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Abstract. The possible observability indices of an observable pair of matrices, when supplemen-
tary subpairs are prescribed, are characterized when the “quotient” one is nilpotent. The geometric
techniques used are also valid in the classical Carlson problem for square matrices.
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1. Introduction. This work is a contribution to the problem analogous to the
Carlson problem, but involves pairs of matrices instead of single square matrices.
In addition, it should be emphasized that the geometric techniques used can also
be applied to construct explicit solutions (see section 7) and to study the classical
Carlson problem (section 2).

Because of our geometric approach, it is convenient to deal with vertical pairs of
matrices, corresponding to linear maps defined on a subspace (see [5]). The dual case
of horizontal pairs of matrices, corresponding to maps defined modulo a subspace, is
more appropriate to matricial techniques (as in [3]).

So pairs of matrices P = (AC ), where A : C
n −→ C

n, C : C
n −→ C

m (m ≤ n), are
considered with the following equivalence relation (named “block-similarity” in [8] or
“equivalence” in [11]), which generalizes the usual similarity between square matrices:
P and P ′ are block-similar if

P ′ ≡
(

A′

C ′

)
=

(
Q S
0 T

)(
A
C

)
Q−1

or, equivalently,

A′ = Q(A + FC)Q−1, C ′ = TCQ−1,

where Q and T are nonsingular, and F = Q−1S. Throughout the paper, the letters
BK (from Brunovsky–Kronecker) will denote the invariants, reduced canonical form,
etc., relative to this equivalence relation (see, for example, [8, pp. 96–209] or [5, p. 52]).

With this notation, the general Carlson problem for pairs of matrices can be
formulated as follows: characterization of the possible BK-invariants of the pair

P =

(
A
C

)
=


A1 A3

0 A2

C1 C3

0 C2
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when A3, C3 vary, if the pairs (or equivalently its BK-invariants) P1 = (A1

C1
) and

P2 = (A2

C2
) are fixed.

In system theory, this problem arises in a natural way, for example, when two
systems are composed in a “simple cascade” (see [8], [1]).

Baragaña and Zaballa [2] characterize these possible BK-invariants for the par-
ticular case when P2 is observable. Here, the “supplementary” (see Remark 4.7)
particular case is considered, when P2 is an endomorphism (i.e., C2 = 0). When it
has a single eigenvalue, Theorem 3.1 gives implicit and explicit characterizations of
the possible BK-indices of P , the former being in some sense analogous to the ex-
istence of Littlewood–Richardson sequences for the classical Carlson problem. The
proof of these implicit characterizations is constructive, so that some examples of
explicit solutions P are included in the last section.

Section 2 contains a geometric approach to the classical Carlson problem, which
is taken as a motivation of the techniques used in this paper. Section 3 contains the
precise definitions and statement of the main theorem (Theorem 3.1), whose proof is
delayed until section 5 (necessity) and section 6 (sufficiency), after a geometric refor-
mulation of the problem (Corollary 4.5) in section 4. Some examples are presented in
section 7.

In this paper, X will be a finite-dimensional vector space over the complex num-
bers C, and Y , W , . . . will denote vector subspaces of X. If B ⊂ X is a subset,
[B] will be the subspace spanned by the vectors in B. A basis B of X will be called
adapted to the subspaces Y , W , . . . if B ∩ Y , B ∩W , . . . are respective bases.

C
p×q means the set of complex matrices having p rows and q columns. C

p×q ×
C

p′×q′ means the set of vertical pairs of matrices, the one at the top being of C
p×q

and the one at the bottom of C
p′×q′ .

In the paper, a partition

a = (a1, a2, . . . , a�(a), 0, . . . , 0)

will be a finite nonincreasing sequence of nonnegative integers

a1 ≥ a2 ≥ · · · ≥ a�(a) > 0,

where �(a) is called its length. We note |a| = a1 + a2 + · · ·+ a�(a) (named its weight).
Its conjugate partition (see [7, p. 54]) a∗ = (a∗1, a

∗
2, . . . ) is defined by means of

a∗j = #{1 ≤ i ≤ �(a) : ai ≥ j},
where the symbol # means “cardinal.” Notice that a∗1 = �(a), �(a∗) = a1, |a∗| = |a|,
(a∗)∗ = a.

Given two partitions a and b, symbol a ≺ b means |a| = |b| and

a1 + · · · + ai ≤ b1 + · · · + bi (i ≥ 1).

The Segre characteristic relative to any square matrix eigenvalue is the partition of
the sizes of his Jordan blocks.

2. A geometric approach to the classical Carlson problem. Let us see
how the geometric tools used in this paper arise in a natural way in the classical
Carlson problem concerning square matrices. We recall the key theorem is due to
Klein [9], relating the decomposition of p-modules with the existence of so-called LR-
sequences. On the other hand, [6] proves the equivalence between the Carlson problem
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and the one of invariant factors of the product of polynomial matrices, which in turn
is related by [10] with the decomposition of p-modules. To summarize, we have the
following well known result which reduces the Carlson problem to the existence of
LR-sequences.

Theorem 2.1. Let there be three partitions

ω = (ω1, ω2, . . . ), |ω| = n,

w = (w1, w2, . . . ), |w| = d,

b = (b1, b2, . . . ), |b| = n− d.

The following conditions are equivalent:
(I) For any nilpotent matrices A1 ∈ C

d×d and A2 ∈ C
(n−d)×(n−d) having Segre

characteristic w∗ and b∗, respectively, there is a matrix Z ∈ C
d×(n−d) such that the

matrix

A =

(
A1 Z
0 A2

)
∈ C

n×n(2.1)

has Segre characteristic ω∗.
(II) There is a finite sequence of partitions (named after Littlewood–Richardson)

w0, w1, . . . , ws (s = �(b)) such that w0 = w, ws = ω, and, for all i, j ≥ 1,
(a) |wj | − |wj−1| = bj,

(b) wj+1
1 = wj

1; w
j
i ≥ wj−1

i ≥ wj
i+1,

(c)
∑

�≤i+1(w
j+1
� − wj

�) ≤
∑

�≤i(w
j
� − wj−1

� ).
From a geometric point of view, let us consider an endomorphism f : X −→ X,

and W ⊂ X an invariant subspace (i.e., f(W ) ⊂ W ). Then, in any basis B of X
adapted to W , the matrix of f has the form (2.1) above, where A1 and A2 are the
matrices of the natural endomorphisms

f̂ : W −→ W,

f̃ :
X

W
−→ X

W
,

respectively, in the bases induced by B in a natural way.
If condition (I) holds, let us consider the subspaces

W j
i = Ker f i ∩ f−j(W ) (i, j ≥ 0),

which can be organized in the following diagram:

W ⊂ f−1(W ) ⊂ f−2(W ) ⊂ · · · ⊂ f−s(W ) = X
‖ ‖ ‖ ‖ ‖

Ker f̂n ⊂ W 1
n ⊂ W 2

n ⊂ · · · ⊂ W s
n = Ker fn

∪ ∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪ ∪

Ker f̂ i ⊂ W 1
i ⊂ W 2

i ⊂ · · · ⊂ W s
n = Ker f i

∪ ∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪ ∪
Ker f̂ ⊂ W 1

1 = W 2
1 = · · · = W s

1 = Ker f

,
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where s = �(b).
Notice that W j

0 = 0 for all j ≥ 0 and

ωi = dim Ker f i − dim Ker f i−1,

wi = dim Ker f̂ i − dim Ker f̂ i−1,

bj = dim f−j(W ) − dim f−j+1(W ).

Then, it can be proved that condition (II) holds by taking

wj
i = dimW j

i − dimW j
i−1.

In fact, condition (II)(a) is trivial, and the other ones are equivalent to the injectivity
of the maps

W j
i+1

W j
i

−→ W j−1
i

W j−1
i−1

,
W j+1

i

W j
i

−→ W j
i−1

W j−1
i−1

induced by f .

3. Precise definitions and statement of the main theorem. As a natural
generalization of the Carlson problem, let us consider pairs of matrices of the form

P =

(
A
C

)
=


A1 Z
0 A2

C1 C3

0 C2

 ,

P1 ≡
(

A1

C1

)
, P2 ≡

(
A2

C2

)
,

where A1 and A2 are square matrices. One wonders about the existence of, the way
to obtain, etc., matrices Z when P1, P2, and C3 as well as the block-similarity class
of P are prescribed. Obviously, in the classical Carlson problem one assumes that
C1 = 0, C2 = 0, and C3 = 0, that is to say, P , P1, and P2 are endomorphisms.

In this paper, we consider the case when P is observable (and therefore so is P1)
with prescribed observability indices, and P2 is an endomorphism (i.e., C2 = 0; see
Remark 4.7) having only an eigenvalue λ. We recall that the observability indices of
P form the dual partition of

ri = rang


C
CA
...
CAi

− rang


C
CA
...
CAi−1


and P is observable if

rang


C
CA
...
CAn−1

 = n.

In fact, one can assume that P1 is a BK-matrix, C3 = 0, and A2 is a nilpotent
Jordan matrix. This remark and the main results in this paper are summarized in
the following theorem.
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Theorem 3.1. Let there be three partitions:

R = (R1, R2, . . . ), |R| = n,

r = (r1, r2, . . . ), |r| = d,

b = (b1, b2, . . . ), |b| = n− d.

The following conditions are equivalent:
(I) For any observable pair P1 ∈ C

d×d × C
r1×d having observability indices r∗,

any square matrix A2 ∈ C
(n−d)×(n−d) having only one eigenvalue λ, with Segre char-

acteristic b∗, and any matrix C3 ∈ C
r1×(n−d) there is a matrix Z ∈ C

d×(n−d) such
that the pair

P =

 A1 Z
0 A2

C1 C3


is observable having observability indices R∗.

(I′) Condition (I) holds in the particular case when P1 is a BK-matrix, A2 is a
nilpotent Jordan matrix, and C3 = 0.

(II) There is a finite sequence of partitions r0, r1, . . . , rs (s = �(b)) such that
r0 = r, rs = R, and for all i, j ≥ 1

(a) |rj | − |rj−1| = bj,

(b) rj1 = rj−1
1 , rj−1

i ≥ rji+1 ≥ rj−1
i+1 ,

(c)
∑

�≥i+1(r
j+1
� − rj�) ≤

∑
�≥i(r

j
� − rj−1

� ).

(II′) There is a finite sequence of partitions c0, c1, . . . , cs (s = �(b)) such that
c0 = r∗, cs = R∗, and for all ν, j, i ≥ 1

(a) |cj | − |cj−1| = bj,
(b) �(cj) = r1, c

j−1
ν ≤ cjν ≤ cj−1

ν + 1,
(c)

∑
η∈I(i+1,j+1)(c

j+1
η − cjη) ≤

∑
η∈I(i,j)(c

j
η − cj−1

η ), where I(i, j) = {η : cjη ≥ i}.
(III) (see [3]) b1 ≤ r1 = R1, (R∗)ν ≥ (r∗)ν (ν = 1, 2, . . . ), and R∗ − r∗ ≺ b∗,

where R∗ − r∗ is assumed to be reordered to become nonincreasing.
Remark 3.2. Notice that conditions (II)(a)–(II)(c) are similar to the Littlewood–

Richardson ones which appear in the classical Carlson problem (see Theorem 2.1).
In fact, (II)(a) and (II)(b) are almost the same, whereas (II)(c) is in some sense
“opposite.”

Remark 3.3. Condition (III) has been suggested by [3] by means of fully different
methods. In fact, it is an immediate consequence of (II′)(a) and (II′)(b). Likewise
(see the preceding remark) condition (III), except where b1 ≤ r1 = R1 (which holds
only if Ker f ⊂ W ), is a necessary condition in the classical Carlson problem, but in
that case it is not sufficient.

Remark 3.4. When (III) holds, explicit solutions Z can be computed by means
of (II), thus being nonequivalent for different sequences r0, r1, . . . , rs (see section 7).

Remark 3.5. Conditions (II)–(II′) can be sketched by means of the usual diagrams
representing partitions in a way similar to the Littlewood–Richardson sequences.

In order to do that, let us take cj = (rj)∗ and represent them by a diagram Dj

formed by rj1 (= r1) towers having heights cj1, c
j
2, . . . , or, equivalently, each floor being

rj1, r
j
2, . . . large. Then, Dj should be obtained by adding bj blocks to Dj−1 (condition

(II)(a) or (II′)(a)), in such a way that the rules (II)(b) and (II)(c), or equivalently,
(II′)(b) and (II′)(c), are respected.
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Condition (II)(b) says that the (i + 1)-flat can increase up to the length of the
i-one in Dj−1. That is to say, each tower can increase one block maximum (condition
(II′)(b)). As for the rule (II)(c), let us represent partition b by an analogous diagram
and label the blocks on the jth floor bj blocks. Recall that the rule (II)(b), or
equivalently, (II′)(b), means that to obtain Dj , the blocks labeled “j” should be
assigned to different towers of Dj−1. Then, condition (II)(c), or (II′)(c), means that
the number of (j + 1)-blocks installed at levels greater than (i + 1) are at most the
number of j-blocks at levels greater than i (for all i).

For instance, if b = (3, 2) and r = (4, 3, 2, 1), then the sequences

1 2
∗ 1
∗ ∗ 1
∗ ∗ ∗ 2
∗ ∗ ∗ ∗

2
1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 2
∗ ∗ ∗ ∗

are allowed, whereas

2 2
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ ∗

is not.
Proof of the equivalence (I) and (I′), and (II) and (II′). To see that (I′) implies

(I), notice that
Q1 Q12 S1

0 Q2 0

0 0 T1




A1 Z

0 A2

C1 C3


(

Q1 Q12

0 Q2

)−1

=


Q1(A1 + Q−1

1 S1C1)Q
−1
1 . . .

0 Q2A2Q
−1
2

T1C1Q
−1
1 T1(−C1Q

−1
1 Q12 + C3)Q

−1
2

 .

Hence, P1 can be reduced to a BK-matrix, A2 to a Jordan matrix, and C3 to 0
(since C1 has the maximal rank, after eliminating, if necessary, its null rows and the
corresponding ones in C3). Furthermore, one can assume λ = 0 because

P − λ

(
In
0

)
, P1 − λ

(
Id
0

)
are block-similar to P and P1, respectively.

The equivalence (II) ⇔ (II′) is a straightforward computation, taking cj = (rj)∗

(see Remark 3.5).
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The next three sections are devoted to prove that conditions (I)–(I′) are equivalent
to the (II)–(II′) ones. In fact, in section 4 we introduce a geometric version (I′′) of (I)–
(I′), and in sections 5 and 6 we prove that (II) is a necessary and sufficient condition
for (I′′), respectively.

Proof of the equivalence (II′) and (III). As it has been already remarked, (III)
follows immediately from (II′)(a)–(II′)(b) (use Remark 3.5). Conversely, if (III) holds,
the following strategy allows us to construct recurrently a sequence c0, c1, . . . , cs which
verifies condition (II′): for each j = 1, 2, . . . , let cj be a maximal (with regard to the
partial ordering ≺) partition such that

(a) |cj | − |cj−1| = bj ,
(b) �(cj) = r1, c

j−1
ν ≤ cjν ≤ cj−1

ν + 1,
(c′) cs − cj ≺ (bj)∗,

where bj = (bj+1, bj+2, . . . , bs).
Notice that the set of partitions verifying (a)–(c′) is not empty because, in gen-

eral, if (α1, α2, . . . ) ≺ (δ1, δ2, . . . , δ�), then (α1 − 1, α2 − 1, . . . , α� − 1, α�+1, . . . ) ≺
(δ1 − 1, δ2 − 1, . . . , δ� − 1), where the left member is assumed reordered to become
nonincreasing. The proposed strategy takes cj as a maximal element in this nonempty
set.

By construction, conditions (II′)(a) and (II′)(b) are verified. Finally, let us see
that if (II′)(c) does not hold, then cj−1 is not in fact maximal among the partitions
verifying (a)–(c′) in the previous step. Broadly speaking, the following lemma shows
that if the sequence c0, . . . , cj−1, cj , cj+1, . . . verifies (a)–(c′) and

cjµ = cj−1
µ , cjη = cj−1

η + 1,

cj+1
µ = cjµ + 1, cj+1

η = cjη,

then conditions (a)–(c′) are verified too if the partition cj is replaced by c̄j , which
differs from cj only in

c̄jµ = cj−1
µ + 1, c̄jη = cj−1

η

(that is to say, we have permuted the increasing order of the “towers” µ, η (see Remark
3.5)). In particular, if cj+1

µ > cj+1
η , then cj ≺ c̄j , so that cj was not in fact maximal

among the partitions verifying (a)–(c′).
Lemma 3.6. Let α, δ be partitions such that

α ≡ (α1, α2, . . . ) ≺ δ ≡ (δ1, . . . , δ�).

Assume that there is β such that

(β1, β2, . . . ) ≺ (δ1 − 1, . . . , δ� − 1),

|β| = |α| − �,

βµ = αµ, βη = αη − 1,

αν − 1 ≤ βν ≤ αν for all ν.

Then partition ᾱ defined by

ᾱν = αν if ν �= µ, η,

ᾱµ = αµ + 1, ᾱη = αη − 1

verifies ᾱ ≺ δ.
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Proof. If αη = αµ + 1, then ᾱ = α and there is nothing to prove.
If αη > αµ + 1, then ᾱ ≺ α ≺ δ.
If αη ≤ αµ, we can assume (reordering, if it is necessary) αµ−1 > αµ ≥ αη > αη+1

(or µ = 1 and α1 ≥ αη > αη+1). Then the order in α and ᾱ is the same and we have∑
ν≤µ0

ᾱν =
∑
ν≤µ0

αν if µ0 < µ or µ0 ≥ η,

and∑
ν≤µ0

ᾱν = 1 +
∑
ν≤µ0

αν ≤ 1 + min(µ0 − 1, �− 1) +
∑
ν≤µ0

βν

≤ 1 + min(µ0 − 1, �− 1) +
∑

η≤min(µ0,�)

(δν − 1) =
∑
ν≤µ0

δν if µ ≤ µ0 < η.

4. Geometric formulation. Let us consider a geometric approach, analogous
to the one in section 2 for square matrices. The study of pairs of matrices (see [5])

P =

(
A
C

)
∈ C

(n+m)×n

under the block-similarity is equivalent to the one of linear maps defined on a subspace
f : Y −→ X, Y ⊂ X (dimY = n, dimX = n + m) under the following natural
equivalence relation: f ∼ f ′ if and only if there is an automorphism ϕ of X, such that
ϕ(Y ) = Y and ϕ ◦ f = f ′ ◦ ϕ̂ (where ϕ̂ means the restriction of ϕ to the subspace Y ).

In fact, it is sufficient to consider P to be the matrix of f in any basis of X
adapted to Y . In particular, the condition of C having the maximal rank is equivalent
to X = Y + f(Y ). (This equality will hold throughout the paper.)

In these conditions, the observability indices of P (or f) can be computed as the
conjugate partition of dimY0 − dimY1,dimY1 − dimY2, . . . , where

Yi = f−i(Y ), Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Yk = Yk+1 ≡ Y∞.

In particular, P (or f) is observable if and only if Y∞ = {0}. Notice that then f
is injective.

A subspace W ⊂ Y is f -invariant (or (C,A)-invariant) if and only if f(W )∩ Y ⊂
W (see [1], [4]). Let us see that the special form of P in section 3 appears in a natural
way when invariant subspaces are considered.

Definition 4.1. Let f : Y −→ X be a linear map defined on a subspace Y ⊂ X,
and W ⊂ Y an f-invariant subspace. Then

f̂ : W −→ W + f(W ),

f̃ :
Y

W
−→ X

W + f(W )

will be the maps induced in a natural way by f .
Remark 4.2. It is clear that f̂ is a linear map defined on a subspace. Moreover, if

W is f -invariant, f̃ can also be considered to be of this kind by means of the following
identification:

Y

W
=

Y

W + (f(W ) ∩ Y )
∼= Y + f(W )

W + f(W )

⊂ Y + f(Y )

W + f(W )
=

X

W + f(W )
.
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Proposition 4.3 (see [1], [4]). Let f : Y −→ X be as above, and W ⊂ Y an

f-invariant subspace. If Wi = f̂−i(W ), then Wi = Yi ∩W .

In particular, if f is observable, then f̂ is observable too. Moreover, if their
observabiblity indices are (R1, R2, . . . )

∗ and (r1, r2, . . . )
∗, respectively, then ri ≤ Ri

for all i = 1, 2, . . . .
Let us characterize geometrically the special form of the matrices involved in this

problem.
Proposition 4.4. Let f : Y −→ X as above, and a subspace W ⊂ Y .
(1) W is f-invariant if and only if the matrix of f in any basis adapted to W ⊂

Y ⊂ Y + f(W ) ⊂ X has the form

(
A
C

)
=


A1 A3

0 A2

C1 C3

0 C2

 ,

where (A1

C1
) is the matrix of f̂ in the same basis.

(2) In the conditions of (1), the pair (A2

C2
) is the matrix of f̃ in the basis induced

in a natural way by the one considered in X.
(3) In the above conditions, if f is observable, then f̃ is an endomorphism if and

only if there is a basis of X adapted to W ⊂ Y ⊂ X such that the matrix of
f has the form  A1 A3

0 A2

C1 0

 .

Proof .
(1) It is a direct consequence of the inclusion f(W )∩Y ⊂ W which characterizes

the f -invariant subspaces.
(2) It is straightforward.

(3) Because of Remark 4.2, f̃ is an endomorphism if and only if f(Y ) ⊂ Y +f(W ).
Obviously, this relation is verified for the matrices of the form considered.
Conversely, taking anti-images in this inclusion, Y = Y1 + W . Hence, there
is a subspace V such that

Y = V ⊕W, Y1 = V ⊕W1.

The latter implies f(V ) ⊂ Y , so that in any basis adapted to W,V ⊂ Y ⊂ X
the matrix of f has the desired form.

Therefore, conditions (I)–(I′) in Theorem 3.1 can be translated in the following
geometric way, which will be used in the proof of the main theorem.

Corollary 4.5. Within the context of Theorem 3.1, conditions (I)–(I′) are
equivalent to the following condition:

(I′′) There is a linear map defined on a subspace f : Y −→ X, Y ⊂ X, and a
f-invariant subspace W ⊂ Y such that

(1) f is observable, having observability indices R∗;
(2) f̂ is observable, having observability indices r∗;
(3) f̃ is a nilpotent endomorphism, having Segre characteristic b∗.
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Remark 4.6. From the proof of (3) in Proposition 4.4, it follows that if f is

observable, then f̃ is an endomorphism if and only if

dimY − dimW = dimY1 − dimW1.

Then a necessary condition for (I′′) above is R1 = r1.

Remark 4.7. The assumption that f̃ is an endomorphism is not a significant
restriction. In general, if one considers the decreasing stationary chain of subspaces

Y = Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y h = Y h+1 ≡ Y ∞ (⊃ W ),

Y j = f−1(Y j−1) + W,

then for the restriction f∞ : Y ∞ −→ X one has that f̃∞ is an endomorphism, whereas
the map induced by f in Y/Y ∞ is observable.

5. Proof of the necessity. Now let f : Y −→ X and W ⊂ X be as in (I′′) of
Corollary 4.5. Following the pattern in section 2 in order to prove that condition (II) in
Theorem 3.1 is verified, a double family of subspaces will be introduced: W j

i = Yi∩W j ,

where W j is defined in such a way that Ker f̃ j = W j/W , as will be seen below.
Notice that, as it has been recalled in section 4 (see [5]),

Ri = dimYi−1 − dimYi,

ri = dimWi−1 − dimWi,

where Yi = f−i(Y ), Wi = f̂−i(W ) = f−i(W ) ∩W = Yi ∩W .
Definition 5.1. Let f : Y −→ X and W ⊂ Y be as in (I′′) of Corollary 4.5.

Then

W 0 = W,

W j = f−1(W j−1 + f(W )) = f−1(W j−1) + W, j ≥ 1.

Proposition 5.2. With the notation in the above definition,

(1) Ker f̃ j = W j

W for all j ≥ 1;

(2) W = W 0 ⊂ W 1 ⊂ · · · ⊂ W �(b) = W �(b)+1 = · · · = Y , bj = dimW j −
dimW j−1 for all j ≥ 1;

(3) the subspaces W j are f-invariant. In fact, they verify f(W j) ∩ Y ⊂ W j−1

for all j ≥ 1.
Proof. (1) We proceed by induction, using the identification in Remark 4.2. It is

obvious for j = 0. Assume that

Ker f̃ j =
W j

W
∼= W j + f(W )

W + f(W )
⊂ X

W + f(W )
.

Then

Ker f̃ j+1 = f̃−1(Ker f̃ j)

=
f−1(W j + f(W )) + W

W
=

W j+1

W
.

(2) It follows immediately from (1).
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(3) The proof also follows by induction. For j = 1, we have

f(W 1) ∩ Y = f(f−1(W ) + W ) ∩ Y

⊂ (W + f(W )) ∩ Y ⊂ W.

If the property is verified by W j , then

f(W j+1) ∩ Y = f(f−1(W j) + W ) ∩ Y

⊂ (W j + f(W )) ∩ Y

⊂ (W j + f(W j)) ∩ Y ⊂ W j + W j−1 = W j .

For each f -invariant subspace W j , we consider the natural finite chain (W j
i ).

Definition 5.3. In the conditions of Definition 5.1, we define for all j ≥ 0

W j
i = f−i(W j) ∩W j = Yi ∩W j , i ≥ 0,

rji = dimW j
i−1 − dimW j

i , i ≥ 1.

Remark 5.4.

(1) It will be useful to bear in mind the following finite diagram:

· · · ⊂ f(W1)⊂ W ⊂ W 1 ⊂ · · · ⊂W j−1 ⊂ W j ⊂ · · · ⊂W �(b) = Y

∪ ∪ ∪ ∪ ∪ ∪ ∪
· · · ⊂ f(W2)⊂ W1 ⊂ W 1

1 ⊂ · · · ⊂W j−1
1 ⊂ W j

1 ⊂ · · · ⊂W
�(b)
1 = Y1

∪ ∪ ∪ ∪ ∪ ∪ ∪
...

...
...

...
...

...
...

∪ ∪ ∪ ∪ ∪ ∪
· · · ⊂Wi−1 ⊂W 1

i−1 ⊂ · · · ⊂W j−1
i−1 ⊂W j

i−1 ⊂ · · · ⊂W
�(b)
i−1 =Yi−1

∪ ∪ ∪ ∪ ∪ ∪
· · · ⊂ Wi ⊂ W 1

i ⊂ · · · ⊂W j−1
i ⊂ W j

i ⊂ · · · ⊂W
�(b)
i = Yi

∪ ∪ ∪ ∪ ∪ ∪
...

...
...

...
...

...

.

(2) Notice that

Y

W
∼= ⊕

i≥0
1≤j≤�(b)

W j
i

W j−1
i + W j

i+1

,

dim
W j

i

W j−1
i + W j

i+1

= dimW j
i − dimW j−1

i − dimW j
i+1 + dimW j

i+1 = rji+1 − rj−1
i+1 .

These facts will guide the construction in the next section.
From the definitions and (3) of Proposition 5.2, it follows that f(W j

i ) ⊂ W j−1
i−1

for all i, j ≥ 1. Some basic properties of these maps are summarized in the following
proposition.

Proposition 5.5. In the conditions of the above definition,
(1) f−1(W j−1

i−1 ) = W j
i ;

(2) the induced maps
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(i)
W j

i

W j
i+1

−→ W j−1
i−1

W j−1
i

,

(ii)
W j+1

i

W j
i

−→ W j
i−1

W j−1
i−1

are injective for all i, j ≥ 1.
Proof.
(1) f−1(W j−1

i−1 ) = f−1(Yi−1∩W j−1) = Yi∩f−1(W j−1) = Yi∩[f−1(W j−1)+W ] =

Yi ∩W j = W j
i .

(2) It is a direct consequence of (1).
Finally, let us use the above construction to prove that condition (I′′) of Corollary

4.5 implies (II) of Theorem 3.1. Let there be (rj)∗, 0 ≤ j ≤ �(b), the observability
indices of the restriction of f to each subspace W j , that is to say

rj = (rj1, r
j
2, . . . )

(see Definition 5.3). Notice that this restriction is observable (see Proposition 4.3 and
(3) of Proposition 5.2); hence |rj | = dimW j .

Let us see that, in fact, these partitions verify the properties in (II) of Theorem
3.1:

(a) Obviously r0 = r, r�(b) = R. Moreover,

|rj | − |rj−1| = dimW j − dimW j−1

= dim Ker f̃ j − dim Ker f̃ j−1 = bj

for all 1 ≤ j ≤ �(b).
(b) From Proposition 4.3, rj−1

i ≤ rji for all i, j ≥ 1. The equality holds for i = 1,
according to Remark 4.6.
The inequality rji ≤ rj−1

i−1 follows from the injectivity of (2)(i) in Proposition
5.5.

(c) Finally, condition (c) is a consequence of the injectivity of (2)(ii) in Proposi-
tion 5.5.

6. Proof of the sufficiency. Let partitions R, r, b and r1, r2, . . . , rs be given,
which verify (a)–(c) in (II) of Theorem 3.1. f : Y −→ X, W ⊂ Y will be constructed
in such a way that conditions (I′′)(1), (I′′)(2), and (I′′)(3) in Corollary 4.5 are verified.

Let W ⊂ Y ⊂ X be vector spaces having dimension |r|, |R|, and |R| + R1,

respectively. Let f̂ : W −→ X be an observable linear map having observability
indices r∗, so that condition (I′′)(2) in Corollary 4.5 is verified. Also, a BK-basis of
W is formed by r1 − r2 BK-chains having length 1, r2 − r3 BK-chains having length
2, etc. Let

B0 = ∪
1≤i≤�(r)

B0
i ;

B0
i = {e0

i,k; 1 ≤ k ≤ ri − ri+1}
be a set of generators of these BK-chains. Hence

Wi = [B0
i+1; B0

i+2, f(B0
i+2); B0

i+3, f(B0
i+3), f

2(B0
i+3); . . . ]

for all 1 ≤ i ≤ �(r).

Now, f̂ must be extended to f : Y −→ X verifying (I′′)(1) and (I′′)(3) in Corollary
4.5. In order to achieve that, we consider any supplementary subspace W of W in Y ,



270 ALBERT COMPTA AND JOSEP FERRER

and any basis B of it. Taking into account Remark 5.4, W should be split into direct

summands V
j

i having a dimension

dji+1 = rji+1 − rj−1
i+1 (i ≥ 0, 1 ≤ j ≤ �(b)),

respectively, and then f will be defined on each of these subspaces V
j

i . First, B is
distributed (in any way) into subsets having cardinal dji+1:

B = ∪
i≥0

1≤j≤�(b)

Bj
i+1,

Bj
i+1 = {eji+1,k; 1 ≤ k ≤ dji+1}.

(Notice that Bj
i+1 = ∅ if dji+1 = 0; in particular, Bj

1 = ∅, and Bj
i+1 = ∅ if i ≥ �(rj).)

Second, V
j

i = [Bj
i+1] (i ≥ 0, 1 ≤ j ≤ �(b)), so that

Y = W ⊕W = W ⊕
 ⊕

i≥0
1≤j≤�(b)

V
j

i

 ,

dimV
j

i = dji+1 = rji+1 − rj−1
i+1 .

(Notice that V
j

0 = {0}, and V
j

i = {0} if i ≥ �(rj).)
Considering the diagram

· · · · · ·
⊕ ⊕

· · · ⊕ V
j−1

i ⊕ V
j

i ⊕ · · ·
⊕ ⊕

· · · ⊕ V
j−1

i+1 ⊕ V
j

i+1 ⊕ · · ·
⊕ ⊕
· · · · · ·

and defining, for i ≥ 0, 0 ≤ j ≤ �(b),

V j
i = Wi ⊕

(
⊕
�≥i

1≤h≤j

V
h

�

)
,

the following diagram is obtained:

· · · ⊂ W ⊂ V 1 ⊂ · · · ⊂ V �(b) = Y
∪ ∪ ∪ ∪

· · · ⊂ W1 ⊂ V 1
1 ⊂ · · · ⊂ V

�(b)
1 ≡ V1

∪ ∪ ∪ ∪
· · · · · · · · · · · ·

(where V j ≡ V j
0 and Vi ≡ V

�(b)
i ), analogous to the one in Remark 5.4. Now, f will

be defined on each V
j

i in such a way that the corresponding subspaces W j
i (according

to Definition 5.3) are just V j
i . Then, as desired, the observability indices of f will be

R∗ and the Segre characteristic of f̃ will be b∗, bj = |rj | − |rj−1|, so that the proof of
the sufficiency will be finished.

To define f , in fact, two extensions, f∗, f∗ : Y −→ X of f̂ , will be defined and
then f = 1

2 (f∗ + f∗).
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(1) For each i ≥ 1, f∗ on V
j

i will be defined by increasing recurrence over 1 ≤
j ≤ �(b).
For j = 1,

f∗(e1
i+1,k) = e0

i,k ∈ B0
i ⊂ Wi−1.

It is possible because the hypothesis (II)(b) implies

dimV
1

i = r1
i+1 − ri+1 ≤ ri − ri+1 = #B0

i .

For j ≥ 2,

f∗(e
j
i+1,k) = ej−1

i,k ∈ Bj−1
i ⊂ V

j−1

i−1

if 1 ≤ k ≤ min{bji+1, b
j−1
i }, and taking images

f∗(e
j
i+1,k) ∈ Bj−2

i ∪Bj−3
i ∪ · · · ∪B0

i

⊂ V
j−2

i−1 ⊕ · · · ⊕ V
1

i−1 ⊕Wi−1

in such a way that f∗ is injective if dj−1
i < k ≤ dji+1.

It is possible because, as above,

dim(V
1

i ⊕ · · · ⊕ V
j

i ) = (r1
i+1 − ri+1) + (r2

i+1 − r1
i+1) + · · · + (rji+1 − rj−1

i+1 )

= −ri+1 + rji+1 ≤ −ri+1 + rj−1
i

= (ri − ri+1) + (r1
i − ri) + · · · + (rj−1

i − rj−2
i )

= #B0
i + #B1

i + · · · + #Bj−2
i + #Bj−1

i .

(2) Now

f∗(e1
i+1,k) = f∗(e1

i+1,k) = e0
i,k.

For each j ≥ 2, f∗ is defined on V
j

i by decreasing recurrence over 1 ≤ i <
�(rj).
For 1 ≤ k ≤ min{dji+1, d

j−1
i },

f∗(eji+1, k) = f∗(e
j
i+1,k) = ej−1

i,k

and for dj−1
i < k ≤ di+1, taking images

f∗(eji+1,k) ∈ Bj−1
i+1 ∪Bj−1

i+2 ∪ · · · ∪Bj−1
�(rj−1)

⊂ V
j−1

i ⊕ V
j−1

i+1 ⊕ · · · ⊕ V
j−1

�(rj−1)−1

in such a way that f∗ is injective.
This is possible because of hypothesis (II)(c):

dim

(
⊕
�≥i

V
j

�

)
=
∑
�>i

(rj� − rj−1
� ) ≤

∑
�>i−1

(rj−1
� − rj−2

� ) = dim

(
⊕

�≥i−1
V

j−1

�

)
.

(3) Finally, f = 1
2 (f∗ + f∗). Obviously, it is an extension of f̂ .
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The proof of Theorem 3.1 will be finished if V j
i = W j

i , or, equivalently, Yi = Vi,
W j = V j .

Obviously, V0 = Y . Hence, it is sufficient to prove the following lemma.
Lemma 6.1. With the above notation,
(1) f−1(V j−1) + W = V j for all j ≥ 1;
(2) f−1(Vi−1) = Vi for all i ≥ 1.
Proof. Previously notice that if a vector ej−1

i,k ∈ B belongs to f∗(B) and also to
f∗(B), then either

ej−1
i,k = f∗(e

j
i+1,k) = f∗(eji+1,k) = f(eji+1,k)

or there are some unique h > 0 and � ≥ 0 such that

ej−1
i,k ∈ f∗(B

j+h
i+1 ) ∩ f∗(Bj

i−�).

(1) By construction

f(V j) ⊂ V j−1 + f(W ).

Hence

V j ⊂ f−1(V j−1) + W.

For the opposite inclusion, assume x �∈ V j and let J be the maximum index J > j such

that x has some nonzero component in V
J ≡ ⊕i V

J

i . Then f∗(x) should have some

nonzero component in V
J−1 ≡ ⊕i V

J−1

i . According to the previous note, and bearing
in mind the definition of J , this component cannot be canceled by any component

of f∗(x), so that f(x) has in fact some nonzero component in V
J−1

. Therefore,
f(x) �∈ V j−1 + f(W ).

(2) By construction, f(Vi) ⊂ Vi−1. Hence, Vi ⊂ f−1(Vi−1). For the oppo-
site inclusion, we proceed by increasing recurrence over i, in an analogous way to
(1).

7. Construction of solutions. When condition (III) of Theorem 3.1 holds,
explicit solutions Z verifying (I)–(I′) can be obtained by means of the construction in
section 6, starting on any sequence of partitions verifying (II). Two of such solutions
Z, Z ′ will be called equivalent if the associated matrices can be transformed one into
the other by means of a change of basis preserving their block structure, that is to
say, if 

Q1 Q12 S1

0 Q2 0

0 0 T1




A1 Z

0 A2

C1 C3


(

Q1 Q12

0 Q2

)−1

=


A1 Z′

0 A2

C1 C3

,

where Q1, Q2, and T1 are nonsingular. Clearly, different sequences of partitions as in
(II) lead to nonequivalent solutions. Example 7.3 shows that nonequivalent solutions
are possible even for the same sequence of partitions.

Example 7.1. Clearly, the partitions

R = (2, 2, 1), r = (2), b = (1, 1, 1)
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verify condition (III) of Theorem 3.1. Two sequences of partitions verifying (II) are
possible:

(2, 1), (2, 2), (2, 2, 1);

(2, 1), (2, 1, 1), (2, 2, 1).

According to the construction in section 6, they lead, respectively, to the following
nonequivalent solutions:

0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

,

0 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

.

Example 7.2. In general, condition (III) of Theorem 3.1 holds if b = (1, 1, . . . , 1).
It is not difficult to see that a sequence of partitions rj , 0 ≤ j ≤ �(b), verifying (II)
can be constructed by recurrence as follows:

rji(j) = rj−1
i(j) + 1,

rji = rj−1
i if i �= i(j),

where

i(j) = max{i : rj−1
i < Ri, rj−1

i < rj−1
i−1 }.

Then, as in the previous example, explicit solutions can be obtained by means of the
construction in section 6.

Example 7.3. Let us consider the partitions

R = (2, 2, 1, 1), r = (2), b = (1, 1, 1, 1).

It is a straightforward computation to see that the solutions

0 0 0 λ 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0

are nonequivalent for different values of λ ∈ C, although all of them correspond to
the sequence of partitions

(2, 1), (2, 2), (2, 2, 1), (2, 2, 1, 1).

In a similar way to the “condensation lemma” for the classical Carlson problem,
let us see that many zero entries can be prescribed in the Z solutions.

Lemma 7.4. Let R, r, b be three partitions verifying the conditions in Theorem
3.1, and consider the particular case in (I′). Then



274 ALBERT COMPTA AND JOSEP FERRER

(1) for any Z solution, there is an equivalent Z ′ solution having nonzero entries
only in the r1 rows corresponding to the null ones in A1;

(2) moreover, Z ′ can be chosen in such a way that its entries in the b1 columns
corresponding to the null ones in A2 are also 0, except one of them in each
column, which can be valued 1 and are placed in different rows.

Proof. (1) It is immediate that each vector in the basis of Y , not in W , can be
changed by adding a vector in W in such a way that its image by f would be a linear
combination of the generators of the BK-chains of W . Explicitly, assume P1 = (NE )
is a BK-matrix and A2 = J is a nilpotent Jordan matrix. Notice that

I Q12 0

0 I 0

0 0 I




N Z

0 J

E 0


(

I Q12

0 I

)−1

=


0 Z −NQ12 + Q12J

0 J

E EQ12

.

Let us choose Q12 in such a way that EQ12 = 0 and Z ′ = Z −NQ12 + Q12J verifies
the desired property. For the first, it is sufficient to make null the rows in Q12

corresponding to the lowest one in each block of N . The remaining rows of Q12 can
be computed easily by recurrence in order to cancel all the rows in Z except those
corresponding to null ones in N . For example, let

N =



0 0

1 0

0 0 0

1 0 0

0 1 0


, J =



0

0 0 0

1 0 0

0 1 0


, Q12 =


a1 a2 a3 a4

0 0 0 0
c1 c2 c3 c4
d1 d2 d3 d4

0 0 0 0

.

Then EQ12 = 0,

−NQ12 + Q12J =


0 a3 a4 0

−a1 −a2 −a3 −a4

0 c3 c4 0
−c1 −c1 + d3 −c3 + d4 −c4
−d1 −d2 −d3 −d4

 .

It is clear that Q12 can be chosen in such a way that Z − NQ12 + Q12J has zero
entries in the second, fourth, and fifth rows.

(2) From Proposition 5.5, it follows immediately that, for all i ≥ 1, the maps
induced by f

W 1
i

W 1
i+1 + Wi

−→ Wi−1

Wi + f(Wi)

are injective. Notice that the vectors in W 1/W are the eigenvectors of f̃ . Thus,

because of the above injectivities, the images of a basis of f̃ -eigenvectors (in fact, of
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a set of representative vectors in W 1) can be extended to a family of BK-generators

of f̂ .
Solutions having a minimal number of nonzero entries arise when the subspace

W is “marked” [8], [4], that is to say, when there is some BK-basis of f̂ extendible
to a BK-basis of f .

Corollary 7.5. Let R, r, b be three partitions verifying the conditions in The-
orem 3.1 and Corollary 4.5. Then the following assertions are equivalent:

(1) In terms of condition (I′), there is some solution Z whose only nonzero entries
are those referred to in part (2) of Lemma 7.4, that is to say, b1 1-valued
entries placed in (different) columns corresponding to the null ones in J , and
in (different) rows corresponding to the null ones in N .

(2) There is an f-marked subspace W verifying (I′′) of Corollary 4.5.
(3) With the notation in (III): R∗ − r∗ = b∗.
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