm. 8.4.4] to show that the
spectral radius ρ(B−1A) is a positive eigenvalue with corresponding positive left and
right eigenvectors. The following special result holds for λ = ρ(B−1A); it generalizes
a result of Elsner et al. [13, Thm. 1] for the standard eigenproblem.

Theorem 3.3. Suppose A ≥ 0 is irreducible and B = diag(bii), with bii > 0 for
all i. Let λ > 0 be the Perron root of B−1A, assumed to be simple, and let E = A
and F = B. Then cond(λ) = 2. Moreover, if λ + ∆λ is the Perron root of the pair
(A+∆A,B +∆B) defined in (3.4) then, for 0 ≤ ε < 1,

|∆λ|
|λ| ≤

2ε

1− ε(3.6)

(which improves on (3.5) by quantifying the second order term).

Proof. That cond(λ) = 2 is trivial to verify. For the second part, note that since
|∆B| ≤ εB, with B diagonal, and |∆A| ≤ εA,(

1− ε
1 + ε

)
B−1A ≤ (B +∆B)−1(A+∆A) ≤

(
1 + ε

1− ε
)
B−1A.
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Since ρ(·) is monotone on the nonnegative matrices [20, Cor. 8.1.19],(
1− ε
1 + ε

)
ρ(B−1A) ≤ ρ((B +∆B)−1(A+∆A)

) ≤ (1 + ε

1− ε
)
ρ(B−1A),

which rearranges to give (3.6).
As in the normwise case, forcing the backward error perturbations to respect

Hermitian structure has no effect on the condition number for a definite pair.
Lemma 3.4. Let the Hermitian pair (A,B) be definite. Let condH(λ) denote

the condition number defined as in (3.4) but with the additional requirement that ∆A
and ∆B are Hermitian, and assume that E and F are Hermitian. Then condH(λ) =
cond(λ).

Proof. Since (A,B) is a definite pair, we can take y = x, so the perturbations
∆A and ∆B constructed in the proof of Theorem 3.2 are Hermitian. The result is
immediate.

We define a componentwise condition number for the eigenvector x corresponding
to the simple eigenvalue λ by

cond(x) := lim
ε→0

sup

{
‖∆x‖∞
ε‖x‖∞ : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

g∗Bx = g∗B(x+∆x) ≡ 1, |∆A| ≤ εE, |∆B| ≤ εF
}
.(3.7)

Theorem 3.5. The componentwise condition number cond(x) is given by

cond(x) =
‖ |V (W ∗(A− λB)V )−1W ∗|(E + |λ|F )|x| ‖∞

‖x‖∞ ,(3.8)

where the full rank matrices V,W ∈ Cn×(n−1) are chosen so that g∗BV = 0 and
W ∗Bx = 0.

Proof. The proof is similar to the proof of Theorem 2.7. The perturbations that
give equality are

∆A = εD1ED2, ∆B = − sign(λ)εD1FD2,

where D1 = diag(ξj), ξj = sign((V (W ∗(A − λB)V )−1W ∗)kj), D2 = diag(sign(x)),
where the kth component of the vector in the numerator of (3.8) has the largest
absolute value.

In the special case B = I, F = 0, Theorem 3.5 reduces to a result in [6, Sec-
tion 4.4.2].

4. Structured backward error and condition number. In sections 2 and
3 we considered a normwise backward error and normwise and componentwise condi-
tion numbers that respect Hermitian structure in the generalized eigenvalue problem.
There are other structures of interest, such as Toeplitz [3], circulant and Hankel
structure (the first of which can be general, symmetric, or Hermitian and all of which
can be defined in the point or the block sense), augmented system structure [12],
Hamiltonian structure [4], and general banded and sparse patterns. We begin with a
simple illustration of the effect of taking account of structure. We consider a standard
eigenproblem Ax = λx with a circulant A:

A =

[
a b
b a

]
.
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We take a = b = 1 and

x̃ =

[
1 + ε
−1

]
, λ̃ = ε (0 ≤ ε ≤ 1),

which form an exact eigenpair for ε = 0. We have

r = λ̃x̃−Ax̃ =

[
ε2

−2ε

]
.

The normwise backward error for the ∞-norm, with E = A, B = I, F = 0, is
η(x̃, λ̃) = ε/(1 + ε). However, since A is a circulant, we may wish to preserve the
circulant structure when we perturb A in the definition of the backward error; indeed,
only circulant perturbations may be physically meaningful. Then we seek ∆a, ∆b such
that [

1 +∆a 1 +∆b
1 +∆b 1 +∆a

] [
1 + ε
−1

]
= ε

[
1 + ε
−1

]
.

These two equations in two unknowns have a unique solution, for which ∆a = −1 +
O(ε), ∆b = −1. Hence, if ε is small, then while (x̃, λ̃) is an exact eigenpair for a (non-
circulant) matrix close to A, the nearest circulant of which it is an exact eigenpair is
relatively far from A. Thus the permitted structure of backward perturbations can
greatly affect the backward error.

In this section we assume that A ∈ Cn×n and B ∈ Cn×n can be parametrized1

A =
t∑
i=1

aiUi, B =
t∑
i=1

aiVi,(4.1)

where Ui ∈ Cn×n and Vi ∈ Cn×n are matrices of constants, typically 0s and 1s, and
the complex numbers ai are independent parameters. Thus we are assuming that A
and B are linear functions of a vector of parameters a = (ai). This formulation allows
A and B to share parameters, as is necessary for the quadratic eigenvalue problem
application (1.2). If B, for example, does not depend on aj , then we set Vj = 0. The
case of no structure corresponds to

t = 2n2, {Ui}n2

i=1 = {Vi}2n2

i=n2+1 = {eieTj }ni,j=1,

{
Ui = 0, i > n2,
Vi = 0, i ≤ n2,

(4.2)

where ei is the ith unit vector.
Nonlinear structure is also of interest, such as Cauchy and Vandermonde struc-

ture. Condition numbers can be derived by linearizing and applying the techniques
given here, but evaluating backward errors is a nonlinear optimization problem in
general. See Bartels and Higham [2] for results for Vandermonde-like linear systems.

We consider perturbations ∆A =
∑t
i=1∆aiUi and ∆B =

∑t
i=1∆aiVi and mea-

sure them by

ψp(∆a) = ‖D−1∆a‖p, D = diag(g),

1In fact, it is only the perturbations ∆A and ∆B that need to have such structure in our
development, but it is natural to assume that A and B are structured too.
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where g is a vector of nonnegative tolerances and ‖ · ‖p is the Hölder p-norm on Cn:

‖x‖p =

( n∑
i=1

|xi|p
)1/p

, p ≥ 1.

Note that p =∞ corresponds to the componentwise measure used in (3.1), albeit now
applied to the vector of parameters rather than the matrices as a whole.

We define the structured componentwise backward error of an approximate eigen-
pair (x̃, λ̃) by

ωp(x̃, λ̃) := min

{
ψp(∆a) : (A+∆A)x̃ = λ̃(B +∆B)x̃,

∆A =

t∑
i=1

∆aiUi, ∆B =

t∑
i=1

∆aiVi

}
.(4.3)

Using the residual r = λ̃Bx̃−Ax̃, the constraint in (4.3) can be rewritten

r = ∆Ax̃− λ̃∆Bx̃

=

(
t∑
i=1

∆aiUi

)
x̃− λ̃

(
t∑
i=1

∆aiVi

)
x̃

=

t∑
i=1

∆ai(Ui − λ̃Vi)x̃

= C̃∆a,

where

C̃ =
[
(U1 − λ̃V1)x̃, . . . , (Ut − λ̃Vt)x̃

]
∈ Cn×t.

Hence, defining

∆̃a = D−1∆a,

we have

r = C̃∆a = C̃D∆̃a =: M∆̃a, M ∈ Cn×t.
The linear system

M∆̃a = r(4.4)

can be under- or overdetermined, depending on the value of t. The backward error
ωp(x̃, λ̃) is the norm of a solution of minimal p-norm to (4.4). If n > t or M is rank-
deficient there may be no solution to (4.4), in which case we regard the structured

componentwise backward error ωp(x̃, λ̃) as infinite. Assuming that the system is

consistent, for the 2-norm we have ω2(x̃, λ̃) = ‖M+r‖2, where M+ is the pseudo-
inverse of M .

The structure of the matrix M depends on that of A and B in (4.1), and it may be
possible to exploit this structure when solving (4.4). For the unstructured case with
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p = ∞, we recover the expression (3.2) on using (4.2) and identifying D with E and
F in (3.1), because (4.4) then reduces to n independent minimal ∞-norm problems
that can be solved explicitly.

A structured componentwise condition number for the simple eigenvalue λ can be
defined by

condp(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

∆A =

t∑
i=1

∆aiUi, ∆B =
t∑
i=1

∆aiVi, ψp(∆a) ≤ ε
}
.(4.5)

Theorem 4.1. The structured componentwise condition number of λ is given by

condp(λ) =
‖y∗CD‖q
|λ||y∗Bx| ,

where p−1 + q−1 = 1 and

C = [(U1 − λV1)x, . . . , (Ut − λVt)x] ∈ Cn×t.(4.6)

Proof. The expansion (2.11) shows that we have to find a sharp bound for
y∗∆Ax− λy∗∆Bx. For the perturbations ∆A and ∆B in (4.5) we have

|y∗∆Ax− λy∗∆Bx| =
∣∣∣∣∣y∗
(

t∑
i=1

∆aiUi

)
x− λy∗

(
t∑
i=1

∆aiVi

)
x

∣∣∣∣∣
= |y∗C∆a|
= |y∗CD ·D−1∆a|
≤ ‖y∗CD‖qψp(∆a).

Equality is obtained for suitable ∆a because equality is always possible in the Hölder
inequality.

It is not hard to see that for p =∞ we recover the formula for the unstructured
condition number cond(λ) in Theorem 3.2 when we use (4.2) and identify D with E
and F .

A structured componentwise condition number for the eigenvector x correspond-
ing to the simple eigenvalue λ can be defined by

condp(x) := lim
ε→0

sup

{
‖Σ−1∆x‖p

ε
: (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

g∗Bx = g∗B(x+∆x) ≡ 1,

∆A =

t∑
i=1

∆aiUi, ∆B =
t∑
i=1

∆aiVi, ψp(∆a) ≤ ε
}
,(4.7)

where Σ = diag(σi), with the σi positive tolerances. In the particular case σi ≡ ‖x‖p,
we are measuring ∆x in the usual normwise relative fashion.

Theorem 4.2. Assume that B is nonsingular. The structured componentwise
condition number of x is given by

condp(x) =
∥∥Σ−1V (W ∗(A− λB)V )−1W ∗CD

∥∥
p
,
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where C is defined in (4.6) and the full rank matrices V,W ∈ Cn×(n−1) are chosen so
that g∗V = 0 and W ∗x = 0.

Proof. From Theorem A.1 we see that we must find a sharp bound for ‖Z(∆A−
λ∆B)x‖p/ε, where Z = Σ−1V (W ∗(A−λB)V )−1W ∗. As in the proof of Theorem 4.1,
we have

‖Z(∆A− λ∆B)x‖p = ‖ZCD ·D−1∆a‖p ≤ ‖ZCD‖pψp∆a,

and the latter inequality is attained for suitable ∆a.
In the above analysis, the parameter vector ∆a is complex in general, although

it can be taken to be real when all the data are real. In certain circumstances it is
appropriate to restrict ∆a to be real, even though the data are complex. For example,
a 2× 2 Hermitian perturbation ∆A can be parametrized

∆A =

[
∆a1 ∆a2 −∆a3i

∆a2 +∆a3i ∆a4

]
, ∆ak ∈ R, k = 1: 4.

The backward error derivation must then be modified by taking real and imaginary
parts in (4.4) to obtain a real system, of which a minimal norm solution is required.
The quantities derived in Theorems 4.1 and 4.2 are now upper bounds for the condition
numbers; the bounds are attained for p = 1 and therefore are within a factor t of being
attained for other values of p.

5. Numerical experiments. To illustrate our results we present some numeri-
cal examples. All computations were carried out in Matlab, which has unit roundoff
u = 2−53 ≈ 1.1 × 10−16. In each example we used the QZ algorithm [23] to com-
pute the eigensystem. Since Matlab’s implementation of the QZ algorithm does
not provide left eigenvectors, we computed left eigenvectors using inverse iteration.
Condition numbers were evaluated using the computed eigenvalues and eigenvectors
in place of the exact ones.

The first example is the problem with

A =

[
0.1 0.2
0.3 0.4

]
, B =

[
0.1 0.1
0
√
u

]
,

which is attributed to Wilkinson by Moler and Stewart [23]. One eigenvalue is close to
−2 and the other is of order 107. The eigenpair corresponding to the small eigenvalue
is found to be well conditioned. For the large eigenvalue and its eigenvector we find
that, with E = A and F = B and using the 2-norm,

κ(λ) = 1.9× 107, cond(λ) = 1.0× 101,

for g = x: κ(x) = 8.5× 1013, cond(x) = 6.0× 1013,

for g = y: κ(x) = 1.0× 101, cond(x) = 8.0× 100.

This example shows that an eigenvalue may have different sensitivity with respect to
normwise and componentwise perturbations and that the sensitivity of an eigenvector
can depend strongly on how it is normalized.

The second example concerns symmetric structure in A and B. The matrix A is
the ipjfact matrix (aij = (i + j)!) from The Test Matrix Toolbox [19] but with its
rows and columns in reverse order, and B is the Pascal matrix from the same source;
both matrices are positive definite.
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Table 5.1
Results for symmetric 8× 8 A and B.

Backward Condition
error λ x

Unstructured normwise (η, κ) 2.1e-17 4.2e15 3.5e15

Structured normwise (ω, cond) 2.1e-17 5.2e15 4.2e15
Unstructured componentwise (ω, cond) 1.5e-8 1.6e6 2.6e6

Structured componentwise (ω, cond) 3.8e-8 4.4e5 7.7e5

Table 5.2
Results for Toeplitz 16× 16 A and B.

Backward Condition
error λ x

Unstructured normwise (η, κ) 2.5e-17 5.2e5 4.6e6

Structured normwise (ω, cond) 8.3e-17 3.7e5 5.7e6
Unstructured componentwise (ω, cond) 5.4e-14 6.6e1 4.3e2

Structured componentwise (ω, cond) 4.5e-12 5.6e0 7.0e1

In the third example we have Toeplitz A and B. A Toeplitz matrix T ∈ Cn×n
can be defined by the sequence tn1, tn−1,1, . . . , t11, t12, . . . , t1n. With this notation, A
is defined by 1, 22, . . . , (2n− 1)2, and B is defined by 10−8(1, α, α2, . . . , α2n−1), where
α = 108/(2n−1), except that the diagonal of B is multiplied by −1.

In both examples we computed the eigenvalue with smallest real part (which
happens to be real in both cases) and the corresponding left and right eigenvectors.
The choice of the various parameters is summarized as follows:

• Normalization for eigenvector condition numbers: g = y (left eigenvector).
• Normwise backward error η and condition numbers κ: 2-norm with E = A

and F = B.
• Componentwise backward error ω and condition numbers cond: E = |A| and
F = |B|.
• Structured backward error ω and condition number cond: g = ‖a‖2, giving

“normwise” measure, and g = |a|, giving “componentwise” measure, using
Σ = diag(‖x‖p) and p = 2.

The results are shown in Tables 5.1 and 5.2. Several features are worth not-
ing. For the symmetric problem we see that the componentwise backward error is
much larger than the unit roundoff and that requiring symmetry of the backward
perturbations has little effect on this backward error (we know the same is true of the
normwise backward error by Theorem 2.3). On the other hand, the eigenvalue and
eigenvector are much less sensitive to componentwise perturbations than to normwise
ones, and again a restriction to symmetric perturbations makes little difference. For
the Toeplitz problem, requiring Toeplitz perturbations increases the componentwise
backward error by two orders of magnitude and reduces the componentwise condition
numbers by an order of magnitude.

In the examples above, the matrix M in (4.4) was always of full rank. In similar
experiments with A and B both having symmetric Toeplitz structure we found that M
was usually numerically rank-deficient and that the system (4.4) did not always have
a solution (more precisely, the minimal-norm least-squares solution did not always
have a small residual, so that the structured backward error was sometimes infinite).
This behavior appears to be due to symmetries in the eigenvectors. It is known that
any eigenvector x of a symmetric Toeplitz matrix with distinct eigenvalues satisfies
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Table 5.3
Condition numbers for quadratic eigenvalue problem with data (5.1).

Unstructured Structured
Normwise 2.0e12 1.0e8

Componentwise 4.0e0 1.0e0

either Jx = x or Jx = −x, where J is the identity matrix with its columns in
reverse order [9]. It is easy to verify that, for such an x, the matrix [U1x, . . . , Unx]
has some repeated rows (up to sign) and so is rank-deficient, where U1, . . . , Un are
the pattern matrices corresponding to symmetric Toeplitz structure in an n× n real
matrix. Similar symmetries appear to hold for the generalized eigenvalue problem,
causing numerical rank-deficiency of M for “good” approximate eigenvectors x̃.

Finally, we consider the generalized eigenvalue problem (1.2) corresponding to
the quadratic eigenvalue problem (1.1), with

C =

[
1 0
0 1

]
, D =

[
1 1
0 1

]
, E =

[
10−4 1

0 10−8

]
.(5.1)

We report in Table 5.3 condition numbers for the eigenvalue λ = −1.0001× 10−4 (to
five significant figures). The parameter vector is a = [vec(C)T vec(D)T vec(E)T ]T ,
where vec stacks the columns of a matrix into one long vector. For the normwise
condition number we take g = [‖C‖2eT , ‖D‖2eT , ‖E‖2eT ]T , where e ∈ R2 is the
vector of 1s, and, for the componentwise condition number, g = |a| and p = 1. We
see that the normwise condition number for the quadratic eigenvalue problem is four
orders of magnitude smaller than the condition number we obtain by ignoring the
structure in the corresponding generalized eigenvalue problem. The componentwise
condition numbers are much smaller than the normwise ones, and the structured
condition number reveals perfect conditioning.

There are many interesting open problems in the areas of establishing the exis-
tence of finite structured backward errors and bounding the difference between struc-
tured and unstructured backward errors and condition numbers.

Appendix. The following result generalizes analysis of Geurts [15], Chaitin-
Chatelin and Frayssé [6, Section 4.4.2], and Chatelin [7, Section 4.2.1] for the standard
eigenproblem.

Theorem A.1. Let A,B ∈ Cn×n. Let λ be a simple eigenvalue and x the
corresponding eigenvector of the pair (A,B) and let

(A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x).

Normalize x and x+∆x by

g∗Bx = g∗B(x+∆x) = 1,(A.1)

where g is a given vector (it is assumed that g∗Bx 6= 0). For sufficiently small ∆A
and ∆B there is a unique ∆x which can be expressed, to first order, as

∆x = −V (W ∗(A− λB)V )−1W ∗(∆A− λ∆B)x,(A.2)

where the full rank matrices V,W ∈ Cn×(n−1) are chosen so that g∗BV = 0 and
W ∗Bx = 0.
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Proof. For sufficiently small ∆A and ∆B, λ + ∆λ is a simple eigenvalue of the
pair (A+∆A,B +∆B) [30, Thm. VI.2.1], making ∆x unique when normalized as in
(A.1).

We have

∆Ax+A∆x = λ∆Bx+ λB∆x+∆λBx,(A.3)

where this and all subsequent equations include first order terms only. Premultiplying
by W ∗ gives

W ∗(A− λB)∆x = −W ∗(∆A− λ∆B)x.(A.4)

Define the matrices M = [x V ], N = [ g W ]. We show that M is nonsingular.
Note first that

g∗BM = [ g∗Bx g∗BV ] = [ 1 0 ] = eT1 .(A.5)

Hence if Mt = 0 then 0 = g∗BMt = t1, and then 0 = Mt = V t(2:n), which implies
t(2:n) = 0. A similar proof shows that N is nonsingular.

Write ∆x = Mz. Then

W ∗(A− λB)∆x = W ∗(A− λB) [x V ] z

= W ∗ [ 0 (A− λB)V ]

[
z1

z2

]
= W ∗(A− λB)V z2.(A.6)

Now we show that the matrix W ∗(A− λB)V ∈ C(n−1)×(n−1) is nonsingular.

We have

N∗(A− µB)M =

[
g∗

W ∗

]
[ (λ− µ)Bx (A− µB)V ]

=

[
λ− µ g∗(A− µB)V

0 W ∗(A− µB)V

]
.

Hence det(N∗) det(A−µB) det(M) = (λ−µ) det(W ∗(A−µB)V ). Since N and M are
nonsingular and λ is a simple eigenvalue of (A,B) it follows that det(W ∗(A−µB)V )
is nonzero for µ = λ, as required.

From (A.6) and (A.4) we obtain z2 = −(W ∗(A − λB)V )−1W ∗(∆A − λ∆B)x.
To determine the scalar z1 we note that, from the normalization condition (A.1) and
(A.5),

0 = g∗B∆x = g∗BMz = eT1 z = z1.

Hence ∆x = V z2, as required.

The matrices V and W appearing in (A.2) can be explicitly constructed as follows.
Let QTv B

∗g = Rv = ±‖B∗g‖2e1 and QTwBx = Rw = ±‖Bx‖2e1 be QR factorizations.
Then we can take V = Qv(:, 2:n) and W = Qw(:, 2:n).

Note that the matrix V (W ∗(A − λB)V )−1W ∗ is independent of the particular
choice of V and W , since ∆x in (A.2) is unique for sufficiently small ∆A and ∆B.
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