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1 Background and Main Result

In the late 1940s and the 1950s Sherman and Morrison [11] [12], Woodbury [13],

Bartlett [2], and Bodewig [4] discovered the following result. As in [7], Mm,n denotes

the space of complex-valued m × n matrices and, when m = n, this is shortened

to Mn.

Theorem 1 (Sherman–Morrison–Woodbury) For s ≤ n, let A ∈ Mn and G ∈ Ms

both be invertible, and let Y, Z ∈ Mn,s. Then A + Y GZ∗ is invertible if and only if

G−1 + Z∗A−1Y is invertible, in which case

(A + Y GZ∗)−1 = A−1 − A−1Y (G−1 + Z∗A−1Y )−1Z∗A−1.

The Sherman–Morrison–Woodbury (SMW) formula and related formulas are re-

viewed in Henderson and Searle [6]. The SMW formula has been used in a wide

variety of applications; an excellent review by Hager [5] describes some of the appli-

cations to statistics, networks, structural analysis, asymptotic analysis, optimization,

and partial differential equations.

In 1992, Riedel [10] proved an analogous formula (Theorem 2) for some cases

where A is singular. All matrices, including singular and even nonsquare matrices,

have a Moore–Penrose generalized inverse. Given a matrix A ∈ Mm,n, the Moore–

Penrose generalized inverse of A, denoted A†, is the unique matrix in Mn,m satisfying

the conditions

2



          

AA†A = A, (1)

A†AA† = A†, (2)

AA† is Hermitian, and (3)

A†A is Hermitian. (4)

In particular, if A = UΣV ∗ is a singular value decomposition of A (that is, if U ∈ Mm

and V ∈ Mn are unitary and Σ ∈ Mm,n has Σi,i ≥ 0 for 1 ≤ i ≤ min(m,n) and

Σi,j = 0 otherwise) then it may be verified (by checking (1)–(4)) that A† = V Σ†U∗,

where Σ† is defined by

Σ†
i,j :=





1
Σi,i

if i = j and Σi,i 6= 0

0 otherwise.

Classical references on generalized inverses are [3] and [9].

Theorem 2 (Riedel) Let s and n be positive integers with s ≤ n; A ∈ Mn; G ∈ Ms;

Y, Yp ∈ Mn,s; Z,Zp ∈ Mn,s. Assume R(Y ) ⊆ R(A), R(Yp) ⊥ R(A), R(Z) ⊆ R(A∗),

R(Zp) ⊥ R(A∗), G is invertible, Yp is of full rank, and Zp is of full rank. Assume

also that R(Yp) = R(Zp). Then

(A + (Y + Yp)G(Z + Zp)
∗)† = A† −DZ∗A† − A†Y C∗ + D(G−1 + Z∗A†Y )C∗,

where C := Yp(Y
∗
p Yp)

−1 and D := Zp(Z
∗
pZp)

−1.

The matrices (Y + Yp)G(Z + Zp)
∗ in Theorem 2 and Y GZ∗ in Theorem 1 are

referred to as the update matrices to the initial matrix A. A version of Riedel’s theorem
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(Theorem 2) for the special case where we seek the Moore–Penrose generalized inverse

of a rank-one update to the initial matrix can be found in [9].

Riedel verifies Theorem 2 by checking conditions (1)–(4). It must, however, be

noted that the hypothesis R(Yp) = R(Zp) of Theorem 2 is nowhere used in the verifi-

cation of Theorem 2, and thus Theorem 2 is true without this part of the hypothesis. It

is this key observation that allows us to make use of Theorem 2 in this paper. When

we refer to Theorem 2 henceforth, we will be referring to this theorem

without the aforementioned unnecessary hypothesis.

The purpose of this paper, given matrices A and B and suitable conditions, is to

relate (A + B)† cleanly to A† and B†. This is done in Theorem 3, our main result,

using Riedel’s theorem. (For a subspace Ω we denote by PΩ the orthogonal projection

onto Ω.)

Theorem 3 Let A,B ∈ Mn with rank(A + B) = rankA + rankB. Then

(A + B)† = (I − S)A† (I − T ) + SB†T (5)

where S := (PR(B∗)PR(A∗)⊥)† and

T := (PR(A)⊥PR(B))
†.

Example 4 Without the rank-additivity hypothesis [rank(A+B) = rankA+rankB],

the conclusion of Theorem 3 is (in general) false. For example, let A and B be 1 × 1

matrices with 1 as their only entry. In the notation of Theorem 3, we compute
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S = ([1][0])† = [0] and T = ([0][1])† = [0]. Hence,

(I − S)A†(I − T ) + SB†T = [1][1]†[1] + [0][1]†[0] = [1]

while (A+B)† = [1
2
], contrary to the assertion of Theorem 3. But note rank[2] = 1 6=

2 = rank[1] + rank[1].

Is it possible, however, that the rank-additivity hypothesis in the statement of

Theorem 3 can be eliminated in favor of a weaker condition? We show in Proposition

5 that the rank-additivity hypothesis cannot be avoided in any proof of Theorem 3

which employs Riedel’s theorem (Theorem 2), since rank additivity is shown to be

implied by the hypotheses of Riedel’s theorem. (As mentioned, our proof of Theorem 3

relies on Theorem 2.)

For conditions when rank(A + B) = rankA + rankB, see [8].

Remark. The matrices S and T appearing in (5) are far from determined by (5). For

example, let x and y be orthonormal vectors in Cn with n ≥ 3, and let

A := xx∗, B := yy∗.

Applying Theorem 3 we obtain

(A + B)† = (I − yy∗)A(I − yy∗) + (yy∗)B(yy∗),

which simplifies to

(xx∗ + yy∗)† = xx∗ + yy∗. (6)

But applying Theorem 3 with the roles of A and B reversed we obtain the different

formula

(A + B)† = (xx∗)A(xx∗) + (I − xx∗)B(I − xx∗)
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which, however, also simplifies to (6).

1.1 Derivation of Main Result (Theorem 3)

Our proof of Theorem 3 is based on the following proposition.

Proposition 5 Let s and n be positive integers with s ≤ n; A ∈ Mn; G ∈ Ms;

Y, Yp ∈ Mn,s; Z,Zp ∈ Mn,s. Assume R(Y ) ⊆ R(A), R(Yp) ⊥ R(A), R(Z) ⊆ R(A∗),

and R(Zp) ⊥ R(A∗).

Of the following statements, 1 implies 2. Conversely, 2 and 3 imply 1.

1. Yp and Zp are of full rank.

2. rank[A + (Y + Yp)G(Z + Zp)
∗] = rankA + rank[(Y + Yp)G(Z + Zp)

∗].

3. rank[(Y + Yp)G(Z + Zp)
∗] = s.

Proposition 5 is used in proving Theorem 3, but it also demonstrates that rank

additivity (of the initial matrix and the update matrix) is implied by the hypotheses

of Theorem 2; since our proof of Theorem 3 relies on Theorem 2, the rank additivity

hypothesis of Theorem 3 is, for us, unavoidable.

Proof of Proposition 5: Using the assumption R(Y ) ⊆ R(A) we find

R[A + (Y + Yp)G(Z + Zp)
∗] ⊆ R(A) + R(Y ) + R(Yp) = R(A) + R(Yp).

Thus, if Statements 2 and 3 hold, then

rankA + s = rank[A + (Y + Yp)G(Z + Zp)
∗] ≤ rankA + rankYp,
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from which we conclude that rankYp ≥ s, that is, that Yp (and similarly Zp) is of full

rank (Statement 1).

Conversely, suppose Yp and Zp are of full rank (Statement 1). We have

rankYp = s ≥ rankG ≥ rank [(Y + Yp)G(Z + Zp)
∗] . (7)

In [10], Riedel points out that (when Yp and Zp are of full rank)

[A + (Y + Yp)G(Z + Zp)
∗] [A + (Y + Yp)G(Z + Zp)

∗]† = AA† + YpY
†
p .

By the orthogonality of R(A) and R(Yp), we have rank(AA† + YpY
†
p ) = rank(AA†) +

rank(YpY
†
p ). (Without loss of generality, AA† and YpY

†
p share the same unitary ma-

trices in their singular value decompositions because of this orthogonality.) Thus,

rank[A + (Y + Yp)G(Z + Zp)
∗] = rank(AA† + YpY

†
p )

= rank(AA†) + rank(YpY
†
p )

= rankA + rankYp

≥ rankA + rank[(Y + Yp)G(Z + Zp)
∗],

the last inequality holding by (7). Because (trivially)

rank[A + (Y + Yp)G(Z + Zp)
∗] ≤ rankA + rank[(Y + Yp)G(Z + Zp)

∗],

we conclude

rank[A + (Y + Yp)G(Z + Zp)
∗] = rankA + rank[(Y + Yp)G(Z + Zp)

∗],

that is, Statement 2 holds.

7



       

In proving Theorem 3 we will need also the following three facts about the Moore–

Penrose generalized inverse that can be verified directly from (1)–(4). For positive

integers t and n such that t ≤ n, let Ln,t denote a matrix of size n × t with ones on

the diagonal and zeros elsewhere. Let r, s, p, and q be positive integers with s ≤ p

and r ≤ q, and let A ∈ Mr,s, U ∈ Mr, and V ∈ Ms with U and V unitary. Then

(Lq,rAL
∗
p,s)

† = Lp,sA
†L∗

q,r (8)

and

(UAV ∗)† = V A†U∗. (9)

If A is of full rank with r ≥ s, then

A† = (A∗A)−1A∗. (10)

Proof of Theorem 3: To simplify notation, and since n is fixed, we shorten Ln,t to

Lt for t ≤ n. Let A and B have respective singular value decompositions UAΣAV
∗
A

and UBΣBV
∗
B, where, without loss of generality, exactly the first s diagonal entries of

ΣB are nonzero and exactly the first r diagonal entries of ΣA are zero.

Note that

A + B = A + UBLsL
∗
sΣBLsL

∗
sV

∗
B = A + (Y + Yp)G(Z + Zp)

∗, (11)

where we define

G := L∗
sΣBLs,

Y := PR(A)UBLs = [UA(I − LrL
∗
r)U

∗
A]UBLs,
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Yp := PR(A)⊥UBLs = [UALrL
∗
rU

∗
A]UBLs,

Z := PR(A∗)VBLs = [VA(I − LrL
∗
r)V

∗
A ]VBLs,

Zp := PR(A∗)⊥VBLs = [VALrL
∗
rV

∗
A ]VBLs.

Note that G, Y , Yp, Z, and Zp satisfy all of the hypotheses of Theorem 2 since Yp

and Zp are of full rank by Proposition 5 (because rankB = s and rank(A + B) =

rankA + rankB).

We next observe that (with D and C defined as in Theorem 2)

DG−1C∗ = DL∗
sΣ

†
BLsC

∗

= DL∗
sV

∗
BVBΣ†

BU
∗
BUBLsC

∗

= DL∗
sV

∗
BB

†UBLsC
∗

= D(Z∗ + Z∗
p)B

†(Y + Yp)C
∗, (12)

and thus by Theorem 2 and (12) we have that

(A + B)† = (I −DZ∗)A†(I − Y C∗) + (DZ∗ + DZ∗
p)B

†(Y C∗ + YpC
∗). (13)

This is the basic form of (A+B)† that we seek, and we proceed to compute DZ∗,

Y C∗, DZ∗
p , and YpC

∗.

Because

n ≥ rank(A + B) = rankA + rankB = n− r + s,

we have r ≥ s. By this, the fact that projection matrices are Hermitian and idempo-

tent, and (8)–(10), we get

Y C∗ = Y (Y ∗
p Yp)

−1Y ∗
p
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= PR(A)UBLs(L
∗
sU

∗
BP

∗
R(A)⊥PR(A)⊥UBLs)

−1L∗
sU

∗
BP

∗
R(A)⊥

= PR(A)UBLs(L
∗
sU

∗
BPR(A)⊥UBLs)

−1L∗
sU

∗
BPR(A)⊥

= PR(A)UBLs(L
∗
sU

∗
BUALrL

∗
rU

∗
AUBLs)

−1L∗
sU

∗
BUALrL

∗
rU

∗
A

= PR(A)UBLs[(L
∗
rU

∗
AUBLs)

∗(L∗
rU

∗
AUBLs)]

−1(L∗
rU

∗
AUBLs)

∗L∗
rU

∗
A

= PR(A)UBLs(L
∗
rU

∗
AUBLs)

†L∗
rU

∗
A

= PR(A)UB(LrL
∗
rU

∗
AUBLsL

∗
s)

†U∗
A

= PR(A)(UALrL
∗
rU

∗
AUBLsL

∗
sU

∗
B)†

= PR(A)(PR(A)⊥PR(B))
†

= PR(A)T (14)

and also

DZ∗ = Zp(Z
∗
pZp)

−1Z∗

= PR(A∗)⊥VBLs(L
∗
sV

∗
BP

∗
R(A∗)⊥PR(A∗)⊥VBLs)

−1L∗
sV

∗
BP

∗
R(A∗)

= PR(A∗)⊥VBLs(L
∗
sV

∗
BPR(A∗)⊥VBLs)

−1L∗
sV

∗
BPR(A∗)

= VALrL
∗
rV

∗
AVBLs[L

∗
sV

∗
BVALrL

∗
rV

∗
AVBLs]

−1L∗
sV

∗
BPR(A∗)

= VALr(L
∗
rV

∗
AVBLs)[(L

∗
rV

∗
AVBLs)

∗(L∗
rV

∗
AVBLs)]

−1L∗
sV

∗
BPR(A∗)

= VALr(L
∗
rV

∗
AVBLs)

∗†L∗
sV

∗
BPR(A∗)

= VALr(L
∗
sV

∗
BVALr)

†L∗
sV

∗
BPR(A∗)

= VA(LsL
∗
sV

∗
BVALrL

∗
r)

†V ∗
BPR(A∗)

= (VBLsL
∗
sV

∗
BVALrL

∗
rV

∗
A)†PR(A∗)

= (PR(B∗)PR(A∗)⊥)†PR(A∗)
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= SPR(A∗). (15)

Similarly, we get

YpC
∗ = PR(A)⊥T and

DZ∗
p = SPR(A∗)⊥ . (16)

By plugging (14)–(16) into (13), and noting that PR(A∗)A
† = A† and A†PR(A) = A†,

the assertion of Theorem 3 follows.

2 Application to the Parallel Sum

It is well known in elementary electronics that if two resistors with resistances r1 and

r2 are placed in parallel, then the cumulative resistance r is computed by the formula

r = r1(r1 + r2)
−1r2 =

(
1

r1

+
1

r2

)−1

. (17)

With the idea of generalizing this notion to matrices, Anderson and Duffin [1] define,

for A,B ∈ Mn, the parallel sum of A and B as

A : B := A(A + B)†B, (18)

which, in the case that A and B are (scalar) resistances, is exactly the formula in

(17). An alternative definition for the parallel sum of A and B can be found in Rao

and Mitra [9], where it is defined as

A‖B :=
(
A† + B†

)†
, (19)
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which, in the case that A and B are (scalar) resistances, is again exactly the formula

in (17). Given some assumptions on A and B, [9] presents necessary and sufficient

conditions for the two definitions of parallel sum to agree.

The following result uses Theorem 3 to provide, under certain conditions, a neat

equation relating A‖B to A and B.

Corollary 6 Let A,B ∈ Mn with rank(A‖B) = rankA + rankB. Then

A‖B = (I −R)A(I −W ) + RBW

where R :=
(
PR(B)PR(A)⊥

)†
and

W :=
(
PR(A∗)⊥PR(B∗)

)†
.

Corollary 6 is an immediate corollary of Theorem 3, where A† and B† of Theorem

6 play the roles of A and B in Theorem 3.
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