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POLYNOMIAL INSTANCES OF THE POSITIVE SEMIDEFINITE 
AND EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS* 

MONIQUE LAURENTI 

Abstract. Given an undirected graph G = (V, E) with node set V = [1, n], a subset S ~ V, 
and a rational vector a E qsuE, the positive semidefinite matrix completion problem consists of 
determining whether there exists a real symmetric n x n positive semidefinite matrix X = (Xij) 

satisfying Xii = ai (i E S) and Xij = aij ('ij E E). Similarly, the Euclidean distance matrix 
completion problem asks for the existence of a Euclidean distance matrix completing a partially 
defined given matrix. It is not known whether these problems belong to NP. We show here that 
they can be solved in polynomial time when restricted to the graphs having a fixed minimum fill
in, the minimum fill-in of graph G being the minimum number of edges needed to be added to G 
in order to obtain a chordal graph. A simple combinatorial algorithm permits us to construct a 
completion in polynomial time in the chordal case. We also show that the completion problem is 
polynomially solvable for a class of graphs including wheels of fixed length (assuming all diagonal 
entries are specified). The running tinw of our algorithms is polynomially bounded in terms of n 
and the bit.length of the input a. We also observe that the matrix completion problem can be solved 
in polynomial time in the real number model for the class of graphs containing no homeomorph 
of K4. 
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1. Introduction. 

1.1. The matrix completion problem. This paper is concerned with the 
completion problem for positive semidefinite and Euclidean distance matrices. The 
positive sem'idefinite matri.rc completion problem (P) is defined as follows: 

C.iven a graph G = (V, E), a sitbset S ~ V, and a rational vector a E qsuE, 
determine whether there exists a real matrix X = (xiJ kJEV satisfying 

(1.1) X C: 0 and Xii= ai (i ES), Xij = ai.j (ij EE). 

(The notation X C: 0 means that X is a symmetric positive semidefinite matrix or, for 
short, a psd matrix.) In other words, problem (P) asks whether a partially specified 
matrix can be completed to a psd matrix, the terminology of graphs being used as 
a convenient tool for encoding the positions of the specified entries. When problem 
(P) has a positive answer, one says that a is completable to a psd matrix; a matrix X 
satisfying (1.1) is called a psd completion of a and a positive definde (pd) completion 
when X is positive definite. We let (Ps) denote problem (P) when S = V, i.e., when 
all diagonal entries are specified. If one looks for a pd completion, then one can 
assume without loss of generality that all diagonal entries are specified ( cf. Lemma 
2.5); this is, however, not obviously so if one looks for a psd completion (although this 
can be shown to be true when restricting the problem to the class of chordal graphs; 
cf. the proof of Theorem 3.5). 
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A matrix Y = (Yii )?,1= 1 is called a Euclidean distance matrix (a distance matrix, 
for short) if there exist vectors u1 , ... , Un E Rk (for some k 2:: 1) such that 

(1.2) YiJ = llui - Uj 11 2 for i, j = 1, ... , n. 

(Here, llull denotes the Euclideru1 norm of vector u E Rk .) A set of vectors Ui satisfying 
(1.2) is called a realization of Y. Note that all diagonal entries of a distru1ce matrix 
are equal to zero. The Euclidean distance matrix completion problem (D) is defined 
as follows: 

Gi1Jen a graph G = (V, E) and a rat'ional vector d E QE, determine whether there 
exists a real matrix Y = (Y·ij )i.JEV satisfying 

(1.3) Y is a distance matrix and YiJ = dij(ij EE). 

Hence problem (D) asks whether a partially specified matrix can be completed to a 
distance matrix. 

As will be recalled in section 2.3, psd matrices and distance matrices are closely 
related 8Jld, thus, their associated completion problems can often be treated in an 
analogous manner. These matrix completion problems have many applications, e.g., to 
multidimensional scaling problems in statistics ( cf. [29]), to the molecule conformation 
problem in chemistry (cf. [11], [18]), and to moment problems in analysis (cf. [5]). 

1.2. An excursion to semidefinite programming. The psd matrix com
pletion problem is obviously an instance of the general semidefinite programming 
feasibility problem (F): 

Gi'ven integral n x n symmetric matrices Q0 , Q1 , ... , Qm, determine whether there 
exist real numbers z1, ... , Zm sat'isfying 

(1.4) 

The complexity status of problem (F) is a fundamental open question in the 
theory of semidefinite progr8Jllming; this is true for both the Turing machine model 
and the real number model, the two most popular models of computation used in 
complexity theory. In particular, it is not known whether there exists an algorithm 
solving (F) whose running time is polynomial in the size L of the data, that is, the 
total space needed to store the entries of the matrices Q0 , ... , Qm. 

The Turing machine model (also called rational number model, or bit model; cf. 
[13]) works on rational numbers and, more precisely, on their binary representations; 
in particular, the running time of an elementary operation ( +, - , x, -;.- ) depends on 
the length of the binary representations of the rational numbers involved. Hence, the 
size L of the data of problem (F) in this model can be defined as mn2 L0 , where Lo 
is the maximum number of bits needed to encode an entry of a matrix Qi. On the 
other hand, the real number model (introduced in [10]) works with real numbers and 
it assumes that exact real arithmetic can be performed; in particular, an elementary 
operation ( +, -, x, -7-) between any two real numbers takes unit time. Hence, the size 
L of the data of (F) in this model is equal to mn2 . 

Semidefinite programming (SDP) deals with the decision problem (F) and its 
optimization version: 

(1.5) 
max 
subject to 

cI'z 

Qo + z1Q1 + · · · + ZmQm t: 0, 
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where c E qm. SDP can be seen as a generalization of linear programming (LP), 
obtained by replacing the nonnegativity constraints of the vector variable in LP by 
the semidefiniteness of the matrix variable in SDP. Information about SDP can be 
found in the handbook [42]; cf. also the survey [40] and [3], [17] with an emphasis on 
applications to discrete optimization. 

A standard result in LP is that every feasible linear system Ax :S b with rational 
coefficients has a solution whose size is polynomially bounded in terms of the size 
of A and b (cf. [38], Corollary 3.2b). This implies that the problem of testing the 
feasibility of an LP program belongs to NP in the bit model. (This fact is obvious 
for the real number model.) Moreover, any LP optimization problem can be solved in 
polynomial time in the bit model using the ellipsoid algorithm of Khachiyan [2:3] or 
the interior-point method of Karmarkar [22]; it is an open question whether LP can 
be solved in polynomial time in the real number model (cf. [43, p. 60]). 

The feasibility problem (F) belongs to NP in the real number model (since one can 
test in polynomial time whether a matrix is psd, for instance, using Gaussian elimina
tion; in fact, for a rational matrix the running time is polynomial in its bitlength ( cf. 
[16, p. 295])). However, it is not known whether problem (F) belongs to NP in the 
bit model. Indeed, in contrast with LP, it is not true that if a solution exists then one 
exists which is rational and has a polynomially bounded size. Consider, for instance, 
the following matrix: 

(1.6) (
2x 2 0 0) 
2 x 0 0 

x := 0 0 2 x . 

0 0 a: 1 

Then, x = v'2 is the unique real for which X t O; hence, this is an instance where 
there is a real solution but no rational solution. Consider now the following matrix 
(taken from [:35]): 

X= 

X1 - 2 0 0 

0 
0 

0 
() 

0 0 
0 0 

0 0 
0 0 

0 
0 
0 

0 
0 
0 

1 x.; 
X.i. Xii·! 

() 

0 
0 
0 

0 
0 
0 

0 
0 

0 
0 
0 

0 
0 

1 Xn-1 

a:n-1 Xn 

Then, X t 0 if and only if x 1 ;:::: 2 and :r:.i+l ;:::: x; for i = 1, ... , n - 1; hence, 
Xn ;:::: 22 "-1 and thus any rational solution has exponential bitlength. More examples 
of "ill-conditioned" semidefinite problems can be found in [35]. 

However, Ramana [35] has developed an exact duality theory for SDP which 
enables him to show the following results: Problem (F) belongs to NP n co-NP in the 
real number model. In the bit model, (F) belongs to NP if and only if it belongs to 
co-NP; hence, (F) is not NP-complete nor co-NP complete unless NP =co-NP. 

Algorithms have been found that permit us to solve the optimization problem 
(1.5) approximatively in polynomial time; they are based on the ellipsoid method (cf. 
[16]) and interior-point methods (cf. [32], [3]). 
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More precisely, set K := {z E Rm I Qo + I:;':1 ZiQi !'.:: O} and, given E > 0, set 
S(K, E) := {y I 3z E K with llz - vii < E} ("the points that are in the E-neighborhood 
of K") and S(K,-E) :=Rm\ S(Rm \ K,E) ("the points that are at distance at least 
E from the border of K" ). Let L denote the maximum bit size of the entries of the 
matrices Q0 , ... , Qm. Assume that we know a constant R > 0 such that either K = 0 
or 3 z E K with llzll ::::; R. Then, the ellipsoid based algorithm, given rational E > 0, 
either finds y E S(K, c) for which er z :::; cTy + E for all z E S(K, -E), or asserts that 
S(K, -E) = 0. Its running time is polynomial inn, m, L, and log E and this algorithm 
is polynomial in the bit model. 

Assume that we know a constant R > 0 such that llzll S R for all z E K and 
a point z* E K for which Qo + I:;': 1 z;Qi >- 0 (z* is "strictly feasible"). There 
is an interior-point algorithm which finds y E K strictly feasible such that cT y :?: 
maxzeK cT z - c in time polynomial in n, m, L, log€, log R, and in the bitlength of z*. 
Note, however, that no polynomial bound has been established for the bitlengths of 
the intermediate numbers occurring in the algorithm. 

Khachiyan and Porkolab have shown that problem (F) and its analogue in rational 
numbers can be solved in polynomial time in the bit model for a fixed number m of 
variables. 

THEOREM 1.1. 
(i) [33] Problem (F) can be solved in polynomial time for any fixed m. 

(ii) [24] The following problem can be solved in polynomial time for any fixed m: 
Given n x n integral symmetric matrices Q0 , Qi, ... , Qm, find rational num
bers z1, ... , Zm satisfying (1.4) or determine that no such numbers exist. D 

The result from Theorem 1.1 (ii) extends to the context of semidefinite program
ming the result of Lenstra [30] on the polynomial solvability of integer LP in fixed 
dimension. 

1.3. Back to the matrix completion problem. Since the matrix completion 
problem is a special instance of SDP, it can be solved approximatively in polyno
mial time; specific interior-point algorithms for finding approximate psd and distance 
matrix completions have been developed, e.g., in [20], [11], [2], [31]. However, such 
algorithms are not guaranteed to find exact completions in polynomial time. This 
motivates our study in this paper of some classes of matrix completion problems that 
can be solved exactly in polynomial time. 

As mentioned earlier, one of the difficulties in the complexity analysis of SDP 
arises from the fact that a rational SDP problem might have no rational solution. 
(Recall the example from (1.6).) This raises the following question in the context of 
matrix completion: If a rational partial matrix has a psd completion, does a rational 
completion always exist? 

We do not know of a counterexample to this statement. On the other hand, 
we will show that the answer is positive, e.g., when the graph of specified entries is 
chordal or has minimum fill-in 1 (cf. Lemma 4.2). (Note that the answer is obviously 
positive if a pd completion exists.) 

Motivated by the above discussion, let us define for each of the problems (P) and 
(D) its rational analogue (PQ) and (DCl). Problem (PCl) is defined as follows: 

Given a graph G = (V, E), a subset S ~ V, and a rational vector a E Q8uE, find 
a rational matrix X satisfying (1.1) or determine that no such matrix exists. 

When S = V (i.e., all diagonal entries are specified), we denote the problem as 
(P~). Problem (DQ) is defined as follows: 
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Given a graph G = (V, E) and a rational vector d E QE, find a rational matrix 
Y satisfying (1.3) or determine that no such matrix exists. 

The complexity of the problems (P), (D), (PQ), and (DQ) is not known; in par
ticular, it is not known whether they belong to NP in the bit model (they do trivially 
in the real number model). In this paper, we present some instances of graphs for 
which the completion problems can be solved in polynomial time. All our complexity 
results apply for the bit model (unless otherwise specified, as in section 5.3). 

Recall that a graph is said to be chordal if it does not contain a circuit of length 
~ 4 as an induced subgraph. Then, the m·inimum fill-in of graph G is defined as 
the minimum number of edges needed to be added to G in order to obtain a chordal 
graph. Note that computing the minimum fill-in of a graph is an NP-hard problem 
[44]. The following is the main result of sections 3 and 4. 

THEOREM 1.2. For any integer m;:::: 0, problems (P), (PQ), (D), and (DQ) can 
be solved ·in polynomial time (in the bit model) when restricted to the class of graphs 
whose minimum fill-in is equal tom. 

The essential ingredients in the proof of Theorem 1.2 are the subcase m = 0 
(chordal case), Theorem 1.1, and the link (exposed in section 2.3) between psd ma
trices and distance matrices. In the chordal case, a simple combinatorial algorithm 
permits to solve the completion problem in polynomial time. 

The psd matrix completion problem for chordal graphs has been extensively stud
ied in the literature (cf. the survey of Johnson [19] for detailed references). In some 
sense, this problem has been solved by Grone et al. [15] who, building upon a result of 
Dym and Gohberg [12], have characterized when a vector a indexed by the nodes and 
edges of a chordal graph admits a psd completion; cf. Theorem 3.1. From this follows 
the polynomial time solvability of problem (P s) for chordal graphs. In fact, the result 
from Theorem 3.1 is proved in [15] in a constructive manner and, thus, yields an 
algorithm permitting to solve problem (P~) for chordal graphs. This algorithm has 
a polynomial running time in the real number model; however, it has to be modified 
in order to achieve a polynomial running time in the bit model. 

To summarize, the result from Theorem 1.2 also holds in the real number model 
for chordal graphs (m = O); it would hold for all graphs having fixed minimum fill-in 
m ~ 1 if the result from Theorem 1.1 would remain valid in the real number model.1 

We present in section 5.1 another class of graphs for which the matrix completion 
problem (P s) can be solved in polynomial time (in the bit model). This class contains 
(generalized) circuits and wheels having a fixed length (and fatness}; these graphs arise 
naturally when considering the polar approach to the psd matrix completion problem. 
Then, section 5.2 contains a brief description of this polar approach, together with 
some open questions and remarks. In the final section 5.3, we consider the matrix 
completion problem for the class of graphs containing no homeomorph of K 4 • (It 
contains circuits.) Then a condition characterizing existence of a psd or distance 
matrix completion exists which permits us to obtain a simple combinatorial algorithm 
solving the existence and construction problems in polynomial time in the real number 
model. 

2. Preliminaries. We recall here some basic facts about Schur complements 
and Euclidean distance matrices that will be needed in the paper, and we make a few 
observations about psd completions. 

1 L. Porkolab [34] claims to have a proof of this fact. 
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2.1. Schur complements. For a symmetric matrix M, set In(M) := (p,q,r), 
where p (resp., q, r) denotes the number of positive (resp., negative, zero) eigenvalues 
of M. When M :>:::: 0, a maximal nonsingular principal submatrix of Mis a nonsingular 
principal submatrix of M of largest possible order, thus equal to the rank of M. 

LEMMA 2.1. Let Ji,f = ({ir ~) be a symmetric matrix, where A is nonsingular. 
Then, 

In(M) =In( A)+ In(C - BT A-1 B); 

the matrix C - BT A-1 B is known as the Schur complement of A in M. In particular, 
Mt 0 if and only ·if At 0 and C - BT A- 1 B t 0. Moreover, if M :>:::: 0 and if A is 
a maximal nonsing'ular principal submatrix of M, then C =BT A- 1 B. D 

As a direct application, we have the following results which will be used at several 
occasions in the paper. 

LEMMA 2.2. Let X be a symmetric matrix ha·uing the block decomposition 

(2.1) 

£ n 

£ (T RT 
X= n R A 

m Z 5T 

m 

zT) 
s ' 
D 

where T, R, Z, A, S, D are rational matrices of s1i-itable orders; all entries of X 
being spec·ified except those of Z that have to be determined in order to obtain X :>:::: 0. 
Assume that 

( T RT) , (A S) X1 := R A t 0, X2 := ST D t 0. 

In the case when n 2:: 1 and A # 0, let Ao be a maximal nonsingular principal 
submatrix of A, and let 

denote the corresponding block decompositions of A and X. Then, X t 0 if we set 

(2.2) 

when n 2:: 1 and A# 0, and Z := 0 otherurise. 
Proof The result follows using Lemma 2.1 after noting that the Schur complement 

of Ao in X is given by 

R[ 
c sr 

R[ - RJ'A01B 
C-BTA01B 
Sf -SJ A01B 
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(
T-R'{;A01Ro 0 zT-R'{;A0 1So) 

= 0 0 0 . 
Z-SJ'A01R 0 0 D-SJ'A0 1S0 

Indeed, the Schur complement C - BT A01 B of Ao in A is equal to 0 since A !::::: 0 
and Ao is a maximal nonsingular principal submatrix of A; as X 1 , X 2 t 0 this implies 
that R1 - BT A01 Ro= S1 - BT A0 1S0 = 0. 0 

LEMMA 2.3. Let X be a symmetric matrix of the form 

X=(~ r::). 
where A t 0 and T is a symmetric matrix of order R whose diagonal entries are all 
equal to some scalar N. Let Ao be a maximal nonsingular principal submatrix of A 
and let 

A = ( ~~ BT X-1 B) ' x = ( ~ ~~ 1 ) 
o Rl BT BT A(j1 B 

denote the corresponding block decompositions of A and X. Then, X t 0 if and only 
·if (i) R1 = BT A01 Ro and (ii) T - RB A01 Ro t 0. In part·icular, X is pd if and only 
if A and T - RT A - 1 R are pd. Moreover, T - R'{; A(j 1 Ro is psd for N large enough 
(namely, for N greater or equal to the largest eigenvalue of R'{; A01 Ro -T0 , where To 
has zero diagonal entries and as off-diagonal entries those of T ). 

2.2. Some observations about psd completions. Given a graph G = (V, E), 
a subset S ~ V, a vector a E QsuE, and a scalar N > 0, let aN E QvuE denote the 
extension of a obtained by setting ai := N for all i E V \ S. 

LEMMA 2 .4. a is completable to a psd matrix if and only if aN is completable to 
a psd matrix for some N > 0 (and then for all N' ;::::: N ). 0 

Therefore, if one can "guess" a value N to assign to the unspecified diagonal 
entries, then one can reduce the problem to the case when all diagonal entries are 
specified. This can be done when the graph G of specified off-diagonal entries is 
chordal as we see later or if we look for a pd completion as the next result shows. 

LEMMA 2.5. Given a E QsuE, let b := (ai(i E S),%(ij EE, i,j ES)) denote 
its restriction to the subgraph induced by S. Then, a has a pd completion if and only 
if b has a pd completion. 

Proof Apply Lemma 2.3. 0 
This result does not extend to psd completions (which contradicts a claim from 

[15] (psd case in Proposition 1)). Indeed, the partial matrix 

( i ~ ~1) 
-1 1 1 

has no psd completion while its lower principal 2 x 2 submatrix is psd. 
A final observation is that if a partial matrix contains a fully specified row, then 

the completion problem can be reduced to considering a matrix of smaller order. 
Indeed, suppose that A = ( aij) is a partial symmetric matrix whose first row is fully 
specified. If au < 0, then A is not completable. If au = 0, then A is completable if 
and only if its first row is identically zero and its lower principal submatrix of order 
n - 1 is completable. If a11 > 0 then one can reduce to a problem of order n - 1 by 
considering the Schur complement of a11 in A. 
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2.3. Euclidean distance matrices. The following connection (2.4) between 
psd and distance matrices has been established by Schoenberg [37]. Let Y = (Yii )i,jEV 

be a square symmetric matrix with zeros on its main diagonal and whose rows and 
columns are indexed by a set V, and let io be a given element of V. Then, cpi0 (Y) 
denotes the square symmetric matrix X = (xij)i,jEV\{io} whose rows and columns 
are indexed by set V \ { io} and whose entries are given by 

(2.3) 
1 

Xij = 2(Yioi + Yioj - Yii) for i,j E V \ {io}. 

Then, 

(2.4) Y is a distance matrix {::::> '-Pio (Y) !::: 0. 

(Indeed, a set of vectors Ui (i E V) forms a realization of the matrix Y if and only 
if cp;0 (Y) is the Gram matrix of the vectors ui - Ui0 ( i E V \ { io}), which means 
that its ( i, j)th entry is equal to ( u; - U;0 )T ( Uj - U;0 ).) Thus, '-Pio establishes a linear 
bijection between the set of distance matrices of order IV! and the set of psd matrices 
of order IVI -1. Relation (2.4) has a direct consequence for the corresponding matrix 
completion problems. Let G = (V, E) be a graph and assume that io E Vis a universal 
node, i.e., that io is adjacent to all other nodes of G. Then, an algorithm permitting 
to solve the psd matrix completion problem for graph G\io can be used for solving 
the distance matrix completion problem for graph G and vice versa. Indeed, 

Y is a distance matrix completion of d ERE 
{::::> '-Pio (Y) is a psd completion of '-Pio ( d). 

(2.5) 

(For the definition of <fli0 (d), use (2.3) restricted to the pairs ij with i,j E V\ {io}, 
i = j, or i =F j with ij edge of G.) For more information about connections between 
the two problems, see [21], [27]. 

3. The matrix completion problem for chordal graphs. We consider here 
the matrix completion problems for chordal graphs. First, we recall results from [15] 
and [4] yielding a good characterization for the existence of a completion; then, we 
see how they can be used for constructing a completion in polynomial time. 

3.1. Characterizing existence of a completion. Let G = (V, E) be a graph 
and let a E Q VUE be a vector; in the distance matrix case, the entries of a indexed by 
V (corresponding to the diagonal entries of a matrix completion) are assumed to be 
equal to zero. If K ~Vis a clique in G (i.e., any two distinct nodes in K are joined 
by an edge in G), the entries aij of vector a are well-defined for all nodes i,j E K; 
then, we let a(K) denote the !Kl x !Kl symmetric matrix whose rows and columns 
are indexed by Kand with ijth entry% for i,j EK. Obviously, if a is completable 
to a psd matrix, then a satisfies 

(3.1) a(K) !::: 0 for every maximal clique K in G. 

Similarly, if a is completable to a distance matrix, then a satisfies 

(3.2) a(K) is a distance matrix for every maximal clique K in G. 

The conditions (3.1) and (3.2) are not sufficient in general for ensuring the existence 
of a completion. For instance, if G = (V, E) is a circuit and a E Q VUE has all its 
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entries equal to 1 except one entry on an edge equal to -1, then a satisfies (3.1) but 
a is not completable to a psd matrix. However, if G is a chordal graph, then (3.1) 
and (3.2) suffice for ensuring the existence of a completion. 

THEO REM 3 .1. Let G = ( V, E) be a chordal graph and let a E R vuE. If a 
satisfies (3.1), then a ·is completable to a psd matrix [15]; if a satisfies (3.2), then a is 
completable to a distance matrix [4]; moreover, if a ·is rational valued, then a admits 
a rational completion. D 

As the maximal cliques in a chordal graph can be enumerated in polynomial time 
[39] ( cf. below) and as one can check positive semidefiniteness of a rational matrix in 
polynomial time (c:f. [16, p. 295]), one can verify whether (3.1) holds in polynomial 
time when G is chordal; in view of (2.4), one can also verify whether (3.2) holds in 
polynomial time when G is chordal. This implies the next theorem. 

THEOREM :3.2. Problems (Ps) and (D) can be solved in polynomial time for 
chordal graphs. D 

The proof given in [15], [4] for Theorem 3.1 is constructive; thus, it provides an 
algorithm for constructing a completion and, as we see below, a variant of it can 
be shown to have a polynomial running time. The proof is based on the following 
properties of chordal graphs. Let G = (V, E) be a graph. 

Then, G is chordal if and only if it has a perfect elimination ordering; moreover, 
such an ordering can be found in polynomial time [36]. An ordering v1 , ... , Vn of 
the nodes of a graph G = (V, E) is called a perfect elimination ordering if, for every 
j = 1, ... , n-1, the set of nodes 'Uk with k > j that are adjacent to v5 induces a clique 
in G. For j = 1, ... , n-1, let K 5 denote the clique consisting of node 'Vj together with 
the nodes Vk (h: > j) that are adjacent to Vj; then the cliques K 1, ... , Kn-I comprise 
all maximal cliques of a chordal graph G. 

If G is chordal and not a clique, then one can find (in polynomial time) an edge 
et/. E for which the graph H := G+e (obtained by adding e to G) is chordal. (Indeed, 
let i be the largest index in [l, n] for which there exists j > i such that Vi and v5 are 
not adjacent in G; then we can choose for e the pair ij as v1, ... , Vn remains a perfect 
elirnina tion ordering for H.) 

If G is chordal then, for any e tf. E, there exists a unique maximal clique in G + e 
containing edge e [15] (easy to check). 

Therefore, if G is complete and not a clique, we can order the missing edges in 
G as e1 , ... , ep in such a way that the graph Gq := (V, EU { e 1, ... , eq}) is chordal 
for every q = 1, ... ,p. For q = 1, ... ,p, let Kq be the unique maximal clique in Gq 
containing edge eq. Given a E qvuE satisfying (3.1), set Go:= G and xo :=a. We 
execute the following step for q = 1, ... , p. 

Find Zq E Q for which the vector Xq := (xq_ 1,zq) of qvuE(Gq) satisfies 

(3.3) 

This can be done in view of Lemma 2.2 (case£= m = 1) applied to the matrix 
X := Xq(Kq) and one can choose for Zq the rational value given by (2.2). Then, the 
final vector Xp = (a, z 1, ... , Zp) provides a rational psd completion of a. This shows 
Theorem 3.1 in the psd case (the Euclidean distance matrix case being sirnilaJ'). 

As mentioned earlier, the preprocessing step (find the suitable ordering e1 , ... , ep 
of the missing edges and the cliques Kq) can be done in polynomial time. Then, 
one can construct the values z1 , ... , zp yielding a psd completion of a in p ~ n2 

steps. Therefore, the algorithm is polynomial in the real number model. In order 
to show polynomiality in the bit model, one has to verify that the encoding sizes 
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of z1 , ... , Zp remain polynomially bounded in terms of n and the encoding size of a. 
This is, however, not clear. Indeed, both Ro and So in the definition of Zq via (2.2) 
may involve some previously defined Zh for h < q (the same may hold for Ao); then, 
we have a quadratic dependence between Zq and the previously defined z1, ... , Zq-l 

which may cause a problem when trying to prove that the encoding size of Zq remains 
polynomially bounded. However, as we see below, the above algorithm can be modified 
to obtain a polynomial running time. The basic idea is that, instead of adding the 
missing edges one at a time, one adds them by "packets" consisting of edges sharing 
a common end node. Then, in view of Lemma 2.2, one can specify simultaneously all 
the entries on these edges, which permits to achieve a linear dependency among the 
Zq'S. 

3.2. Constructing a psd completion in polynomial time. Let G = (V, E) 
be a chordal graph and let 1, ... , n denote a perfect elimination ordering of its nodes. 
For i E [1, n], set 

J(i):={jE[l,n]: j>i and ij~E} 

and let i1 > · · · > iL denote the elements i E (1, n] for which J( i) =f. 0. For £ = 
1, ... ,L, set Fe:= {id I j E J(ie)} and let Ge denote the graph with node set V and 
edge set EU F1 U · · · U Fe. Hence, we have a sequence of graphs 

(3.4) 

where each Gt is chordal (since 1 ... n remains a perfect elimination ordering of its 
nodes) and CL is the complete graph. We now show that Ge has only one maximal 
clique which is not a clique in Gt-1· 
• LEMMA 3.3. For R. = 1, ... , L, there is a unique maximal clique Ke in Ge which 
is not a clique in Ge_1 . Moreover, J(ie) U {it} ~ Kt, the set Ke \ { ie} is a clique in 
Ge-i, and the set Ke\ J(it) is a clique in G. 

Proof Let K be a maximal clique in Gt which is not a clique in Ge-1; then, 
it E K and Kn J(it) =I i/J; we first show that J(it) ~ K. For this, assume that 
j,j' E J(it) with j E K and j' ~ K. By maximality of K, there exists an element 
i E K such that i and j' are not adjacent in G1,. Then, i < ie since the set [ie, n] is 
a clique in G1,. Therefore, the pairs ij and iit are edges of Gt and, thus, of G. Since 
the ordering of the nodes is a perfect elimination ordering for G, this implies that ie 
and j must be adjacent in G, yielding a contradiction. 

Suppose now that K, K' are two distinct maximal cliques in Ge such that i.e E 
Kn K' and J( i.e) ~ Kn K'. Then, there exist nodes i E K \ K', i' E K' \ K that are 
not adjacent in G.e. Given a node j E J(ie), one can easily verify that (i,i.e,i',j) is 
an induced circuit in Ge-1 , which contradicts the fact that Ge-1 is chordal and, thus, 
shows unicity of the clique Ke. It is obvious that K.e \ {ie} is a clique in Ge- 1• We 
now verify that K.e \ J(ie) is a clique in G. For this, note first that ie is adjacent to 
every node of Ke\ (J(ie) U {it}) in Ge and, thus, in G. Suppose now that x =I y are 
two nodes in Ke\ (J(ie) U {i.e}) that are not adjacent in G. Then, as xy is an edge 
of Ge-i, we have x = ih, y E J(ih) for some h :::; R. - 1 and, thus, it < x, y. As ie 
is adjacent to both x and y in G this implies that x and y must be adjacent in G, 
yielding a contradiction. D 

We now describe the modified algorithm. Let G = (V, E) be a chordal graph 
and let a E QVuE satisfying (3.1). Setting x0 :=a, we execute the following step for 
£= 1, ... ,L. 
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Find ze E QF, for which the vector Xt := (xe- 1,ze) E QvuE(G,) satisfies 

(3.5) xe(Ke) t 0. 

Then, the final vector XL = (a, zi, ... , ZL) provides a rational psd completion of a. 
For instance, we can choose for Zt the value given by relation (2.2), applying Lemma 
2.2 to the matrix X := Xt(Kt). (Indeed, in view of Lemma 3.3, X 1 = a(Ke \J(it)) t 0 
and X2 = Xt-1(Kt \{it}); thus, X2 t 0 can be verified by induction.) 

We verify that the encoding sizes of z1, •.. , ZL are polynomially bounded in terms 
of n and the encoding size of a. For this, we note that z1, ... , ZL are determined by 
a recurrence of the form 

(3.6) Zt = sr A£ 1 Rt for f = 1, ... 'L, 

where Re, A1_, Se are matrices of (appropriate) orders :::; n. A crucial observation is 
that all entries of Re and Ae belong to the set, denoted as A, of entries of a (as 
Ke\ J(it) is a clique in G, by Lemma 3.3), while the entries of St belong to the set 
AU Ze-1, where Zt-1 denotes the set of entries of (z1, ... , Zt-l ). 

For r E Q, let (r) denote the encoding size of r, i.e., the number of bits needed 
to encoder in binary notation and, for a vector x = (xi, ... ,xp) E QP, set s(x) := 

max( (x1), ... , (xp) ). One can verify that, for two vectors x, y E QP, (xTy) :::; (n) + 
s(x) + s(y). Let Sa denote the maximum encoding length of the entries of vector a 
and, for f = 1, ... , L, set St:= max((z) I z E Ze). We derive from (3.6) that 

St :$ (n) + s(A£ 1 Re) +Sa+ Se-1 

for all f (setting So := 0). This implies that 

L 

SL :$ L(Sa + (n)) + L s(A£1 Rt). 
i=l 

As L :::; n, we obtain that all encoding sizes of z1 , ... , ZL are polynomially bounded 
in terms of n and the encoding size of a. (We also use here the fact that the entries 
of A£ 1 are polynomially bounded in the input size; cf. [16, Chapter 1.3].) Thus, we 
have shown the following theorem. 

THEOREM 3.4. Problem (P~) can be solved in polynomial time for chordal 
graphs. D 

We finally indicate how to solve the general problem when some diagonal entries 
are unspecified. 

THEOREM 3.5. Problems (P) and (PQ) can be solved in polynomial time for 
chordal graphs. 

Proof Let G = (V, E) be a chordal graph, let S c;;; V, and let a E QsuE 
satisfying a(K) t 0 for each maximal clique K <;;; S. (Else, we can conclude that 
a is not completable.) Following Lemma 2.4, we search for a scalar N > 0 such 
that a is completable if and only if its extension aN E QvuE (assigning value N to 
the unspecified diagonal entries) is completable or, equivalently, aN (K) t 0 for all 
maximal cliques Kin G. Note that ead1 matrix aN (K) has the same form as matrix X 
from Lemma 2.3. Therefore, such N exists if and only if the linear condition (i) from 
Lemma 2.3 holds for each clique Kand an explicit value for N can be constructed as 
indicated in Lemma 2.3. Once N has been determined, we proceed with completing 
aN by applying the algorithm presented above. D 

To conclude note that the algorithm presented in this section outputs a pd com
pletion if one exists. 
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3.3. Constructing a distance matrix completion. The distance matrix com
pletion problem for chordal graphs can be solved in an analogous manner. Namely, 
let G = (V, E) be a chordal graph, let 

Go:= G s;; · · · s;; Ge s;; · · · s;; GL 

be the sequence of chordal graphs from (3.4), let Ke (e = 1, ... , L) be the cliques 
constructed in Lemma 3.3, and let a E QE satisfying (3.2). Setting a0 := a, we 
execute the following step for f.= 1, ... , L: 

Find ze E QF, for which the vector xc := (ae- 1, ze) E QE(G;) satisfies 

(3.7) xe(Ke) is a distance matrix. 

Then, the final vector Xr, = (a, zi, ... , zL) provides a distance matrix completion 
of a. The above step can be performed as follows. If Ke = J(it) U {it}, then we 
let ze be defined by ze(j) := Xe-1(}0,j) for J E J(it), where Jo is a given element of 
J(ie). Otherwise, let Jo E Ke\ (J(ie) U {ie}); then Jo is a universal node in G[Ke], 
the subgraph of G induced by Ke. Therefore, in view of relation (2.5), we can find ze 
satisfying (3. 7) by applying Lemma 2.2. The polynomial running time of the above 
algorithm follows from the polynomial running time of the corresponding algorithm 
in the psd case. Thus, we have shown the following theorem. 

THEOREM 3.6. Problem (DQ) can be solved -in polynomial time for chordal 
graphs. 

4. The matrix completion problem for graphs with fixed minimum fill
in. In this section we describe an algorithm permitting us to solve problems (P), 
(PQ), (D), and (DQ) in polynomial time for the graphs having minimum fill-in m, 
where m ;::::: 1 is a given integer. This algorithm is based on Theorems 1.1, 3.1, 3.2, 
3.4, and 3.6. 

Let G = (V, E) be a graph with minimum fill-in m, let S s;; V and let a E QsuE 

be given. (Again we assume that ai = 0 for i E V in the distance matrix case.) We 
first execute the following step. 

Step 0. Find edges e1, ... , em t/. E for which the graph H := (V, EU { e1, ... , em}) 
is chordal and find the maximal eliques K 1 , ... , Kp in H. (Such edges exist since G has 
minimum fill-in m and they can be found in polynomial time, simply by enumeration 
as m is fixed. The maximal cliques in H can also be enumerated in polynomial time 
since His chordal and, moreover, p:::; n.) 

Then, we perform step x in order to solve problem (x) for J; = P, pQ, D, DQ. 
Step P. Determine whether there exist real numbers z1 , ... , Zm, Zm+I for which 

the vector x E QVuE(H) defined by .Ti := ai (i ES), x,, := Zm+i (i E V \ S), X;j = aiJ 

(ij E E), and Xeh := Zh (h = 1, ... , m) satisfies 

(4.1) x(K1) t: 0, ... ,x(Kp) t: 0. 

Step D. Determine whether there exist real numbers z1, ... , Zm for which the 
vector x E QE(H) defined by Xij = a;J (iJ E E), and Xeh :== Zh (h = 1, ... ,m) 
satisfies 

(4.2) x(K1), ... ,x(Kp) are distance matrices. 

Then, a has a completion if and only if the answer in Step P or D is positive. 
Step pQ. Find rational numbers z1, ... , Zm, Zm+l for which (4.1) holds or deter

mine that no such numbers exist; if they exist, find a rational psd completion of x. 
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Step DQ. Find rational numbers z1, ... , Zm for which (4.2) holds or determine 
that no such numbers exist; if they exist, find a rational distance matrix completion 
of x. 

Steps P and pQ can be executed in the following manner. Let M denote the 
block diagonal matrix with the p matrices x(K1 ), .•. , x(Kp) as diagonal blocks (and 
zeros elsewhere). Hence, M has order IK1 1 + · · · + IKPI :::; n 2 and (4.1) holds if and 
only if M t 0. Clearly, the matrix M can be written under the form 

where Q 1, ... , Qm+l are symmetric matrices with (0,1)-entries and Q0 is a symmetric 
matrix whose nonzero entries belong to the set of entries of a. Therefore, in view 
of Theorem 1.1, one can determine the existence of z1, ... ,zm+l satisfying (4.1) in 
polynomial time. Then, finding a rational psd completion of x in Step pQ can be 
done in polynomial time in view of Theorem 3.4. 

In the distance matrix case, we use the following construction for distance matri
ces. For a= 1, ... ,p, let Dabe a square symmetric matrix whose rows and columns 
are indexed by set Va and let 'ia be a given element of Va. We construct a new matrix 
D, denoted as D 1 EB · · · EB Dp, whose rows and columns are indexed by set Vi U · · · U Vp 
and whose entries are given by 

(4.3) D( . . ) { Da(i,j) 
i, J = D ( .. ) + D ( .. ) a i,ia b J,Zb 

if i,j E Va, a E [1,p], 
if i E Va, j E Vb, a f. b E [1,p]. 

LEMMA 4.1. D 1 EB · · · EB Dp is a distance matrix if and only if D1, ... , Dp are 
distance matrices. 

Proof The "only if" part is obvious. Conversely, assume that D1 , ... , Dp are 
distance matrices; we show that D := D 1 EB· · ·EBDp is a distance matrix. For a E [l,p], 
let ui E Rn• (i E Va) be vectors providing a realization of Da; we can assume 
without loss of generality that ut_ = 0. Then, we construct a sequence of vectors 
w.; E Rni+···+n,, (i E LJ~=l Va) by setting Wi :=(On" ... ,On.-1>ui,On.+1 , ••• ,On,,) for 
i E Va. (On denotes the zero vector in Rn.) One can easily verify that the vectors Wi 

provide a realization of D. D 
Steps D and DQ can be performed as follows. Let M := x(K1 ) EB · · · EB x(Kp) 

denote the matrix indexed by K 1 U · · · U Kp constructed as indicated in relation ( 4.3). 
Clearly, M can be written under the form 

where Q1 , ... , Qm are symmetric matrices with entries in {O, 1} and Qo is a symmetric 
matrix whose nonzero entries are sums of at most two entries of a. Let io be a given 
element of K 1 U · · · U Kp. Then, 

Hence, (4.2) holds if and only if matrix M is a distance matrix (by Lemma 4.1) 
or, equivalently, if and only if t.pi0 (M) is positive semidefinite (by relation (2.4)). 
Therefore, in view of Theorems 3.2 and 3.6, Steps D and DQ can be executed in 
polynomial time. This completes the proof of Theorem 1.2. 

LEMMA 4.2. When the minimum fill-in m is equal to 1, existence of a completion 
implies existence of a rational one. 
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Proof To see it, suppose first that all diagonal entries are specified; then, Steps 
P and pQ can be executed in an elementary manner. Indeed, each matrix x(Ki) 
(i = 1, ... ,p) has at most one unspecified entry z1. Hence, the set of scalars z1 

for which x ( Ki) t 0 is an interval of the form Ii = [,Bi - ..[iii., ,8; + ..[iii.] where 
a.i,,Bi E Q (easy to see from Lemma 2.2). Therefore, (4.1) holds if and only if 
z1 E nf=1 Ji= [u, v], where u := max;(,Bi - ..[iii.) and v := mini(,Bi +..[iii.). Moreover, 
if there is a completion (i.e., if u S v), then one can find one with z1 rational. This is 
obvious if u < v and, if u = v, this follows from the fact (easy to verify) that 

,8 - fo = /31 + v'd, a, a', ,8, ,B' E Q ==> fo, v'd E Q. 

Suppose now some diagonal entries are unspecified. If there is a completion with 
value z2 at the unspecified diagonal entries, then we can assume that z2 is rational 
(replacing if necessary z2 by a larger rational number). Then, by the above discussion, 
the off-diagonal unspecified entry z1 can also be chosen to be rational. D 

5. Further results and open questions. We present in section 5.1 another 
class of graphs for which the completion problem can be solved in polynomial time 
(in the bit model). Then, we discuss in section 5.2 some open questions arising when 
considering a polar approach to the psd completion problem. Finally, we describe 
in section 5.3 a simple combinatorial algorithm permitting us to solve the comple
tion problem in polynomial time (in the real number model) for the class of graphs 
containing no homeomorph of K4. 

5.1. Another class of polynomial instances. We present here another class 
of graphs for which the psd matrix completion problem (P 8 ) can be solved in polyno
mial time. Given two integers p, q 2:: 1, let Yp.q be the class consisting of the graphs 
G = (V, E) satisfying the following properties. There exist two disjoint subsets V1 , % 
of V such that min(IV11, IV2I) = p, the set F := {ij Ii E Vi,j E V2} is disjoint from 
E, the graph 

H:= (V,EUF) 

is chordal, and H has q maximal cliques that are not cliques in G. 
THEOREM 5.1. Given integers p,q 2': 1, the psd completion problem (Ps) can be 

solved in polynomial time (in the bit model} over the class Yp,q· 
Examples of graphs belonging to class Yp,q arise from circuits, wheels, and some 

generalizations. A generalized circuit of length n is defined in the following manner: 
its node set is U1 U · · · U Un with two nodes u E Ui, v E Uj being adjacent if and only 
if i = j or j = i + 1 (modulo n); a generalized wheel of length n is obtained by adding 
a set U0 (the center of the wheel) of pairwise adjacent nodes to a generalized circuit 
of length n and making each node in U0 adjacent to each node in U1 U · · · U Un. Call a 
generalized circuit or wheel p-fat if min(JUil : i = 1, ... , n) = p. Cf. Figure 5.1 for an 
example. Then, any p-fat generalized circuit or wheel of length q + 2 belongs to Yp,q· 
We will see in section 5.2 that generalized circuits and wheels arise as basic objects 
when studying the matrix completion problem on graphs of small order. 

The proof of Theorem 5.1 is based on the following result of Barvinok [8], which 
shows that one can test feasibility of a system of quadratic equations in polynomial 
time for any fixed number of equations.2 

2 In [8] Barvinok considers the homogeneous case, where each equation is of the form f;(x) = 
xT A;x = 0 for some symmetric matrix Ai. However, the general nonhomogeneous case can be 
derived from it (9]. 
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(a) (b) 

FIG. 5.1. (a) The wheel of length 4; (b) a 2-fat generalized wheel of length 4. 

THEOREM 5.2. For i = 1, ... , m, let f;(x) = xT Aix +bf x +c.; be a quadratic 
polynomial in x E Rn, where Ai is an n x n symmetric matrix, bi E Rn, and c.; ER. 

One can test feasibility of the system fi(x) = 0 for i = 1, ... , m in polynomial time 
{in the bit model) for any gi·uen m. D 

Proof of Theorem 5.1. Let G = (V, E) be a graph in class 9p,q and let a E RvuE 

be given. We are also given the sets Vi and V2 for which, say, p = IVi I $ IV2 I and 
adding to Gall edges in F := {ij I i E Vi,j E V2} creates a chordal graph H. We 
show that deciding whether a can be completed to a psd matrix amounts to testing 
the feasibility of a system of m quadratic polynomials where m depends only on p 
and q. As His chordal, a is completable to a psd matrix if and only if there exists a 
matrix Z of order V2 x V1 for which x :=(a, Z) E RVuEuF satisfies x(K) t 0 for each 
maximal clique K in H. We assume that x(K) = a(K) t 0 for each maximal clique 
K of H contained in G. (Else, we can conclude that a is not completable.) Consider 
now a maximal clique K of H which is not contained in G. Then, x(K) has the form 

VinK 

VinK( T 
x(K) = Vo nK R 

"l7:;inK ZK 

setting Vo := V \(Vi U V2) and Zx := Z[V2 n K, Vi n K], the submatrix of Z with 
row indices in V2 n K and colunm indices in Vi n K. With the notation of Lemma 
2.2, we obtain that x(K) t 0 if and only if the following matrix 

is psd. (We have assumed that At 0.) We can apply again a Schur decomposition to 
matrix MK in order to reformulate the condition on Z. Setting TK := T-R'{; A01 R 0 , 

Z' := ZK - Sif A01 Ro, and D' := D - S0 A01So, we have that MK = (1{, z~~). Let 
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D0 be a largest nonsingular submatrix of D' and let 

(T z.tT z1T) D'E K 0 1 
D' = ( E!f. F) , MK = Zb D0 E 

Z~ ET F 

denote the corresponding block decompositions of D' and MK. Taking the Schur 
complement of Db in MK, we obtain that MK t 0 if and only if 

D' t 0, TK - ZbT D~-l Zb t 0, and Z~ - ET D~-l Zb = 0. 

Let YK := Z[V2 , Vi n K] denote the column submatrix of Z with column indices in 
Vi n Kand set 

Q ·- (Do1 0) G ·- ( ETD1-1 I 0) K .- 0 0 , K .- - o · 

Then, 

Therefore, the condition x(K) t 0 can be rewritten as the system 

where TK, VK, Q K are matrices depending on input data a. We can reformulate 
condition (lK) as an equation by introducing a new square matrix SK of order V1 nK 
as "slack variable"; namely, rewrite (lK) as 

Now, let z1, ..• , Zp E Rv2 denote the columns of matrix Z, and let sf (for i E Vi n K) 
denote the columns of matrix SK for each clique K. Then, condition (l'K) can be 
expressed as a system of (!V1nfl+1) equations of the form 

f(z1, ... ,Zp,Bf (iEV1nK))=O, 

where f is a quadratic polynomial, similarly for condition (2K). The total number of 
quadratic equations obtained in this manner depends only on p and q. Therefore, in 
view of Theorem 5.2, one can check feasibility of this system in polynomial time when 
p and q are fixed. D 

Let Q~,q denote the subclass of Qp,q consisting of the graphs G for which every 
maximal clique of H (the chordal extension of G) which is not a clique of G is not 
contained in Vi U V2. Then, the Euclidean distance matrix completion problem can 
be solved in polynomial time over the class Q~,q for any fixed p and q. The proof is 
similar to that of Theorem 5.1, since we can get back to the psd case using relation 
(2.4) (a matrix and its image under 'Pio having the same pattern of unknown entries if 
i 0 belongs to V \(Vi U V2)). In particular, the Euclidean distance matrix completion 
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FIG. 5.2. The matrix completion problem for generalized circuits of length 4. 

problem can be solved in polynomial time for generalized circuits of length 4 and 
fixed fatness, or for generalized wheels (with a nonempty center) of fixed length and 
fatness. 

The complexity of the psd completion problem for generalized wheels and circuits 
is not known; in fact, in view of the remark made at the end of section 2.2, it suffices 
to consider circuits. In view of Theorem 5.1, the problem is polynomial if we fix 
the length and the fatness of the circuit. It would be particularly interesting to 
determine the complexity of the completion problem for generalized circuits of length 
4 and unrestricted fatness. This problem can be reformulated as follows: Determine 
whether and how one can fill the unspecified entries in the blocks marked "?" of the 
matrix X shown in Figure 5.2, so as to obtain X ?: 0. (All entries are assumed to 
be specified in the grey blocks.) Indeed, as will be seen in section 5.2, these graphs 
constitute in some sense the next case to consider after chordal graphs. 

5.2. A polar approach to the completion problem. Given a graph G = 
(V, E), consider the cone Cc consisting of the matrices X = (xij)i,jEV satisfying 
X ?: 0 and Xij = 0 for all i :f. j such that ij .;_ E. Call X E Ge extremal if X lies 
on an extremal ray of the cone Ca (i.e., X = Y + Z with Y, Z E Ga implies that 
Y = aX for some a 2 0) and define the order of G as the maximum rank of an 
extremal matrix X E C0 . It is shown in [1] that a E RvuE is completable to a psd 
matrix if and only if a satisfies 

(5.1) "a··x·· + "a·x .. > 0 ~ t) ZJ ~ i 'l.1. -

ijEE iEV 

for every extremal matrix X = (xij) E Ga. One might suspect that the psd matrix 
completion problem is somewhat easier to solve for graphs having a small order since 
the extremal matrices in Ca have then a small rank Indeed, the graphs of order 1 are 
precisely the chordal graphs for which the problem is polynomially solvable. On the 
other hand, a circuit of length n has order n - 2 which is the highest possible order 
for a graph on n nodes. Moreover, if io is a universal node in a graph G, then both 
graphs G and G \ io have the same order, which corroborates the observation made 
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FIG. 5.3. A homeomorph of K4. 

at the end of section 2.2. A natural question concerns the complexity of the problem 
for graphs of order 2. 

The graphs of order 2 have been characterized in [28]. It is shown there that, up to 
a simple graph operation (clique-sum), they belong to two basic classes 91 and 92. All 
the graphs in 91 have minimum fill-in at most 3; hence, the problem is polynomially 
solvable for them (by Theorem 1.2). The graphs in class 92 are the generalized wheels 
of length 4 (and unrestricted fatness). Hence, if the psd matrix completion problem 
is polynomially solvable for generalized wheels of length 4, then the same holds for all 
graphs of order 2. 

5.3. The matrix completion problem for graphs with no homeomorph 
of K 4 • We now discuss the matrix completion problem for the class 'H. consisting 
of the graphs containing no homeomorph of K 4 as a subgraph; a homeomorph of 
K 4 being obtained from K 4 by replacing its edges with paths; cf. Figure .S.3 for an 
example. (Graphs in 'H. are also known as series parallel graphs.) Clearly, 'H. contains 
all circuits. The case of circuits is certainly interesting to understand since circuits 
are the most simple nonchordal graphs. 

Similarly to the chordal case, a condition characterizing existence of a psd com
pletion is known for the graphs in 'H.. Namely, the following is shown in [25] (using a 
result of [7]). Given a graph G = (V, E) in 'H. and a E R vuE satisfying ai = 1 for all 
i E V, then a has a psd completion if and only if the scalars Xe := ~ arccos ae (e E E) 
satisfy the inequalities 

(5. 2) L Xe - L Xe ::; IFI - 1 for all F S: C with C circuit in G, IFI odd. 
eEF eEC\F 

PROPOSITION 5.3 (see [6]). Given x E [O, l]E, one can test in polynomial time 
whether x satisfies the linear system (5.2). 

Proof. Consider the graph G := (VU V', E) where V' := {i' \ i E V} and E 
consists of the pairs ·ij, i' j', ij', i' j for ij E E. Define z E RE by Zij = Zi' i' = Xij 

and Zi'i = zw = 1- Xij for ij EE. Then, it is easy to see that x satisfies (5.2) if and 
only if z(P) 2: 1 for every path P from i to i' in G and every i E V. The result now 
follows as one can compute shortest paths in polynomial time. 0 
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Therefore, problem (Ps) is polynomial time solvable in the real number model 
for graphs in H. It is not clear how to extend this result to the bit model since the 
scalars Xe := ~ arccos ae are in general irrational and, thus, one encounters problems 
of numerical stability when trying to check whether (5.2) holds. 

Moreover, there is a simple combinatorial algorithm (already briefly mentioned 
in [26]) permitting us to construct a psd completion in polynomial time in the real 
number model. Let G = (V, E) be a graph in H. and let a E R VuE be given satisfying 
ai = 1 for all i E V. The algorithm performs the following steps. 

1. Set Xe := ~ arccosae fore EE and test whether x satisfies (5.2). If not, one 
can conclude that a has no psd completion. Otherwise, go to step 2. 

2. Find a set F of edges disjoint from E for which the graph H := (V, EU F) is 
chordal and contains no homeomorph of K4 • 

3. Find an extension y E [O, l]EuF of x satisfying the linear system (5.2) with 
respect to graph H. 

4. Set be:= cos(7rYe) fore EE U F and b; := 1 for i E V. Then, bis completable 
to a psd matrix (since y satisfies (5.2) and H has no homeomorph of K 4 ) and one 
can compute a psd completion X of b with the algorithm of section 3.2 (since His 
chordal). Then, X is a completion of a. 

All steps can be executed in polynomial time. This follows from earlier results for 
steps 1 and 4; for step 2 use a result of [41 J and, for step 3, one can use an argument 
similar to the proof of Proposition 5.3. Namely, given x E [0, l]E satisfying (5.2), in 
order to extend x to [O, l]EU{e} in such a way that (5.2) remains valid with respect to 
G + e, one has to find a scalar a E [O, 1] satisfying L 1 ::;; a ::;; L2 , where 

L1 := max (x(F)-x(C\(FU{e}))-IFl+l), 
C,FleEC\F 

L2 := min (x(C \ F) - x(F \ e) + IFI - 1). 
C,FleEF 

We have L1 ::;; L2 (since x satisfies (5.2)) and L1 ::;; 1, L2 ~ 0 (since x E [O, l]E); thus, 
[L1 , L2 ] n [O, 1] =j:. 0. With the notation of the proof of Proposition 5.3, one finds that 

L1 = 1 - min(z(P) IP is an ab'-path in G), 

L2 = min(z(P) I P is an ab-path in G). 

Hence one can compute a in polytime. One can then determine the extension y of x 
to H by iteratively applying this procedure. 

The distance matrix completion problem for graphs in H. can be treated in a 
similar manner. Indeed, given G = (V,E) in H. and a E R~, set Xe := ..JG,. for 
e EE. Then, a is completable to a distance matrix if and only if x satisfies the linear 
inequalities 

(5.3) Xe - L Xf::;; 0 for all circuits C in G and all e EC 
fEC\e 

( cf. [27]). Again one can test in polynomial time whether x ;::: 0 satisfies ( 5.3). (Simply, 
test for each edge e = ab E E whether Xe ::;; min(x(P) I P is an ab-path in G).) An 
algorithm analogous to the one exposed in the psd case permits us to construct a 
distance matrix completion. Therefore, we have shown the following theorem. 
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THEOREM 5.4. One can construct a real psd (distance matrix) completion or 
deC'ide that none e:rists in polynomial time ·in the real number model for the graphs 
conta·in·ing no homeomorph of K 4 . D 

It is an open question whether the above result extends to the bit model of 
computation, even for the simplest case of circuits. 
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