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Abstract. We consider the smoothness of solutions of a system of refinement equations written
in the form

φ =
∑

α∈Z
a(α)φ(2 · − α),

where the vector of functions φ = (φ1, . . . , φr)T is in (Lp(R))r and a is a finitely supported sequence
of r× r matrices called the refinement mask. We use the generalized Lipschitz space Lip∗(ν, Lp(R)),
ν > 0, to measure smoothness of a given function.

Our method is to relate the optimal smoothness, νp(φ), to the p-norm joint spectral radius of
the block matrices Aε, ε = 0, 1, given by Aε = (a(ε + 2α − β))α,β , when restricted to a certain
finite dimensional common invariant subspace V . Denoting the p-norm joint spectral radius by
ρp(A0|V , A1|V ), we show that νp(φ) ≥ 1/p − log2 ρp(A0|V , A1|V ) with equality when the shifts of
φ1, . . . , φr are stable and the invariant subspace is generated by certain vectors induced by differ-
ence operators of sufficiently high order. This allows an effective use of matrix theory. Also the
computational implementation of our method is simple.

When p = 2, the optimal smoothness is also given in terms of the spectral radius of the transition
matrix associated with the refinement mask.

To illustrate the theory, we give a detailed analysis of two examples where the optimal smoothness
can be given explicitly. We also apply our methods to the smoothness analysis of multiple wavelets.
These examples clearly demonstrate the applicability and practical power of our approach.
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1. Introduction. The purpose of this paper is to investigate the smoothness
properties of multiple refinable functions and multiple wavelets.

Suppose φ1, . . . , φr are compactly supported distributions on R. Denote by φ the
vector (φ1, . . . , φr)

T , the transpose of (φ1, . . . , φr). We say that φ is refinable if it
satisfies the following refinement equation:

(1.1) φ =
∑
α∈Z

a(α)φ(2 · − α),

where each a(α) is an r × r matrix of complex numbers and a(α) = 0 except for
finitely many α. We view a as a sequence from Z to Cr×r and call it the refinement
mask.

In our previous paper [20], we gave a characterization for the accuracy of a vector
of multiple refinable functions in terms of the corresponding mask. In another paper
[21], we characterized the Lp-convergence (1 ≤ p ≤ ∞) of a subdivision scheme in
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terms of the p-norm joint spectral radius of two matrices derived from the mask.
(See [17] for the definition of the p-norm joint spectral radius of a finite collection of
matrices.) In this paper, we will take the same approach as we did in [21] to a study
of the smoothness properties of the solutions of the refinement equation (1.1).

Taking the Fourier transform of both sides of (1.1), we obtain

(1.2) φ̂(ξ) = H(ξ/2)φ̂(ξ/2), ξ ∈ R,
where

H(ξ) :=
∑
α∈Z

a(α)e−iαξ/2, ξ ∈ R.

Evidently, H is 2π-periodic. Let

M := H(0) =
∑
α∈Z

a(α)/2.

If φ is a solution of (1.1), then it follows from (1.2) that φ̂(0) = Mφ̂(0). In other

words, either φ̂(0) = 0, or φ̂(0) is an eigenvector of M corresponding to the eigenvalue
1.

Before proceeding, we introduce some notation. For 1 ≤ p ≤ ∞, let (Lp(R))r

denote the linear space of all vectors f = (f1, . . . , fr)
T such that f1, . . . , fr ∈ Lp(R).

The norm on (Lp(R))r is defined by

‖f‖p :=

( r∑
j=1

‖fj‖pp
)1/p

, f = (f1, . . . , fr)
T ∈ (Lp(R))r .

By (C(R))r we denote the linear space of all r × 1 vectors of continuous functions.
The shifts of functions φ1, . . . , φr ∈ Lp(R) are said to be stable if there exist two

positive constants C1 and C2 such that, for arbitrary b1, . . . , br ∈ `p(Z),

C1

r∑
j=1

‖bj‖p ≤
∥∥∥∥ r∑
j=1

∑
α∈Z

bj(α)φj(· − α)

∥∥∥∥
p

≤ C2

r∑
j=1

‖bj‖p.

It was proved by Jia and Micchelli [19] that the shifts of the functions φ1, . . . , φr are

stable if and only if, for any ξ ∈ R, the sequences (φ̂j(ξ + 2πβ))β∈Z (j = 1, . . . , r) are
linearly independent.

Let `0(Z) denote the linear space of all finitely supported sequences on Z. Simi-
larly, we denote by `0(Z → Cr) (resp., `0(Z → Cr×r)) the linear space of all finitely
supported sequences of r × 1 vectors (resp., r × r matrices). We identify `0(Z→ Cr)
with (`0(Z))r and identify `0(Z→ Cr×r) with (`0(Z))r×r.

For β ∈ Z, we use δβ to denote the sequence given by

δβ(α) =

{
1 for α = β,
0 for α ∈ Z \ {β}.

In particular, we write δ for δ0.
We denote by ∇ the difference operator on `0(Z):

∇v := v − v(· − 1), v ∈ `0(Z).
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The domain of the difference operator ∇ can be naturally extended to include (`0(Z))r

and (`0(Z))r×r.
Let a be an element of (`0(Z))r×r. For ε = 0, 1, let Aε be the linear operator on

(`0(Z))r given by

(1.3) Aεv(α) =
∑
β∈Z

a(ε+ 2α− β)v(β), α ∈ Z, v ∈ (`0(Z))r.

Our first concern is the existence and uniqueness of the refinement equation (1.1)
with the mask a. Under the condition that limn→∞Mn exists, Heil and Colella [13]
established existence and uniqueness of distributional solutions of (1.1). In this case,
convergence of the subdivision scheme was studied by Cohen, Dyn, and Levin in [4].
Without assuming the condition that limn→∞Mn exists, the existence and uniqueness
of distributional solutions of (1.1) were studied by several authors, including Cohen,
Daubechies, and Plonka [3], Jiang and Shen [23], and Zhou [34].

In section 2, we will investigate the existence of Lp-solutions of the refinement
equation (1.1) with the mask a. For j = 1, . . . , r, we use ej to denote the jth column
of the r × r identity matrix. Let A0 and A1 be the linear operators given by (1.3)
and V the minimal common invariant subspace of A0 and A1 generated by ej(∇δ),
j = 1, . . . , r, in (`0(Z))r. We will prove that, for an eigenvector y of the matrix M :=∑
α∈Z a(α)/2 corresponding to the eigenvalue 1, there exists a compactly supported

solution φ ∈ (Lp(R))r (φ ∈ (C(R))r in the case p = ∞) of the refinement equation

(1.1) subject to φ̂(0) = y, provided

ρp(A0|V , A1|V ) < 21/p,

where ρp(A0|V , A1|V ) denotes the p-norm joint spectral radius of A0|V and A1|V .
This condition is necessary if, in addition, the shifts of φ1, . . . , φr are stable.

We use the generalized Lipschitz space to measure smoothness of a given function.
Let us recall from [8] the definition of the generalized Lipschitz space. For y ∈ R, the
difference operator ∇y is defined by

∇yf = f − f(· − y),

where f is a function from R to C. The modulus of continuity of a function f in Lp(R)
(1 ≤ p ≤ ∞) is defined by

ω(f, h)p := sup
|y|≤h

∥∥∇yf∥∥p, h ≥ 0.

Let k be a positive integer. The kth modulus of smoothness of f ∈ Lp(R) is defined
by

ωk(f, h)p := sup
|y|≤h

∥∥∇kyf∥∥p, h ≥ 0.

For ν > 0, let k be an integer greater than ν. The generalized Lipschitz space
Lip∗(ν, Lp(R)) consists of those functions f ∈ Lp(R) for which

ωk(f, h)p ≤ Chν ∀h > 0,

where C is a positive constant independent of h.
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By (Lip∗(ν, Lp(R)))r we denote the linear space of all vectors f = (f1, . . . , fr)
T

such that f1, . . . , fr ∈ Lip∗(ν, Lp(R)). The optimal smoothness of a vector f ∈
(Lp(R))r in the Lp-norm is described by its critical exponent νp(f) defined by

νp(f) := sup
{
ν : f ∈ (Lip∗(ν, Lp(R))

)r }
.

In section 3, we will establish our main result on characterization of the smooth-
ness of multiple refinable functions. Suppose φ = (φ1, . . . , φr)

T is a compactly sup-
ported solution of the refinement equation (1.1) with the mask a. Let k be a positive
integer and V the minimal common invariant subspace of A0 and A1 generated by
ej(∇kδ), j = 1, . . . , r. If φ lies in (Lp(R))r for 1 ≤ p < ∞ (φ lies in (C(R))r for
p =∞), then

(1.4) νp(φ) ≥ 1/p− log2 ρp(A0|V , A1|V ).

If, in addition, the shifts of φ1, . . . , φr are stable, and if k > 1/p− log2 ρp(A0|V , A1|V ),
then equality holds in (1.4). When p = 2, the critical exponent is also given in terms
of the spectral radius of the transition operator associated with the refinement mask
a.

Regularity of multiple refinable functions was studied by Cohen, Daubechies, and
Plonka in [3] and by Micchelli and Sauer in [25]. Both approaches are based on
the factorization technique introduced by Plonka [26]. Our approach is different from
theirs and does not rely on factorization. Thus, our methods can be applied to multiple
refinable functions and multiple wavelets of several variables. For smoothness analysis
of a single multivariate refinable function, the reader is referred to [18] and [27]. Even
in the univariate case our methods have advantages over the factorization technique.
Indeed, our methods use the joint spectral radius of finite matrices. This allows a
more effective use of matrix theory to reduce the size of the matrices by a restriction
to a certain common invariant subspace. Thus, the computational implementation
of our method becomes much simpler. In fact, in the multiple case, the factorization
would usually enlarge the support of the mask making the order of the matrices larger,
hence computationally more complex. For a discussion of the size of the support of
vector scaling functions, see So and Wang [30].

To illustrate the general theory, we shall give detailed analysis of smoothness for
two examples in section 4. One example is taken from [10], the other from [21]. In
particular, for the example of Donovan et al. [10], our method gives explicitly the
exact smoothness in all p-norms. In comparison, Cohen, Daubechies, and Plonka [3]
partially recovered the result of [10] for the regularity in the L∞-norm, while Micchelli
and Sauer [25] gave a crude estimate for the regularity in the L1-norm for a special
case.

In section 5, applying our study to multiple wavelets, we construct a family of
orthogonal double wavelets which includes the one of Chui and Lian [2]. We give a
complete smoothness analysis in L2 for this family, and in all Lp for the example of
Chui and Lian (who did not discuss smoothness).

The examples in sections 4 and 5 clearly demonstrate the applicability and prac-
tical power of our approach.

2. Existence of Lp-solutions. In order to solve the refinement equation (1.1),
we introduce the linear operator Qa on (Lp(R))r (1 ≤ p ≤ ∞) as follows:

(2.1) Qaf :=
∑
α∈Z

a(α)f(2 · −α), f ∈ (Lp(R))r.
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If φ is a fixed point of Qa, i.e., Qaφ = φ, then φ is a solution of the refinement equation
(1.1).

Let Qa be the linear operator given in (2.1). For an initial vector f ∈ (Lp(R))r,
we have

Qnaf =
∑
α∈Z

an(α)f(2n · −α), n = 1, 2, . . . ,

where each an is independent of the choice of f . In particular, a1 = a. Consequently,
for n > 1 we have

Qnaf = Qn−1
a (Qaf) =

∑
β∈Z

an−1(β)(Qaf)(2n−1 · −β)

=
∑
β∈Z

∑
α∈Z

an−1(β)a(α)f(2n · −2β − α)

=
∑
α∈Z

∑
β∈Z

an−1(β)a(α− 2β)

 f(2n · −α).

This establishes the following iteration relation for an (n = 1, 2, . . .):

(2.2) a1 = a and an(α) =
∑
β∈Z

an−1(β)a(α− 2β), α ∈ Z.

For ε ∈ Z, we denote by Aε = (Aε(α, β))α,β∈Z the bi-infinite block matrix given
by

(2.3) Aε(α, β) := a(ε+ 2α− β), α, β ∈ Z.
For a ∈ (`0(Z))r×r and n = 1, 2, . . . , let an ∈ (`0(Z))r×r be given by the iteration

relation (2.2). If α = ε1 + 2ε2 + · · ·+ 2n−1εn + 2nγ, where ε1, . . . , εn, γ ∈ Z, then

(2.4) an(α− β) = Aεn · · ·Aε1(γ, β) ∀β ∈ Z.
This can be proved easily by induction on n. For n = 1 and α = ε1 + 2γ, where

ε1, γ ∈ Z, we have

a1(α− β) = a(ε1 + 2γ − β) = Aε1(γ, β).

Suppose n > 1 and (2.4) has been verified for n − 1. For α = ε1 + 2α1, where
α1, ε1 ∈ Z, by the iteration relation (2.2) we have

(2.5) an(α− β) =
∑
η∈Z

an−1(η)a(α− β − 2η) =
∑
η∈Z

an−1(α1 − η)a(ε1 + 2η − β).

Suppose α1 = ε2 + · · · + 2n−2εn + 2n−1γ, where ε2, . . . , εn, γ ∈ Z. Then by the
induction hypothesis we have

an−1(α1 − η) = Aεn · · ·Aε2(γ, η).

This in connection with (2.5) gives

an(α− β) =
∑
η∈Z

Aεn · · ·Aε2(γ, η)Aε1(η, β) = Aεn · · ·Aε2Aε1(γ, β),

thereby completing the induction procedure.
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The relation (2.4) motivates us to consider the joint spectral radius of a finite
multiset of linear operators. The uniform joint spectral radius was introduced by
Rota and Strang [28]. The use of the joint spectral radius to obtain regularity results
was initiated by Daubechies and Lagarias [6, 7] for the scalar case. Colella and Heil [5]
used the joint spectral radius to characterize continuous solutions of scalar refinement
equations.

The p-norm joint spectral radius was introduced by Jia in [17]. Let us recall from
[17] the definition of the p-norm joint spectral radius. Let V be a finite-dimensional
vector space equipped with a vector norm ‖ · ‖. For a linear operator A on V , define

‖A‖ := max
‖v‖=1

{‖Av‖}.
Let A be a finite multiset of linear operators on V . For a positive integer n we

denote by An the nth Cartesian power of A:

An =
{

(A1, . . . , An) : A1, . . . , An ∈ A
}
.

For 1 ≤ p <∞, let

‖An‖p :=

( ∑
(A1,...,An)∈An

‖A1 · · ·An‖p
)1/p

,

and, for p =∞, define

‖An‖∞ := max
{‖A1 · · ·An‖ : (A1, . . . , An) ∈ An}.

For 1 ≤ p ≤ ∞, the p-norm joint spectral radius of A is defined to be

ρp(A) := lim
n→∞ ‖A

n‖1/np .

It is easily seen that this limit indeed exists, and

lim
n→∞ ‖A

n‖1/np = inf
n≥1
‖An‖1/np .

Clearly, ρp(A) is independent of the choice of the vector norm on V .
If A consists of a single linear operator A, then ρp(A) = ρ(A), where ρ(A) denotes

the spectral radius of A, which is independent of p. It is easily seen that ρ(A) ≤ ρ∞(A)
for any element A in A.

Now let A be a finite multiset of linear operators on a normed vector space V ,
which is not necessarily finite dimensional. A subspace W of V is said to be invariant
under A, or A-invariant, if it is invariant under every operator A in A. For a vector
w ∈ V , we define

(2.6) ‖Anw‖p :=


(∑

(A1,...,An)∈An ‖A1 · · ·Anw‖p
)1/p

for 1 ≤ p <∞,

max
{‖A1 · · ·Anw‖ : (A1, . . . , An) ∈ An} for p =∞.

If the minimal A-invariant subspace W generated by w is finite dimensional, then we
have

lim
n→∞

∥∥Anw∥∥1/n

p
= ρp(A|W ), 1 ≤ p ≤ ∞.

See [12, Lemma 2.4] for a proof of this result.
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If V = (`0(Z))r, it is often convenient to choose the `p-norm as the underlying
vector norm in (2.6). We denote by `p(Z → Cr) the linear space of all sequences
u : Z→ Cr such that u(α) = (u1(α), . . . , ur(α))T for some u1, . . . , ur ∈ `p(Z) and all
α ∈ Z. Obviously, u 7→ (u1, . . . , ur)

T is a canonical isomorphism between `p(Z→ Cr)
and (`p(Z))r. Thus, we may identify `p(Z → Cr) with (`p(Z))r. The norm of u =
(u1, . . . , ur)

T is given by

‖u‖p :=
(∑r

j=1
‖uj‖pp

)1/p

.

Equipped with this norm, (`p(Z))r becomes a Banach space.
We denote by `p(Z → Cr×r) the linear space of all sequences b : Z → Cr×r such

that b(α) = (bjk(α))1≤j,k≤r for some bjk ∈ `p(Z) (j, k = 1, . . . , r) and all α ∈ Z. We
also identify `p(Z→ Cr×r) with (`p(Z))r×r. The norm of b = (bjk)1≤j,k≤r is defined
by

‖b‖p :=

 r∑
j=1

r∑
k=1

‖bjk‖pp

1/p

.

Let a be an element of (`0(Z))r×r. The bi-infinite block matrices Aε (ε ∈ Z)
defined in (2.3) may be viewed as the linear operators on (`0(Z))r given by

(2.7) Aεv(α) =
∑
β∈Z

a(ε+ 2α− β)v(β), α ∈ Z, v ∈ (`0(Z))r.

Suppose y ∈ Cr and α = ε1 + 2ε2 + · · ·+ 2n−1εn + 2nγ, where ε1, . . . , εn, γ ∈ Z. Then
it follows from (2.4) that

(2.8) an(α− β)y = Aεn · · ·Aε1(yδβ)(γ) ∀β ∈ Z.

For a bounded subset K of R, we use `(K) to denote the linear space of all
sequences on Z supported in K ∩ Z. Suppose a is supported on [0, N ], where N is a
positive integer. Then, for j ≤ 0 and k ≥ N − 1, (`([j, k]))r is invariant under both
A0 and A1. Consequently, the minimal common invariant subspace of A0 and A1

generated by a finite subset of (`0(Z))r is finite dimensional.
Theorem 2.1. For an element a ∈ (`0(Z))r×r, let y be an eigenvector of the

matrix M :=
∑
α∈Z a(α)/2 corresponding to the eigenvalue 1, and let V be the min-

imal common invariant subspace of A0 and A1 generated by ej(∇δ), j = 1, . . . , r, in
(`0(Z))r. If

(2.9) ρp(A0|V , A1|V ) < 21/p,

then there exists a compactly supported solution φ ∈ (Lp(R))r (φ ∈ (C(R))r in the

case p = ∞) of the refinement equation (1.1) with the mask a subject to φ̂(0) = y.
Conversely, if φ = (φ1, . . . , φr)

T ∈ (Lp(R))r (φ ∈ (C(R))r in the case p = ∞) is a
compactly supported solution of (1.1) such that the shifts of φ1, . . . , φr are stable, then
(2.9) holds true.

Proof. The proof follows the lines of [21, Theorem 5.3]. Let f := yg, where g is
the hat function supported on [0, 2] satisfying g(x) = x for 0 ≤ x ≤ 1 and g(x) = 2−x
for 1 < x ≤ 2. Since ĝ(0) = 1, we have f̂(0) = y.
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Consider fn := Qnaf , n = 1, 2, . . . . We have

fn =
∑
α∈Z

an(α)f(2n · −α),

where the sequences an (n = 1, 2, . . .) are given by the iteration relation (2.2). Since
g = g(2 ·)/2 + g(2 · − 1) + g(2 · − 2)/2, we have

fn =
∑
α∈Z

1

2

[
an(α)y + an(α− 1)y

]
g(2n+1 · − 2α) +

∑
α∈Z

[
an(α)y

]
g(2n+1 · − 2α− 1).

Moreover,

fn+1 =
∑
α∈Z

[
an+1(2α)y

]
g(2n+1 · − 2α) +

∑
α∈Z

[
an+1(2α+ 1)y

]
g(2n+1 · − 2α− 1).

Subtracting the first equation from the second, we obtain

fn+1 − fn =
∑
α∈Z

[
bn(α)y

]
g(2n+1 · − 2α) +

∑
α∈Z

[
cn(α)y

]
g(2n+1 · − 2α− 1),

where

bn(α) := an+1(2α)−1

2
an(α)−1

2
an(α−1) and cn(α) := an+1(2α+1)−an(α), α ∈ Z.

It follows that

(2.10) ‖fn+1 − fn‖p ≤ 21−(n+1)/p
(‖bny‖p + ‖cny‖p

)
.

Let us estimate ‖bny‖p and ‖cny‖p. Suppose α = ε1 + 2ε2 + · · ·+ 2n−1εn + 2nγ,
where γ ∈ Z and ε1, . . . , εn ∈ {0, 1}. Then 2α = 0 + 2ε1 + 22ε2 + · · ·+ 2nεn + 2n+1γ,
and an application of (2.8) gives

bn(α)y = an+1(2α)y − 1

2
an(α)y − 1

2
an(α− 1)y

= Aεn · · ·Aε1A0(yδ)(γ)− 1

2
Aεn · · ·Aε1(yδ + yδ1)(γ)

= Aεn · · ·Aε1u(γ),

where u := A0(yδ)− (yδ + yδ1)/2. Similarly, we have

cn(α)y = Aεn · · ·Aε1v(γ),

where v := A1(yδ)− yδ.
Let A := {A0, A1}. The norm in (2.6) is chosen to be the `p-norm. The discussion

above tells us that

(2.11) ‖bny‖p = ‖Anu‖p and ‖cny‖p = ‖Anv‖p.
Write ρ for ρp(A0|V , A1|V ). In order to prove that the sequence (fn)n=1,2,... converges
in the Lp-norm, it suffices to show that

(2.12) lim
n→∞ ‖A

nu‖1/np ≤ ρ and lim
n→∞ ‖A

nv‖1/np ≤ ρ.
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Indeed, since ρ < 21/p, we may pick a number σ such that 2−1/pρ < σ < 1. Hence,
there exists a constant C independent of n such that

2−n/p‖Anu‖p ≤ Cσn and 2−n/p‖Anv‖p ≤ Cσn.

This together with (2.10) and (2.11) yields

‖fn+1 − fn‖p ≤ 21−(n+1)/p
(‖bny‖p + ‖cny‖p

) ≤ 4Cσn ∀n ∈ N.

Since σ < 1, this shows that (fn)n=1,2,... converges to some φ ∈ (Lp(R))r in the Lp-
norm. In the case p =∞, since each fn is continuous, the limit φ is also continuous.
Furthermore, since y is an eigenvector of the matrix M corresponding to the eigenvalue
1, we have

f̂n(0) = Mnf̂(0) = Mny = y.

Taking the limit as n→∞ in the above equation, we obtain φ̂(0) = y.
Let us verify (2.12). For this purpose, we set vj := Aj(yδ)− yδ for j = 0, 1. Then

v = v1 and u = v0 + (y∇δ)/2. But

lim
n→∞ ‖A

n(y∇δ)‖1/np ≤ ρ.

Thus, it suffices to show that

(2.13) lim
n→∞ ‖A

n(v0 + v1)‖1/np ≤ ρ and lim
n→∞ ‖A

n(v0 − v1)‖1/np ≤ ρ.

To verify the first inequality in (2.13), we observe that

v0 + v1 = A0(yδ)− yδ +A1(yδ)− yδ =
∑
α∈Z

[
a(2α) + a(2α+ 1)

]
yδα − 2yδ.

But
∑
α∈Z[a(2α) + a(2α+ 1)

]
y = 2My = 2y. Hence it follows that

v0 + v1 =
∑

α∈Z
[
a(2α) + a(2α+ 1)

]
y(δα − δ).

Note that only finitely many terms in the above sum do not vanish, while δα − δ
can be written as −∑α−1

β=0 ∇δβ . Therefore, v0 + v1 can be written as a finite linear
combination of ej(∇δβ), j = 1, . . . , r, β ∈ Z. We claim that

‖An(ej∇δβ)‖p = ‖An(ej∇δ)‖p ∀β ∈ Z.

Indeed, for w ∈ Cr and α = ε1 + 2ε2 + · · ·+ 2n−1εn + 2nγ, where ε1, . . . , εn ∈ {0, 1}
and γ ∈ Z, by (2.8) we have

Aεn · · ·Aε1
[
w(δβ − δβ+1)

]
(γ) = an(α− β)w − an(α− β − 1)w.

Note that ‖an(· − β)w − an(· − β − 1)w‖p = ‖anw − an(· − 1)w‖p. Consequently,

(2.14) ‖An(w∇δβ)‖p = ‖∇anw‖p = ‖An(w∇δ)‖p ∀β ∈ Z.

This verifies our claim, and thereby establishes the first inequality in (2.13).
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As to the second inequality in (2.13), we observe that

A0(yδ) =
∑
α∈Z

a(2α)yδα = A1(yδ1).

It follows that

v0 − v1 = A0(yδ)−A1(yδ) = A1(yδ1)−A1(yδ) = −A1(y∇δ).

Hence, for n = 1, 2, . . . , we have

‖An(v0 − v1)‖p ≤ ‖An+1(y∇δ)‖p.

This verifies the second inequality in (2.13). The proof for the sufficiency part of the
theorem is complete.

It remains to prove the necessity part of the theorem. Suppose φ = (φ1, . . . , φr)
T

is a solution of (1.1), where φ1, . . . , φr are compactly supported functions in Lp(R)
(φ1, . . . , φr are continuous in the case p =∞). Iterating the refinement equation (1.1)
n times, we obtain

φ =
∑
α∈Z

an(α)φ(2n · −α),

where the sequences an (n = 1, 2, . . .) are given by (2.2). It follows that

φ− φ(· − 1/2n) =
∑
α∈Z
∇an(α)φ(2n · −α).

If the shifts of φ1, . . . , φr are stable, then there exists a constant C1 > 0 such that

2−n/p‖∇an‖p ≤ C1‖φ− φ(· − 1/2n)‖p ∀n ∈ N.

Consequently, there exists a constant C > 0 such that

(2.15) 2−n/p‖∇anej‖p ≤ C‖φ− φ(· − 1/2n)‖p ∀ j = 1, . . . , r; n ∈ N.

But (2.14) tells us that

lim
n→∞ ‖∇anej‖

1/n
p = lim

n→∞ ‖A
n(ej∇δ)‖1/np .

Note that ρ = max1≤j≤r{limn→∞ ‖An(ej∇δ)‖1/np }. Since limn→∞ ‖φ−φ(·−1/2n)‖p =
0, (2.15) holds true only if 2−1/pρ < 1. This shows ρ < 21/p, as desired.

3. Characterization of smoothness. In this section, we give a characteriza-
tion for the smoothness of solutions of the refinement equation (1.1) in terms of the
corresponding refinement mask. Our work is based on the following results from ap-
proximation theory: For a function f in Lp(R) (f is continuous in the case p = ∞),
f lies in Lip∗(ν, Lp(R)) (ν > 0) if and only if, for some integer k > ν, there exists a
constant C > 0 such that

‖∇k2−nf‖p ≤ C2−nν ∀n ∈ N.

For these results we refer the reader to the work of Boman [1] and Ditzian [9].
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Suppose φ = (φ1, . . . , φr)
T is a solution of the refinement equation (1.1). Iterating

(1.1) n times, we obtain

(3.1) φ =
∑
α∈Z

an(α)φ(2n· − α),

where an (n = 1, 2, . . .) are given by (2.2). Applying the difference operator ∇2−n to
both sides of (3.1), we obtain

∇2−nφ =
∑
α∈Z

an(α)
[
φ(2n· − α)− φ(2n· − α− 1)

]
=
∑
α∈Z
∇an(α)φ(2n· − α).

For k = 1, 2, . . . , an induction argument tells us that

(3.2) ∇k2−nφ =
∑
α∈Z
∇kan(α)φ(2n· − α).

Suppose φ1, . . . , φr are compactly supported functions in Lp(R). It follows from (3.2)
that

(3.3) 2n/p
∥∥∇k2−nφ∥∥p ≤ C1

∥∥∇kan∥∥p ∀n ∈ N,
where C1 is a constant independent of n. If, in addition, the shifts of φ1, . . . , φr are
stable, then there exists a constant C2 > 0 such that

(3.4) 2n/p
∥∥∇k2−nφ∥∥p ≥ C2

∥∥∇kan∥∥p ∀n ∈ N,

but, for 0 < ν < k, φ lies in (Lip∗(ν, Lp(R)))r if and only if there exists a constant
C > 0 such that

‖∇k2−nφ‖p ≤ C2−nν ∀n ∈ N.
Thus, we have established the following result.

Lemma 3.1. Suppose φ = (φ1, . . . , φr)
T ∈ (Lp(R))r (φ ∈ (C(R))r in the case

p =∞) is a compactly supported solution of the refinement equation (1.1) with mask
a. For n = 1, 2, . . . , let an be given by the iteration relation (2.2). Let k > ν > 0,
where k is an integer. If there exists a constant C > 0 such that

(3.5) ‖∇kan‖p ≤ C2−n(ν−1/p) ∀n ∈ N,
then φ belongs to (Lip∗(ν, Lp(R)))r. Conversely, if φ lies in (Lip∗(ν, Lp(R)))r, then
(3.5) holds true, provided the shifts of φ1, . . . , φr are stable.

For two elements b and c in `0(Z), the discrete convolution of b and c, denoted by
b∗c, is defined by

b∗c(α) =
∑
β∈Z

b(α− β)c(β), α ∈ Z.

Evidently, b∗δ = b for any b ∈ `0(Z). If b ∈ (`0(Z))r×r and c ∈ (`0(Z))r, then b∗c is
defined in a similar way.

Lemma 3.2. Let a be an element of (`0(Z))r×r, and let an (n = 1, 2, . . .) be given
by the iteration relation (2.2). For ε = 0, 1, let Aε be the linear operator on (`0(Z))r

given by (2.7). Then, for each integer k ≥ 0,

lim
n→∞

∥∥∇kan‖1/np = ρp(A0|V , A1|V ),
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where V is the minimal common invariant subspace of A0 and A1 generated by
ej(∇kδ), j = 1, . . . , r.

Proof. Write A for {A0, A1}. For an element w ∈ (`0(Z))r, the quantity ‖Anw‖p
is defined as in (2.6) with the `p-norm being the underlying vector norm on (`0(Z))r.

Let v be an element in (`0(Z))r. We observe that

(∇kan)∗v = an∗(∇kv).

Suppose α = ε1 +2ε2 + · · ·+2n−1εn+2nγ, where ε1, . . . , εn ∈ {0, 1} and γ ∈ Z. Then
by (2.4) we have(∇kan∗v)(α) =

∑
β∈Z

an(α− β)∇kv(β)

=
∑
β∈Z

Aεn · · ·Aε1(γ, β)∇kv(β) = Aεn · · ·Aε1(∇kv)(γ).

It follows that

(3.6) ‖∇kan∗v‖p = ‖An(∇kv)‖p.
Choosing v = ejδ in (3.6), we obtain

‖(∇kan)ej‖p = ‖(∇kan)∗(ejδ)‖p = ‖An(ej∇kδ)‖p.
This shows that

lim
n→∞ ‖(∇

kan)ej‖1/np = lim
n→∞ ‖A

n(ej∇kδ)‖1/np = ρp(A0|Vj , A1|Vj ),

where Vj is the minimal common invariant subspace of A0 and A1 generated by
ej(∇kδ). But

‖∇kan‖p =

 r∑
j=1

‖(∇kan)ej‖pp

1/p

.

Therefore, we arrive at the conclusion that

lim
n→∞

∥∥∇kan‖1/np = max
{
ρp(A0|Vj , A1|Vj ) : j = 1, . . . , r

}
= ρp(A0|V , A1|V ),

where V is the sum of V1, . . . , Vr.
We are in a position to prove the main result of this paper.
Theorem 3.3. Let a be an element of (`0(Z))r×r. For ε = 0, 1, let Aε be

the linear operator on (`0(Z))r given by (2.7). Let k be a positive integer and V the
minimal common invariant subspace of A0 and A1 generated by ej(∇kδ), j = 1, . . . , r.
Suppose φ = (φ1, . . . , φr)

T is compactly supported and lies in (Lp(R))r for 1 ≤ p <∞
(f lies in (C(R))r for p =∞). If φ is a solution of the refinement equation (1.1) with
the mask a, then

(3.7) νp(φ) ≥ 1/p− log2 ρp(A0|V , A1|V ).

In addition, if the shifts of φ1, . . . , φr are stable and if k > 1/p− log2 ρp(A0|V , A1|V ),
then equality holds in (3.7).
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Proof. Write ρ for ρp(A0|V , A1|V ). By Lemma 3.2, we have limn→∞ ‖∇kan‖1/np =
ρ. Thus, for ε > 0, there exists a constant C > 0 such that, ∀n ∈ N,

‖∇kan‖p ≤ C(ρ+ ε)n = C2n log2(ρ+ε) = C2−n(ν−1/p),

where ν := 1/p − log2(ρ + ε). By Lemma 3.1, φ belongs to (Lip∗(ν, Lp(R)))r. This
shows that

νp(φ) ≥ 1/p− log2(ρ+ ε),

but ε > 0 can be arbitrarily small; hence, we obtain

νp(φ) ≥ 1/p− log2 ρ.

Now suppose k > 1/p − log2 ρ and the shifts of φ1, . . . , φr are stable. We wish
to show νp(φ) ≤ 1/p − log2 ρ. If this is not true, then there exists µ such that
1/p − log2 ρ < µ < k and φ ∈ (Lip∗(µ,Lp(R)))r. By Lemma 3.1, there exists a
constant C > 0 such that

‖∇kan‖p ≤ C2−n(µ−1/p) ∀n ∈ N.
By Lemma 3.2 we get

ρ = lim
n→∞ ‖∇

kan‖1/np ≤ 2−µ+1/p.

It follows that

µ ≤ 1/p− log2 ρ,

which contradicts the assumption µ > 1/p− log2 ρ. Therefore, we obtain the desired
result νp(φ) ≤ 1/p− log2 ρ.

The case p = 2 is of particular interest. In this case, the smoothness is usually
measured by using Sobolev spaces. For ν ≥ 0 we denote by W ν

2 (R) the Sobolev space
of all functions f ∈ L2(R) such that∫

R

∣∣f̂(ξ)
∣∣2(1 + |ξ|ν)2 dξ <∞.

It is well known that, for ν > ε > 0, the inclusion relations

W ν
2 (R) ⊆ Lip∗(ν, L2(R)) ⊆W ν−ε

2 (R)

hold true. Therefore, for a vector f = (f1, . . . , fr)
T ∈ (L2(R))r, we have

ν2(f) = sup
{
ν : f ∈ (W ν

2 (R))r
}
.

In [29] Shen obtained lower bounds for the L2-smoothness of refinable vectors.
When p = 2, the joint spectral radius in (3.7) can be computed by finding the

spectral radius of a certain finite matrix associated to the mask a (see [11] and [21]).
Let us review some related results from [21]. For an element a ∈ (`0(Z))r×r, define

the transition operator Fa to be the linear mapping from (`0(Z))r×r to (`0(Z))r×r

given by

(3.8) Faw(α) :=
∑
β,γ∈Z

a(2α− β)w(β + γ)a(γ)∗/2, α ∈ Z, w ∈ (`0(Z))r×r,
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where a(γ)∗ denotes the complex conjugate transpose of a(γ). For n = 1, 2, . . . , let
an be the sequences given by the iteration relation (2.2). It was proved [21, Lemma
7.3] that, for any v ∈ (`0(Z))r,

(3.9) lim
n→∞ ‖an∗v‖

1/n
2 =

√
2ρ(Fa|W ) ,

where W is the minimal invariant subspace of Fa generated by the element w ∈
(`0(Z))r×r given by

w(β) :=
∑
γ∈Z

v(β + γ)v(γ)∗, β ∈ Z.

Let ∆ denote the difference operator on `0(Z) given by

∆v := −v(· − 1) + 2v − v(·+ 1), v ∈ `0(Z).

In particular, ∆δ := −δ−1 + 2δ − δ1. Suppose V is the minimal common invariant
subspace of A0 and A1 generated by ej(∇kδ), j = 1, . . . , r. Then Lemma 3.2 and
(3.9) tell us that

ρ2(A0|V , A1|V ) =
√

2ρ(Fa|W ),

whereW is the minimal invariant subspace of Fa generated by eje
T
j (∆kδ), j = 1, . . . , r.

Thus, for the case p = 2, Theorem 3.3 can be strengthened as follows.
Theorem 3.4. Suppose φ = (φ1, . . . , φr)

T ∈ (L2(R))r is a compactly supported
solution of the refinement equation (1.1) with mask a. Let Fa be the transition operator
given in (3.8). Then, for any positive integer k,

ν2(φ) ≥ − log2

√
ρ(Fa|W ),

where W is the minimal invariant subspace of Fa generated by eje
T
j (∆kδ), j = 1, . . . , r.

Moreover, ν2(φ) = − log2

√
ρ(Fa|W ), provided k > − log2

√
ρ(Fa|W ) and the shifts of

φ1, . . . , φr are stable.
In order to apply Theorems 3.3 and 3.4 to smoothness analysis, one must check

the stability of refinable functions in terms of the refinement mask. For the scalar
case (r = 1), Jia and Wang [22] gave a characterization for the stability and linear
independence of the shifts of a refinable function in terms of the refinement mask.
Their results were extended by Zhou [33] to the case where the scaling factor is an
arbitrary integer greater than 1. For the vector case (r > 1), stability of the shifts
of multiple refinable functions was discussed by Hervé [15], Hogan [16], and Wang
[32]. Assuming the vector of refinable functions lies in (L2(R))r, Shen [29] gave a
characterization for L2-stability.

4. Examples. In this section, we give two examples to illustrate the general
theory.

Let A be a linear operator on a linear space V with {v1, . . . , vs} as its basis.
Suppose Avj =

∑s
k=1 ajkvk for 1 ≤ j ≤ s. Then the matrix (ajk)1≤j,k≤s is said to be

the matrix representation of A.
The definition of joint spectral radius given in section 2 also applies to a finite

multiset of square matrices of the same size. Indeed, an s×s matrix can be viewed as
a linear operator on Cs. Obviously, the p-norm joint spectral radius of a finite multiset
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of linear operators is the same as that of the multiset of the matrices representing
those linear operators.

Now suppose A = {A0, A1}, where A0 = (λ) and A1 = (µ) are two 1×1 matrices.
For ε1, . . . , εn ∈ {0, 1}, we have

Aε1 · · ·Aεn =
n∏
j=1

(λ1−εjµεj ).

Hence for 1 ≤ p <∞,

‖An‖p =
(|λ|p + |µ|p)n/p,

while

‖An‖∞ =
(
max{|λ|, |µ|})n.

Therefore we obtain

(4.1) ρp(A0, A1) =
(|λ|p + |µ|p)1/p, 1 ≤ p ≤ ∞,

where the right-hand side of (4.1) is interpreted as max{|λ|, |µ|} for the case p =∞.
Suppose A = {A1, . . . , Am} and each Aj is a block triangular matrix:

Aj =

(
Ej 0
Gj Fj

)
, j = 1, . . . ,m,

where E1, . . . , Em are square matrices of the same size, and so are F1, . . . , Fm. It was
proved [21, Lemma 4.2] that

(4.2) ρp(A1, . . . , Am) = max{ρp(E1, . . . , Em), ρp(F1, . . . , Fm)}, 1 ≤ p ≤ ∞.

Let A0 and A1 be two triangular matrices of the same type:

A0 =


λ11

λ12 λ22
...

...
. . .

λs1 λs2 · · · λss

 and A1 =


µ11

µ12 µ22
...

...
. . .

µs1 µs2 · · · µss

 .
Then (4.1) and (4.2) tell us that

(4.3) ρp(A0, A1) = max
1≤j≤s

(|λjj |p + |µjj |p
)1/p

, 1 ≤ p ≤ ∞.

Let us analyze the following example considered by Donovann et al. [10]. Suppose
a is a sequence on Z supported on [0, 3] and

a(0) =

[
h1 1
h2 h3

]
, a(1) =

[
h1 0
h4 1

]
,

a(2) =

[
0 0
h4 h3

]
, a(3) =

[
0 0
h2 0

]
,
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where

h1 = −s
2 − 4s− 3

2(s+ 2)
, h2 = −3(s2 − 1)(s2 − 3s− 1)

4(s+ 2)2
,

h3 =
3s2 + s− 1

2(s+ 2)
, h4 = −3(s2 − 1)(s2 − s+ 3)

4(s+ 2)2
.

The matrix M :=
∑3
α=0 a(α)/2 has two eigenvalues, 1 and s. We assume that

|s| < 1. The eigenvectors of M corresponding to the eigenvalue 1 are cy, where c 6= 0
and

y =

[
1

(s− 1)2/(s+ 2)

]
.

Example 4.1. Let φ = (φ1, φ2)T be the solution of the refinement equation with

the mask a such that φ̂(0) = y. Then

νp(φ) =

{
1 + 1/p if |s| < 2−1−1/p,
− log2 |s| if 2−1−1/p ≤ |s| < 1.

Proof. First, we prove that the solution φ is continuous, provided |s| < 1. For
this purpose, let Aε (ε = 0, 1) be the linear operators on (`0(Z))2 given by

Aεv(α) =
∑
β∈Z

a(ε+ 2α− β)v(β), α ∈ Z, v ∈ (`0(Z))2.

Since a is supported on [0, 3], the linear space (`([0, 3]))2 is invariant under both A0

and A1. Choose

{e1δ0, e2δ0, e1δ1, e2δ1, e1δ2, e2δ2, e1δ3, e2δ3}
as a basis for (`([0, 3]))2. With respect to this basis, the matrix representations of A0

and A1 are (a(2β − α)T )0≤α,β≤3 and (a(1 + 2β − α)T )0≤α,β≤3, respectively. We have

(a(2β − α)T )0≤α,β≤3 =



h1 h2 0 h4

1 h3 0 h3

h1 h4 0 h2

0 1 0 0
h1 h2 0 h4

1 h3 0 h3

h1 h4 0 h2

0 1 0 0


and

(a(1 + 2β − α))T0≤α,β≤3 =



h1 h4 0 h2

0 1 0 0
h1 h2 0 h4

1 h3 0 h3

h1 h4 0 h2

0 1 0 0
h1 h2 0 h4 0 0
1 h3 0 h3 0 0


.
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We observe that s is a common eigenvalue of both A0 and A1. Corresponding to
this eigenvalue, A0 and A1 have a common eigenvector v1 given by

v1 :=

[
1
−µ
]
δ +

[
0
−µ
]
δ1,

where

µ :=
3(1− s2)

2(s+ 2)
.

This motivates us to choose

v2 :=

[
1
−µ
]
δ1 +

[
0
−µ
]
δ2.

It is easily verified that A0v2 = sv2 and A1v2 = sv1. From Theorem 2.1, we need
to add the generators ej∇δ, j = 1, 2, which motivates us to set v3 := e2∇δ and
v4 := e2∇δ1, i.e.,

v3 :=

[
0
1

]
δ −

[
0
1

]
δ1 and v4 :=

[
0
1

]
δ1 −

[
0
1

]
δ2.

Denote by V the linear span of v1, v2, v3, and v4. Then e1∇δ = v1−v2+µ(v3+v4) ∈ V
and e2∇δ = v3 ∈ V . Using the matrix representations of A0 and A1 we find that

A0


v1

v2

v3

v4

 =


s
0 s
1 0 0.5
0 −1 0 0.5



v1

v2

v3

v4


and

A1


v1

v2

v3

v4

 =


s
s 0
−1 0 0.5
1 0 0.5 0



v1

v2

v3

v4

.
Thus, V is invariant under both A0 and A1. Applying (4.3) to the two 4× 4 matrices
above, we obtain

ρ∞(A0|V , A1|V ) = max{1/2, |s|}.
Thus, ρ∞(A0|V , A1|V ) < 1 for |s| < 1. Therefore, by Theorem 2.1, the solution φ is
continuous, provided |s| < 1.

We claim that the shifts of φ1 and φ2 are stable. For this purpose it suffices to
show that the shifts of φ1 and φ2 are linearly independent (see [19]), that is,

(4.4)
∑
α∈Z

b(α)φ1(· − α) +
∑
α∈Z

c(α)φ2(· − α) = 0 =⇒ b(α) = c(α) = 0 ∀α ∈ Z.

In order to verify (4.4), we first compute φ(α) for α ∈ Z. Since φ is supported
on [0, 3], we have φ(α) = 0 for α ∈ Z \ {1, 2}. The vector φ = (φ1, φ2)T satisfies the
refinement equation

(4.5) φ(x) =
∑
α∈Z

a(α)φ(2x− α) ∀x ∈ R.
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In particular,

φ(β) =
2∑

α=1

a(2β − α)φ(α) for β = 1, 2.

Solving the above system of linear equations, we get

φ(1) = (0, t)T and φ(2) = 0,

where t is a nonzero constant. Moreover, it follows from (4.5) that

φ(β + 1/2) =

2∑
α=1

a(2β + 1− α)φ(α) ∀β ∈ Z.

Consequently, φ(1/2) = t(1, h3)T , φ(3/2) = t(0, h3)T , and φ(β + 1/2) = 0 for β ∈
Z \ {0, 1}. Suppose

(4.6)
∑
α∈Z

b(α)φ1(x− α) +
∑
α∈Z

c(α)φ2(x− α) = 0 ∀x ∈ R.

Choosing x = β for β ∈ Z in (4.6), we obtain c(β − 1) = 0. This is true for all β ∈ Z.
Hence (4.6) implies ∑

α∈Z
b(α)φ1(x− α) = 0 ∀x ∈ R.

For β ∈ Z, setting x = β + 1/2 in the above equation gives b(β) = 0. Thus, (4.4) has
been verified.

We are in a position to determine the smoothness of φ. For the subspace W , we
retain the first two generators, v1, v2, but replace the others by ej(∇2δ), j = 1, 2, as
required by Theorem 3.3:

w1 :=

[
1
−µ
]
δ +

[
0
−µ
]
δ1, w2 :=

[
1
−µ
]
δ1 +

[
0
−µ
]
δ2,

w3 := e2(∇2δ), and w4 := e1(∇2δ).

Using the matrix representations of A0 and A1, we find

A0


w1

w2

w3

w4

 =


s
0 s
1 1 0.5
h1 −h1 µ/2 0



w1

w2

w3

w4


and

A1


w1

w2

w3

w4

 =


s
s 0
−2 0 0
−h1 h1 µ/2 0



w1

w2

w3

w4

 .
Let W be the linear span of w1, w2, w3, and w4. Then W is the minimal common
invariant subspace of A0 and A1 generated by e1(∇2δ) and e2(∇2δ). Applying (4.3)
to the two 4× 4 matrices above, we obtain

ρp(A0|W , A1|W ) = max{21/p|s|, 1/2}.
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If |s| < 2−1−1/p, then ρp(A0|W , A1|W ) = 1/2; hence νp(φ) = 1 + 1/p for 1 < p ≤ ∞,
by Theorem 3.3. When p = 1, we have ν1(φ) ≥ 2. But ν1(φ) > 2 is impossible.
Indeed, ν1(φ) > 2 would imply νp(φ) > 2 for some p > 1, by the embedding theorem.
But we know that νp(φ) < 2 for 1 < p ≤ ∞. Therefore, ν1(φ) = 2 for |s| < 1/4.
If 2−1−1/p ≤ |s| < 1, then ρp(A0|W , A1|W ) = 21/p|s|. Theorem 3.3 tells us that
νp(φ) = − log2 |s| for 1 ≤ p ≤ ∞. Thus, for 1 ≤ p ≤ ∞, we have found the optimal
Lp-smoothness of φ explicitly.

Using fractal interpolation, Donovan et al. [10] showed that φ ∈ Lip 1 for |s| < 1/2
and φ ∈ Lip ν for 1/2 < |s| < 1, where ν = − log2 |s|. In [3], Cohen, Daubechies, and
Plonka established the continuity of φ for |s| < 1/2. The case p = 1 was considered by
Micchelli and Sauer [25], who obtained ν1(φ) > 1.1087 for s = −0.2. In comparison
with their result, our method gives ν1(φ) = 2 for |s| < 1/4.

Our second example is taken from [20, 21]. Let a be the element in (`0(Z))2×2

supported in [0, 2] given by

(4.7) a(0) =

[
1
2

s
2

t λ

]
, a(1) =

[
1 0
0 µ

]
, and a(2) =

[
1
2 − s

2−t λ

]
.

The matrix M :=
∑2
α=0 a(α)/2 has two eigenvalues: 1 and λ+ µ/2. We assume that

|2λ+ µ| < 2. Then there exists a unique distributional solution φ = (φ1, φ2)T of the

refinement equation with the mask a subject to φ̂(0) = (1, 0)T . The distribution φ1

is symmetric about 1, and φ2 is antisymmetric about 1. It was proved [20, Example
4.3] that the shifts of φ1 and φ2 reproduce all quadratic polynomials if and only if

(4.8) t 6= 0, µ = 1/2, and λ = 1/4 + 2st.

In this case, the condition |2λ+ µ| < 2 reduces to −3/4 < st < 1/4.
Example 4.2. Let a be the mask given in (4.7) with −3/4 < st < 1/4. Let

φ = (φ1, φ2)T be the solution of the refinement equation with the mask a such that

φ̂(0) = (1, 0)T . Suppose the conditions in (4.8) are satisfied. Then, for s 6= 0 we have

νp(φ) =

{
2 + 1

p if |st+ 1/4| ≤ 2−3−1/p,

− log2 | 12 + 2st| if 2−3−1/p < |st+ 1/4| < 1/2.

In the case s = 0, µ = 1/2, and λ = 1/4, we have νp(φ) = 1 + 1/p.
Proof. First, we investigate the case s = 0. Under the conditions in (4.8), the

refinement equation

(4.9) φ(x) =
∑
α∈Z

a(α)φ(2x− α) ∀x ∈ R

can be solved explicitly (see [20, Example 4.3]). The solution φ = (φ1, φ2)T of (4.9)

subject to φ̂(0) = (1, 0)T is given by

φ1(x) =

{
x for 0 ≤ x < 1,
2− x for 1 ≤ x ≤ 2,
0 otherwise,

and

φ2(x) =

{
4tx(1− x) for 0 ≤ x < 1,
−4t(2− x)(x− 1) for 1 ≤ x ≤ 2,
0 otherwise.
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Consequently, νp(φ) = 1+1/p for 1 ≤ p ≤ ∞. In this case, the shifts of φ2 are linearly
dependent .

Second, we consider the case s 6= 0. Under the conditions in (4.8), the solution
φ = (φ1, φ2)T is continuous, provided −3/4 < st < 1/4 (see [21, Example 6.3]). In
this case, we claim that the shifts of φ1 and φ2 are linearly independent. To justify
our claim, we find φ(α) for α ∈ Z. Since φ is supported on [0, 2], we have φ(α) = 0 for
α ∈ Z \ {1}. From [20, Example 3.2] we see that

∑
α∈Z φ1(α) = 1. Hence φ1(1) = 1.

Moreover, it follows from (4.9) that φ(1) = a(1)φ(1), which implies φ2(1) = 0. Next,
we find φ(β + 1/2) for β ∈ Z. Using the refinement equation (4.9), we obtain

φ(β + 1/2) =
∑
α∈Z

a(α)φ(2β + 1− α) = a(2β)[1, 0]T .

Therefore, φ(1/2) = [1/2, t]T , φ(3/2) = [1/2,−t]T , and φ(β+1/2) = 0 ∀β ∈ Z\{0, 1}.
Furthermore, we can use (4.9) to find φ(γ + 1/4) ∀γ ∈ Z. As a result, we obtain
φ(γ + 1/4) = 0 ∀γ ∈ Z \ {0, 1},

φ(1/4) =
∑
α∈Z

a(α)φ(1/2− α) = a(0)φ(1/2),

and

φ(5/4) =
∑
α∈Z

a(α)φ(5/2− α) = a(1)φ(3/2) + a(2)φ(1/2).

Suppose

(4.10)
∑
α∈Z

b(α)φ1(x− α) +
∑
α∈Z

c(α)φ2(x− α) = 0 ∀x ∈ R.

Choosing x = β for β ∈ Z in the above equation, we obtain b(β− 1) = 0. This is true
for all β ∈ Z. Hence (4.10) implies

(4.11)
∑
α∈Z

c(α)φ2(x− α) = 0 ∀x ∈ R.

For β ∈ Z, setting x = β + 1/2 in the above equation gives

t [c(β)− c(β − 1)] = 0.

Since t 6= 0, we have c(β) = c(β − 1) ∀β ∈ Z. Setting x = 5/4 in (4.11), we get

c(0)[φ2(1/4) + φ2(5/4)] = 0, i.e. , c(0)(2λ− µ)t = 0.

But (2λ − µ)t = 4st2 6= 0; hence c(0) = 0. So c(β) = c(0) = 0 for all β ∈ Z. This
justifies our claim that the shifts of φ1 and φ2 are linearly independent.

We are in a position to determine the smoothness of φ. Let Aε (ε = 0, 1) be the
linear operators on (`0(Z))2 given by

Aεv(α) =
∑
β∈Z

a(ε+ 2α− β)v(β), α ∈ Z, v ∈ (`0(Z))2.

We observe that 1/2 + 2st is a common eigenvalue of both A0 and A1. Corre-
sponding to this eigenvalue, A0 and A1 have a common eigenvector v1 given by

v1 :=

[
1
4t

]
δ +

[−1
4t

]
δ1.
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This motivates us to choose

v2 :=

[
1
4t

]
δ1 +

[−1
4t

]
δ2.

Then we have A0v2 = (1/2 + 2st)v2 and A1v2 = (1/2 + 2st)v1. We also must add
ej(∇3δ), j = 1, 2, by Theorem 3.3 and from the action of A0, A1 on those vectors, we
are led to our choice of v3, v4, v5:

v3 := e2(∇2δ), v4 := e1(∇3δ), and v5 := e2(∇3δ).

By computation we find that

A0


v1

v2

v3

v4

v5

 =


1/2 + 2st

0 1/2 + 2st
s/2 s/2 1/4
1/2 −1/2 −t 0
s/2 3s/2 1/4 0 0



v1

v2

v3

v4

v5


and

A1


v1

v2

v3

v4

v5

 =


1/2 + 2st
1/2 + 2st 0
−s 0 0
−1/2 1/2 −t 0
−3s/2 −s/2 −1/4 0 0



v1

v2

v3

v4

v5

 .
Let V be the linear span of vj , j = 1, . . . , 5. Then V is the minimal common invariant
subspace of A0 and A1 generated by e1(∇3δ) and e2(∇3δ). Applying (4.3) to the two
5× 5 matrices above, we obtain

ρp(A0|V , A1|V ) = max{21/p|1/2 + 2st|, 1/4}.
If |1/2 + 2st| < 2−2−1/p, then ρp(A0|V , A1|V ) = 1/4; hence νp(φ) = 2 + 1/p for
1 < p ≤ ∞, by Theorem 3.3. When p = 1, we have ν1(φ) ≥ 3. But ν1(φ) > 3
is impossible. Indeed, ν1(φ) > 3 would imply νp(φ) > 3 for some p > 1, by the
embedding theorem. But we know that νp(φ) < 3 for 1 < p ≤ ∞. Therefore, ν1(φ) = 3
for |1/2 + 2st| < 2−2−1/p. If 2−2−1/p ≤ |1/2 + 2st| < 1, then ρp(A0|V , A1|V ) =
21/p|1/2 + 2st|. Theorem 3.3 tells us that νp(φ) = − log2 |1/2 + 2st| for 1 ≤ p ≤ ∞.
Thus, for 1 ≤ p ≤ ∞, we have found the optimal Lp-smoothness of φ explicitly.

The special case s = 3/2, t = −1/8, λ = −1/8, and µ = 1/2 was discussed by
Heil, Strang, and Strela [14]. In this case, φ can be solved explicitly as follows:

φ1(x) =

x2(−2x+ 3) for 0 ≤ x ≤ 1,
(2− x)2(2x− 1) for 1 < x ≤ 2,
0 for x ∈ R \ [0, 2]

and

φ2(x) =

x2(x− 1) for 0 ≤ x ≤ 1,
(2− x)2(x− 1) for 1 < x ≤ 2,
0 for x ∈ R \ [0, 2].

It is evident that νp(φ) = 2 + 1/p.
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5. Multiple wavelets. In this section we apply the general theory to smooth-
ness analysis of orthogonal multiple wavelets.

In Example 4.1, if φ = (φ1, φ2)T is the solution of the refinement equation corre-
sponding to the parameter s = −0.2, then the shifts of φ1 and φ2 are orthogonal. It
was shown in the last section that the optimal smoothness of φ is νp(φ) = 1 + 1/p.
This example of continuous symmetric orthogonal double refinable functions was first
constructed by Donovan et al. [10] by means of fractal interpolation. On the basis of
their work, Strang and Strela constructed symmetric orthogonal double wavelets in
[31].

In this section we shall use refinement equations to study multiple wavelets. Let a
be an element in (`0(Z))r×r such that the matrix M =

∑
α∈Z a(α)/2 has the following

form:

M =

[
1 0
0 Λ

]
and lim

n→∞Λn = 0.

There exists a unique solution φ of the refinement equation

φ =
∑
α∈Z

a(α)φ(2 · −α)

such that φ̂(0) = (1, 0, . . . , 0)T . This solution is called the normalized solution.
The following theorem summarizes the general theory on orthogonal multiple

wavelets (see, e.g., [21]). Some different forms of this result were obtained by Long,
Chen, and Yuan [24] and Shen [29].

Theorem 5.1. Let φ = (φ1, . . . , φr)
T be the normalized solution of the refinement

equation with mask a. Then {φj(· − α) : j = 1, . . . , r; α ∈ Z} forms an orthonormal
system in L2(R) if and only if

a.
∑
α∈Z a(α)a(α + 2γ)∗ = 2δγ,0Ir ∀γ ∈ Z, where Ir denotes the r × r identity

matrix, and
b. ρ(Fa|W ) < 1 where Fa is the linear operator on (`0(Z))r×r given by (3.8) and

W is the minimal invariant subspace of Fa generated by e1e
T
1 (∆δ), e2e

T
2 δ, . . . , ere

T
r δ.

Furthermore, if ψ is given by ψ = (ψ1, . . . , ψr)
T =

∑
α∈Z b(α)φ(2· − α), where b

is a sequence in (`0(Z))s×s satisfying∑
α∈Z

a(α)b(α+ 2γ)∗ = 0 ∀γ ∈ Z

and ∑
α∈Z

b(α)b(α+ 2γ)∗ = 2δγ,0Ir ∀γ ∈ Z,

then {√2
k
ψj(2

k· −α) : j = 1, . . . , r; k, α ∈ Z} forms an orthonormal basis for L2(R).
In other words, ψ1, . . . , ψr are orthogonal multiple wavelets.

In [21] we constructed a class of continuous orthogonal double wavelets with
symmetry. In our construction the mask a is supported on [0, 2] and

a(0) =

[
1
2

1
2

t t

]
, a(1) =

[
1 0
0
√

2− 4t2

]
, and a(2) =

[
1
2 − 1

2−t t

]
,

where the parameter t is in the range −1/
√

2 ≤ t < −1/2. Let φ = (φ1, φ2)T be the
normalized solution of the refinement equation with mask a. Then φ1 is symmetric
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about 1, φ2 is antisymmetric about 1, and {φj(· − α) : j = 1, 2, α ∈ Z} forms an
orthonormal system in L2(R). Moreover, for the coefficients

b(0) :=

[− 1
2 − 1

2
µ
2

µ
2

]
, b(1) :=

[
1 0

0 −2t

]
, and b(2) :=

[− 1
2

1
2

−µ2 µ
2

]
,

where µ =
√

2− 4t2, the vector

ψ = (ψ1, ψ2)T :=
∑
α∈Z

b(α)φ(2 · −α)

gives orthogonal double wavelets ψ1 and ψ2 which are continuous. Furthermore, ψ1

is symmetric about 1, and ψ2 is antisymmetric about 1.
The special case t = −√7/4 was studied by Chui and Lian [2]. The following

example gives a detailed analysis for the smoothness of the corresponding double-
refinable functions.

Example 5.2. Let φ = (φ1, φ2)T be the normalized solution of the refinement
equation with mask a, where a is supported on [0, 2] and

a(0) =

[
1
2

1
2

t t

]
, a(1) =

[
1 0
0 1

2

]
, a(2) =

[
1
2 − 1

2−t t

]
with t = −√7/4. Then

(5.1) νp(φ) =
1

p
− 1

p
log2

[(√7

4

)p
+
(√7− 2

4

)p]
, 1 ≤ p ≤ ∞.

Proof. Denote by Aε (ε = 0, 1) the linear operators on (`0(Z))2 given by

Aεv(α) =
∑
β∈Z

a(ε+ 2α− β)v(β), α ∈ Z, v ∈ (`0(Z))2.

Set

v1 :=

[
1
2t

]
δ +

[ −1
2t− 1

]
δ1, v2 :=

[
1

2t− 1

]
δ +

[−1
2t

]
δ1,

v3 :=

[
1
2t

]
δ1 +

[ −1
2t− 1

]
δ2, and v4 :=

[
1

2t− 1

]
δ1 +

[−1
2t

]
δ2.

By computation we obtain

A0


v1

v2

v3

v4

 =


t+ 1

2 0
t 0

0 t
0 t+ 1

2



v1

v2

v3

v4


and

A1


v1

v2

v3

v4

 =


0 t
0 t+ 1

2
t+ 1

2 0 0 0
t 0 0 0



v1

v2

v3

v4

 .
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Let V be the linear span of v1 and v2, and let W be the linear span of vj ,
j = 1, . . . , 4. Then V and W are invariant under both A0 and A1. It is easily seen
that W is the minimal common invariant subspace of A0 and A1 generated by e1(∇2δ)
and e2(∇2δ). By the remark made at the beginning of section 4 we see that

ρp(A0|W , A1|W ) = max
{
ρp(A0|V , A1|V ), |t+ 1/2|}.

It remains to compute ρp(A0|V , A1|V ). For this purpose, we choose the norm on
V as follows:

‖ξ1v1 + ξ2v2‖ := max{|ξ1|, |ξ2|} for ξ1, ξ2 ∈ C.
In particular, ‖v1‖ = ‖v2‖ = 1. Suppose 1 ≤ p <∞. Then

‖Anv1‖pp =
∑

ε1,...,εn∈{0,1}
‖Aεn · · ·Aε1v1‖p.

Write s for t+ 1/2. We claim that

(5.2)
∑

ε1,...,εn∈{0,1}
‖Aεn · · ·Aε1v1‖p = (|s|p + |t|p)n.

This will be proved by induction on n. For n = 1, we have A0v1 = sv1 and A1v1 = tv2.
Hence

‖A0v1‖p + ‖A1v1‖p = |s|p + |t|p.
This verifies (5.2) for n = 1. Suppose (5.2) is valid for n. We wish to establish it for
n + 1. Recall that A0v2 = tv1 and A1v2 = sv2. Thus, either Aεn · · ·Aε1v1 = ξv1 for
some ξ ∈ C, or Aεn · · ·Aε1v1 = ηv2 for some η ∈ C. In the former case, we have

A0Aεn · · ·Aε1v1 = sξv1 and A1Aεn · · ·Aε1v1 = tξv2.

It follows that

‖A0Aεn · · ·Aε1v1‖p + ‖A1Aεn · · ·Aε1v1‖p = (|s|p + |t|p)|ξ|p.
But |ξ| = ‖Aεn · · ·Aε1v1‖. Therefore, by the induction hypothesis, we obtain

(5.3)
∑

ε1,...,εn∈{0,1}

[‖A0Aεn · · ·Aε1v1‖p + ‖A1Aεn · · ·Aε1v1‖p
]

= (|s|p + |t|p)n+1.

In the latter case, we have

A0Aεn · · ·Aε1v1 = tηv1 and A1Aεn · · ·Aε1v1 = sηv2.

Hence (5.3) is also valid. This completes the induction procedure.
Finally, we derive from (5.2) that

ρp(A0|V , A1|V ) = lim
n→∞ ‖A

nv1‖1/np =
(|s|p + |t|p)1/p, 1 ≤ p <∞.

For the case p =∞, a similar argument gives

ρ∞(A0|V , A1|V ) = max{|s|, |t|}.
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Note that t = −√7/4 and s = t+ 1/2 = (2−√7)/4. By Theorem 3.3, we obtain the
desired result (5.1). In particular,

ν∞(φ) = − log2

√
7

4
≈ 0.59632,

ν2(φ) =
1

2
− 1

2
log2

9− 2
√

7

8
≈ 1.05458,

and

ν1(φ) = 1− log2

√
7− 1

2
≈ 1.28125.

We now return to the general mask and discuss the L2-smoothness of the nor-
malized solution φ.

Example 5.3. Let a be the mask

a(0) =

[
1
2

1
2

t t

]
, a(1) =

[
1 0
0 µ

]
, and a(2) =

[
1
2 − 1

2−t t

]
,

where µ :=
√

2− 4t2 and the parameter t is in the range −1/
√

2 ≤ t < −1/2. Then

ν2(φ) = − log2

√
ρ(B(t)), t 6= −

√
7/4,

where B(t) is the matrix

B(t) :=


1/4 t2 0 0
1/4 tµ− t2 1 0

2t+2−µ−4tµ
8 − 2t2µ−tµ2+4t2−8t3µ

4 1 4t2−1−8t2µ+2µ
8

1/2 −µt 0 µ+2t
4

 .
Proof. To apply Theorem 3.4 with k = 1, we need to determine the minimal

invariant subspace W of Fa generated by e1e
T
1 (∆δ) =: w1 and e2e

T
2 (∆δ) =: w2. From

a computation, we find that W can be described as W := span {w1, w2, w3, w4} using
the additional matrices

w3 :=

[
0 (t/2− µ/4)(δ−1 − δ1)

−(t/2− µ/4)(δ−1 − δ1) (2− 4tµ)∆δ

]
and

w4 :=

[
0 δ−1 − δ1

δ1 − δ−1 0

]
.

Furthermore, Fa|W has the matrix representation given by

Fa


w1

w2

w3

w4

 = B(t)


w1

w2

w3

w4

 .
One of the eigenvalues of B(t) is zero. The absolute value of the dominant

eigenvalue has minimum 1/4 precisely at t = −√7/4. Hence when t 6= −√7/4,
− log2

√
ρ(Fa|W ) < 1 and ν2(φ) = − log2

√
ρ(B(t)) by Theorem 3.4.



26 R.-Q. JIA, S. D. RIEMENSCHNEIDER, AND D.-X. ZHOU

When t = −√7/4, the matrix B takes the form

B

(
−
√

7

4

)
=


1/4 7/16 0 0

1/4 − 2
√

7+7
16 1 0

3/16 − 35+8
√

7
64 1 0

1/2
√

7
8 0 1−√7

8

 .
It is evident that in this case, the minimal invariant subspace W of Fa generated by
e1e

T
1 (∆δ) = w1 and e2e

T
2 (∆δ) = w2 is span {w1, w2, w3}. Moreover, the eigenvalues

of the matrix representation of Fa on W are 0, (9−2
√

7)/16, and 1/4. From Example

5.2, we know that ν2(φ) = − log2

√
(9− 2

√
7)/16 for t = −√7/4; hence, this case

provides an example to show that the condition k > − log2

√
ρ(Fa|W ) is necessary for

the equality in Theorem 3.4.
We have seen above that the choice t = −√7/4 of the parameter t yields the best

smoothness in L2(R) among all the orthonormal wavelets generated by the masks
in Example 5.3. That same choice of the parameter also is the only one for which
the resulting vector of functions φ = (φ1, φ2)T achieves accuracy 2. However, if we
measure the smoothness in L∞, then the choice t = −√7/4 no longer provides optimal
smoothness. Recall from [21] that the operators A0 and A1, when restricted to the
subspace V generated by{

2e2δ, 2e2δ1, −e1∇δ + e2δ + e2δ1
}
,

have the matrix representation

A0|V :=


1
2 + t 1

2 + t −1

0
√

2− 4t2 0

0 2t+
√

2−4t2

2 0

 and A1|V :=


√

2− 4t2 0 0
1
2 + t 1

2 + t −1

2t+
√

2−4t2

2 0 0

 .
Clearly, V contains the subspace generated by e1∇δ, e2∇δ.

A lower bound for the joint spectral radius ρ∞(A0|V , A1|V ) is given by the max-
imal spectral radius of the square root of the ρ∞(Aε1 |VAε2 |V ), ε1, ε2 ∈ {0, 1}. Now

f1(t)2 := ρ∞(A0|2V ) = ρ∞(A1|2V ) = max
(|t+ 1/2|, µ)2,

and

f2(t)2 := ρ∞(A0|VA1|V ) = ρ∞(A1|VA0|V )

= max
(
0, |η ±

√
η2 − 64t2(µ− 1)2|/8),

where η = 8µt+1+4t2−4t. In the interval −1/
√

2 ≤ t < −1/2, the function f1 is in-
creasing, the function f2 is decreasing, and they are equal in the point t ≈ −0.64268764
at which the minimum value, .5897545 . . . , of g := max(f1, f2) is achieved. Perhaps
surprisingly, the lower bound g for the joint spectral radius is exact for the point
t = −√7/4. This suggests that the value t ≈ −0.64268764 should give rise to φ which
is smoother when measured in the L∞ norm. This is indeed the case as a numerical
computation shows that

‖An‖ 1
n < .6064 <

√
7/4 for t = −0.64268764 and n = 28.

Thus,

ν∞(φ) ≥ − log2(.6064) = 0.721658 . . . for t = −0.64268764.
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