
SPECTRAL ANALYSIS OF (SEQUENCES OF) GRAPH MATRICES∗

ANTONIO FRANGIONI† AND STEFANO SERRA CAPIZZANO‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 339–348

Abstract. We study the extreme singular values of incidence graph matrices, obtaining lower
and upper estimates that are asymptotically tight. This analysis is then used for obtaining estimates
on the spectral condition number of some weighted graph matrices. A short discussion on possible
preconditioning strategies within interior-point methods for network flow problems is also included.
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1. Introduction. We study graph matrices coming from the application of
interior-point methods [17, 14], which have grown a well-established reputation as
efficient algorithms for large-scale problems. In these methods, at each step we have
to solve linear systems of the form

EΘETx = b,(1.1)

where E is an n × m matrix and Θ is an m × m diagonal positive definite matrix.
In most general-purpose solvers, these linear systems are solved by means of direct
methods, typically the Cholesky decomposition preceded by a heuristic reordering
of the columns of E aimed at minimizing the “fill-in” [17]. We are interested in
the possibility of using iterative methods instead. This can be beneficial in practice,
especially in cases when E is a sparse structured matrix [7] such as the node-arc
incidence matrix of a graph [15, 16]. However, these approaches can be competitive
only if the rate of convergence of the iterative method is sufficiently high. This
motivates our study of the extreme singular values of E and of the spectral behavior
of EΘET since the convergence rate of iterative methods largely depends on the
conditioning of the matrix. This analysis may have an interest for the development of
preconditioners [15, 16] for the numerical solution to (1.1) through a preconditioned
conjugate gradient (PCG) method (for the convergence theory of the PCG method,
refer to [3]).

The paper is organized as follows. In section 2 we study the spectral properties
(extremal behavior and conditioning) of EET when E is the node-arc incidence matrix
of a directed graph. In section 3 we extend the analysis to “weighted” matrices of
the form EΘET . Finally, in section 4 the connections between this analysis and some
possible preconditioning strategies are briefly discussed.

2. Graph matrices. Let H ≡ Hn = (Un,Vn) be a directed graph with n nodes
Un = {u1, . . . , un} and m arcs Vn = {v1, . . . , vm}; its node-arc incidence matrix
E ≡ En = E(Hn) is the n × m matrix such that Eij = 1 if vj emanates from ui,
Eij = −1 if vj terminates at ui, and Eij = 0 otherwise.
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Here we analyze the spectral properties of sequences of matrices {EnE
T
n }n. Clearly,

this both requires and implies the study of the spectra of (sequences of) graph matri-
ces {En}n. This analysis has an interest of its own, as demonstrated by the literature
on the subject [1, 9]. However, the usual approach has most often been of strongly
combinatorial flavor and for a fixed graph size n. By contrast, our analysis focuses
on asymptotical results, for which little or no previous work seems to have been pub-
lished.

2.1. Preliminary results. The EET matrix that we study is closely related to
the Laplacian of an undirected graph H̄ ≡ H̄n = (Ūn, V̄n) [1], i.e., the n × n matrix
L ≡ Ln = L(H̄n) such that Lii is the degree (number of incident arcs) of node ui and
Lij for i �= j is −1 if the arc (i, j) belongs to V̄n and zero otherwise. It is easy to
prove the following relation between L and EET .

Proposition 2.1. Given an undirected graph H̄ = (Ū , V̄), the directed graph
H = (Ū ,V) with V = { (i, j) : (i, j) ∈ V̄, i < j } has E(H)E(H)T = L(H̄).

In other words, the Laplacian of an undirected graph H̄ can be obtained as
E(H)E(H)T , where H is the directed graph obtained from H̄ by orienting each arc
in such a way that the head node is smaller than the tail node (with any fixed ordering
of Ū). Conversely, the E(H)E(H)T matrix of a generic directed graph H can be seen
as being obtained from the Laplacians of two undirected graphs.

Proposition 2.2. Given a directed graph H = (U ,V), the two undirected graphs
H̄1 = (U , V̄1) and H̄2 = (U , V̄2) with

V̄1 = { (i, j) : (i, j) ∈ V, i < j },

V̄2 = { (i, j) : (i, j) ∈ V, j < i }

are such that E(H)E(H)T = L(H̄1) + L(H̄2).
Therefore, for the purpose of the analysis of the E(H)E(H)T matrices, a directed

graph H can be seen as the composition of two undirected graphs. One of the two
graphs contains (as undirected edges) the arcs having a head node smaller than the
tail node, while the other graph contains (as undirected edges) the arcs having a head
node larger than the tail node.

Thus, Laplacians of undirected graphs and E(H)E(H)T matrices of directed
graphs can be related through appropriate (de)orientation of the arcs. We will there-
fore be able to exploit some interesting results about the spectra of Laplacians such
as the following.

Theorem 2.3 (see [1]). For any undirected graph H̄, λmax(L(H̄)) ≤ n.
It is immediate to verify that summing all the rows of En gives the null vector.

This proves that λmin(EnE
T
n ) = 0 and therefore σmin(En) = 0 if m ≥ n. However,

if Hn is a connected graph, then the matrix obtained by En by eliminating any row
has full rank. If Hn has k maximal connected components, then En = E(Hn) is a
block diagonal matrix with k blocks; the minimal (maximal) singular value of En

is the minimum (maximum) among the minimal (maximal) singular values of the
submatrices associated to the connected components. Hence, we can restrict our
analysis to connected graphs. Note that EnE

T
n has exactly k zero eigenvalues: by

deleting k appropriate rows of En (one for each of the connected components), one
can always obtain a matrix with no zero singular values.

We can always reorder the nodes and the arcs in such a way that the square
submatrix S ≡ Sn = S(Hn) made of the first n− 1 rows of E is nonsingular. In fact,
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Sn is the node-arc incidence matrix of a spanning tree of Hn less one row, for which
the following results hold.

Proposition 2.4 (see [9]). Sn is nonsingular and totally unimodular, i.e., the
determinant of each square submatrix belongs to {±1, 0}.

Proposition 2.5 (see [9]). The entries of S−1
n belong to {±1, 0}.

2.2. Conditioning of trees. We start by studying the special case when H is
a tree, i.e., m = n− 1 (H is connected). We do not require the arcs to have a specific
orientation since the matrix E

′
= E(H

′
), corresponding to the directed tree H

′
ob-

tained from H by reorienting the arcs, can be obtained from E by right multiplication
for an m×m diagonal {−1,+1} matrix. By the singular value decomposition [4, 12],
E and E

′
have the same set of singular values; therefore, from the spectral viewpoint

the directed tree H
′
can be considered a special representative of an equivalence class.

Theorem 2.6. The conditioning of Sn and En satisfies

δ(n− 1)1/2 ≤ κ2(Sn) ≤
√

2n(n− 1),

δ

σn−2(Sn)
≤ κ2(En) ≤

√
2n(n− 1),

where δ =
√
δ(Hn) and δ(Hn) is the maximum degree among all nodes in Hn. Indeed

R1. σmin(Sn) ≤ (n− 1)−1/2;
R2. σmin(Sn) ≥ (n− 1)−1;
R3. σmax(Sn) ≤ (2n)1/2;
R4. σmax(Sn) ≥ δ ≥ √

2.
Proof.
Part R1. By the singular value decomposition of Sn

σmin(Sn) = inf
‖x‖2>0

‖xTSn‖2

‖x‖2
≤ ‖eTSn‖2

‖e‖2
=

1

(n− 1)1/2
,

where e is the vector of all ones.
Part R2. By Proposition 2.5, |[S−1

n ]i,j | ≤ 1, hence the entries of Bn = S−T
n S−1

n

cannot exceed n − 1. Therefore, ‖Bn‖1 ≤ (n − 1)2; since Bn is positive definite, its
maximal eigenvalue coincides with its spectral norm and is less than its ‖ · ‖1 norm,
hence

λmax(Bn) ≤ (n− 1)2,

but λmax(Bn) = λmax(S
−1
n )2 = (1/λmin(Sn))2.

Part R3. From Proposition 2.2, we know that there exist two undirected graphs
H̄1 and H̄2 such that EnE

T
n = L(H̄1)+L(H̄2). Thus, using Theorem 2.3 and the fact

that Sn is a submatrix of En,

σ2
max(Sn) ≤ σ2

max(En) = λmax(EnE
T
n ) ≤ λmax(L(H̄1)) + λmax(L(H̄1)) ≤ 2n .

Part R4. Let uh be one of the nodes with maximum degree: it is always possible
to reorient the arcs in such a way that uh becomes the root, i.e., it only has outgoing
arcs. Then, let eh be the hth vector of the canonical basis; by the singular value
decomposition of Sn

σmax(Sn) = sup
‖x‖2>0

‖xTSn‖2

‖x‖2
≥ ‖eThSn‖2

‖eh‖2
=

√
δ(Hn)

1
.

Note that δ(Hn) ≥ 2 since Hn is connected.
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The bounds on the condition numbers of Sn are simple consequences of R1–
R4 above. For the minimal and the maximal singular values of En, as well as its
asymptotic conditioning, note that Sn is a submatrix of En. We can apply a rewording
of the Cauchy interlacing theorem that holds for non-Hermitian matrices [8]. In
particular, the following relations hold:

σn−2(Sn) ≥ σmin(En) ≥ σmin(Sn),(2.1)

σmax(Sn) ≤ σmax(En) ≤
√

2n.(2.2)

The estimates R1–R4 are, up to positive constants, tight: the following special
structures are the “extremes” that prove it.

2.2.1. Linear trees. Hn is a linear tree if it is a path, i.e., each node but two
has exactly two incident arcs. We can assume that the path is oriented from the
root to the unique leaf and that the nodes are ordered accordingly; thus, we obtain a
bidiagonal matrix En. The corresponding Sn is the (n− 1)× (n− 1) square Toeplitz
matrix generated by the symbol f(x) = 1 − eix [18, 6]. f(x) is weakly sectorial [6]
and has a zero of order 1; therefore, the analysis in [6] shows that

σmin(Sn) ∼ n−1,

σmax(Sn) ≤ ‖f‖∞ = 2,

lim
n→∞σmax(Sn) = ‖f‖∞ = 2 .

Hence, R2 and R4 are tight (up to suitable multiplicative constants) for linear trees.
These estimates can even be refined a little bit by studying the matrix ST

n Sn. Direct
calculation shows that

ST
n Sn =




2 −1 0 · · · 0

−1
. . .

. . . 0

0
. . .

...
... 2 −1
0 · · · 0 −1 1




= Tn−1 − en−1e
T
n−1,(2.3)

where Tn−1 is the (n− 1) × (n− 1) Toeplitz matrix generated by the symbol f(x) =
2 − 2 cos(x). Tn−1 belongs to the τ algebra [5], so that its eigenvalues are explicitly
known:

λmin(Tn−1) = 4 sin2
( π

2n

)
, λmax(Tn−1) = 4 sin2

(
π(n− 1)

2n

)
.

Note that ST
n Sn ≤ Tn−1 in the sense of the partial ordering of the Hermitian matrices;

hence,

σmin(Sn) ≤ π/n, σmax(Sn) = 2 − εn with εn ≥ π/n .

Finally, since ET
nEn = Tn−1, we have

σmin(En) = 2 sin
( π

2n

)
, σmax(En) = 2 sin

(
π(n− 1)

2n

)
.

Remark 2.1. Observe that the constant ‖f‖∞ = 2 is exactly the maximum node
degree of a linear tree. Therefore, in the case of linear trees the lower bound in R4 is
not tight and it can be replaced by δ(Hn) minus an asymptotically small quantity.
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2.2.2. Star trees. In the opposite direction, we have “concentrated” trees, the
most concentrated one being the “star” tree where the root has n − 1 sons. Let us
choose any ordering for the nodes where the first node is the root, and let us order
the arcs according to the chosen order of the nodes. The resulting En is not lower
triangular, but the corresponding Sn has the following interesting structure:

Sn =




1 1 1 · · · 1
−1 0 0 · · · 0

0 −1
...

...
. . .

. . .
...

0 · · · 0 −1 0



.(2.4)

This structure is close to that of the Frobenius matrices [4], and it is easy to prove
that the characteristic polynomial is p(λ) = (1 + λn)/(1 + λ). However, Sn is “highly
nonnormal” [4]; therefore the fact that all its eigenvalues have unitary modulus does
not tell anything about its conditioning. As in the previous case, we can extract
information on Sn by studying the matrix

SnS
T
n = In−1 + Vn, where Vn = [f |e1] · [e1|g]T

and g = −∑n−1
j=2 ej , f = (n− 2)e1 + g. Since Vn has rank two, SnS

T
n has eigenvalues

1 with multiplicity n− 3 plus two other values that can be explicitly calculated. The
nonzero eigenvalues of Vn are those of the 2 × 2 matrix [4]

[e1|g]T · [f |e1] =

[
n− 2 1
n− 2 0

]
.

Direct calculation yields

λmax(SnS
T
n ) = n− 2 +O(n−1),

λmin(SnS
T
n ) = 2/(n− 2) +O(n−2) .

Therefore

σmax(Sn) =
√
n− 2 +O(n−1),

σmin(Sn) =

√
2

n− 2
+O(n−2) ,

proving that R1 and R3 are tight up to suitable multiplicative constants.
Remark 2.2. The root of a star tree has degree n − 1; hence, σmax(Sn) =√

n− 2 +O(n−1) =
√
δ(Hn) + O(1) proves that R4 cannot be relaxed any further.

Thus, δ cannot be replaced by δ(Hn) as “substantially” done for linear trees (see
Remark 2.1).

Remark 2.3. The case of “star” trees shows that the lower bound

δ

σn−2(Sn)
≤ κ2(En)
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on the condition numbers in Theorem 2.6 is tight. Indeed δ =
√
n− 1, σn−2(Sn) = 1,

and EnE
T
n = In−1 + eeT so that σmin(En) = 1, σmax(En) =

√
n, and therefore

κ2(En) =
√
n which is in good agreement with the bound.

Remark 2.4. Tightness of R1–R4 does not imply that the upper estimates on
the spectral conditioning of En in Theorem 2.6 are tight. In fact, “linear” trees have
O(n) condition numbers and “star” trees have O(

√
n) condition numbers, as opposed

to the O(n3/2) bound given in the theorem. Finally, notice that the conditioning of
Sn and En are asymptotically the same for “linear” trees while for “star” trees there
is a substantially different behavior since κ2(En) =

√
n while κ2(Sn) grows as n.

2.3. Conditioning of graphs. The results of the previous section can be used
in order to evaluate the extremal behavior of the singular values of E(Hn) when Hn

is a generic graph with n nodes. Since trees have been analyzed before, we will reduce
the case of connected graphs to the case of trees.

Proposition 2.7. Let Hn be a connected graph: then

σn−1(En) ≥ max
T∈T (Hn)

σmin(Sn(T )),

where T (Hn) is the set of the spanning trees of Hn.
Proof. Let T be a generic spanning tree of Hn: reorder the nodes and the arcs of

Hn in such a way that T is represented by the first n− 1 columns of En, and Sn(T )
is represented by the first n− 1 rows and columns. Therefore, we have

σn−1(En) = sup
dim U=n−1

inf
x∈U, ‖x‖>0

‖xTEn‖2

‖x‖2
≥ inf

y∈Rn−1, ‖y‖>0

‖[yT , 0]En‖2

‖[y, 0]‖2

= inf
y∈Rn−1, ‖y‖>0

√
‖yTSn(T )‖2

2 + ‖w‖2
2

‖y‖2

≥ inf
y∈Rn−1, ‖y‖>0

‖yTSn(T )‖2

‖y‖2
= σmin(Sn(T )) .

From Proposition 2.7 and part R2 of Theorem 2.6, we obtain

σn−1(En) ≥ n−1.(2.5)

On the other hand, using Proposition 2.2 and Theorem 2.3 as in part R3 of Theorem
2.6, one obtains

σmax(En) ≤ (2n)1/2.(2.6)

As a consequence, the following theorem holds.
Theorem 2.8. κ2(En) grows at most as n3/2

√
2.

These bounds are asymptotically tight: linear trees realize (2.5), while (2.6) is
realized by complete graphs. In fact, the matrix EnE

T
n corresponding to a complete

graph Hn is the circulant matrix 2(nI − eeT ), whose maximal eigenvalue is 2n with
multiplicity n− 1 (all the nonzero vectors orthogonal to e are eigenvectors associated
to the eigenvalue 2n) and whose minimal eigenvalue is zero [10].

The bound on the condition number in Theorem 2.8 is asymptotically realized
by a sequence of graphs Hn with two components: a star tree T 1

n with �n/2� nodes
and a linear tree T 2

n with �n/2� nodes. The maximal singular value of En coincides
with the one of E(T 1

n), growing as (n/2)1/2, while the minimal nonzero singular value
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of En coincides with the one of E(T 2
n), collapsing to zero as (n/2)−1. Therefore, the

spectral condition number behaves as n3/2.
It is even possible to construct a sequence of trees having condition number asymp-

totic to n3/2, answering in the positive to the question raised in Remark 2.4. Consider
a sequence of trees Ĥn+1 formed by the union of T 1

n and T 2
n with a new node u and

the two arcs that join u with the roots of T 1
n and T 2

n . We have

σmax(Ên+1) ≥ σmax(E(T 1
n)) =

√
�n/2� − 2 +O(n−1) ∼ n1/2 .

Let the order of the nodes and the arcs of Ĥn+1 be such that the first rows and
columns are related to the linear tree T 2

n :

Ên+1 =




1 0 · · · 0 0 −1
−1 1 · · · 0 0 0
...

. . .
. . .

...
...

...
0 · · · −1 1 0 0
0 · · · 0 −1 0 0

1 1 · · · 1 −1 0
−1 0 · · · 0 0 0
...

. . .
. . .

...
...

...
0 · · · −1 0 0 0
0 · · · 0 −1 0 0

0 · · · 0 0 · · · 0 1 1




(2.7)

or, more compactly,

Ên+1 =


 E(T 2

n) O 0 −e1
O E(T 1

n) −e1 0
0T 0T 1 1


 .

We have already seen in section 2.2.1 that E(T 2
n)TE(T 2

n) = Tn̄, where n̄ = �n/2� − 1
and Th is the h × h Toeplitz matrix generated by the symbol f(x) = 2 − 2 cos(x),
having

λmin(Th) = 4 sin2

(
π

2(h+ 1)

)
.

Now, let w ∈ Rn̄ be the eigenvector of Tn̄ corresponding to the minimum eigenvalue,
and let x ∈ Rn be the vector (1/‖w‖2)[w|0] obtained by padding the normalized
eigenvector with �n/2�+1 zeroes. Since the (n+1)×n matrix Ên+1 has full column
rank, we have

σmin(Ên+1) = σn(Ên+1) = inf
‖y‖2=1

‖Ên+1y‖2

≤ ‖Ên+1x‖2 =
‖E(T 2

n)w‖2

‖w‖2
=

√
wTE(T 2

n)TE(T 2
n)w

‖w‖2

=

√
wTTn̄w

‖w‖2
= 2 sin

(
π

2 �n/2�
)

∼ n−1,

and therefore κ2(Ên+1) ∼ n3/2.



346 ANTONIO FRANGIONI AND STEFANO SERRA CAPIZZANO

3. Weighted graph matrices. We will now use the results of the previous
section to study the spectral conditioning of (sequences of) weighted graph matrices
EnΘET

n . Let θ be the vector containing the diagonal elements of Θ. By considering
the Rayleigh quotient

xT (EnΘET
n )x

xT (EnET
n )x

=

∑m
i=1 y

2
i θi∑m

i=1 y
2
i

at any x /∈ Ker(EnE
T
n ), it is easy to see that

λn−1(EnΘET
n ) ≥ θminλn−1(EnE

T
n ) = θminσ

2
n−1(En),(3.1)

λmax(EnΘET
n ) ≤ θmaxλmax(EnE

T
n ) = θmaxσ

2
max(En),(3.2)

where θmin and θmax are, respectively, the minimum and maximum elements of θ and
where Ker(X) denotes the null space of a square matrix X. These estimates imply
that the worst-case conditioning of EnΘET

n is in the order of (θmax/θmin)n
3.

Other estimates of the condition number of EnΘET
n can be obtained through the

“decomposition to spanning trees” of Hn. For any subgraph T of Hn, let us denote
by V(T ) the subset of Vn containing the arcs of T . Since the entries of θ (the diagonal
elements of Θ) are also indexed by arcs, we will denote by θ(T ) [Θ(T )] the subvector
of θ (submatrix of Θ) relative to the arcs in V(T ) and by θmax(T ) and θmin(T ) its
minimum and maximum elements, respectively. Thus, for any T

EnΘET
n ≥ E(T )Θ(T )E(T )T ≥ θmin(T )E(T )E(T )T

in the sense of the partial ordering of the Hermitian matrices. Clearly, one is interested
in “maximal” subgraphs T of Hn, the obvious ones being spanning trees; therefore

λn−1(EnΘET
n ) ≥ max

T∈T (Hn)
θmin(T )λn−1(E(T )E(T )T ),(3.3)

where T (Hn) is the set of the spanning trees of Hn. The bound (3.3) can be strength-
ened by considering any set of disjoint spanning trees, i.e., the familiy

D(Hn) = {D ⊆ T (Hn) : V(T1) ∩ V(T2) = ∅ ∀T1, T2 ∈ D} .(3.4)

For any D ∈ D(Hn), one has

EnΘET
n ≥

∑
T∈D

E(T )Θ(T )E(T )T ≥
∑
T∈D

θmin(T )E(T )E(T )T

and therefore

λn−1(EnΘET
n ) ≥ max

D∈D(Hn)

∑
T∈D

θmin(T )λn−1(E(T )E(T )T ) .(3.5)

Note that the union of the subgraphs in D need not cover all the arc set Vn of
Hn. Actually, one may replace T (Hn) in (3.4) with the set A(Hn) of all acyclic
subgraphs of Hn, allowing for more terms in the sum of (3.5). Unfortunately, all
acyclic subgraphs T which are not spanning trees have λn−1(E(T )E(T )T ) = 0, so
that all the corresponding terms give no contribution to the bound.
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Upper bounds on the maximum eigenvalue of EnΘET
n can be obtained with sim-

ilar techniques. Consider the family of disjoint acyclic subgraphs covering all Vn

C(Hn) =

{
C ⊆ A(Hn) : V(T1) ∩ V(T2) = ∅ ∀T1, T2 ∈ C ,

⋃
T∈C

V(T ) = Vn

}
.

Clearly, one has

λmax(EnΘET
n ) ≤ min

C∈C(Hn)

∑
T∈C

θmax(T )λmax(E(T )E(T )T ) .

The above estimates can be useful when designing preconditioners for the solution of
(1.1) through a PCG method, as briefly discussed in the next section.

4. Conditioning and preconditioning. In this section we briefly discuss how
the analysis of the previous paragraphs is related to the study of preconditioners for
the solution of (1.1) through a PCG method. In the following, we will assume that
one row (for each connected component of Hn) has been deleted from En, so that
(1.1) is a full-rank system.

In the literature, tree-based preconditioners have been shown to be quite suc-
cessful, in practice, for the solution of (1.1) within interior-point approaches to linear
min-cost network flow problems [15, 16]. These preconditioners are chosen as the
matrices SnS

T
n , where Sn = S(T ) corresponds to some spanning tree T of Hn, usu-

ally an (approximate) maximum-weight spanning tree, the weight of arc vi being θi.
Besides working well in practice, this choice has a clear rationale from the analysis
of interior-point methods in that, if the optimal solution of the underlying problem
is unique, then the weights θi tend to zero on all arcs but those corresponding to the
basic optimal solution [17] that form a spanning tree. However, another rationale for
this choice is given by (3.3). In fact, it is well known that, in practice, having small
eigenvalues is what hurts most the performance of a PCG method. Thus, spanning
trees T with large θmin(T ) are presumably a good choice since

κ2((En(T )ET
n (T ))+EnΘnE

T
n ) ≥ θmin(T )

with X+ denoting the pseudoinverse of Moore–Penrose of a matrix X (see, e.g.,
[12]). Interestingly, the Kruskal algorithm that is typically used for computing the
maximum-weight T also gives the tree with largest θmin(T ). This may be used to
provide a more sophisticated convergence analysis for these methods.

Furthermore, (3.1) and (3.2) clearly imply that, using EnE
T
n as a precondi-

tioner for (1.1), the spectral conditioning of the preconditioned matrix is limited
by θmax/θmin. If the entries of θ would belong to a bounded interval [r,R], with r and
R positive constants independent on n, then EnE

T
n would be an optimal precondi-

tioner for (1.1) [3], i.e., the number of PCG iterations required to achieve any chosen
accuracy would be independent on n. Actually, it can be shown that the asymptotic
behavior of the spectra of the preconditioner EnE

T
n describes the asymptotic behav-

ior of the spectra of EnΘnE
T
n for any “nondegenerating” sequence of positive m(n)

vectors θn. Unfortunately, θmax/θmin grows very fast during the iterations of the
interior-point methods. However, blending a preconditioning technique using EnE

T
n

and a (classical) O(
√
n) adaptive updating has recently led to an O( n3

lognL) interior-

point method for linear programming [2]. It is conceivable that similar techniques
could be used to keep the quantity θmax/θmin bounded.
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However, it is still not clear how to exploit the structure of En in order to devise
a fast algorithm for solving linear systems involving the matrix EnE

T
n . In the specific

case of local graphs [11], which generalize the idea of grid graphs, the self-similarity
of the matrices En and En′ , with n′ ∼ θn, θ ∈ (0, 1) independent of n, suggests the
use of an algebraic multigrid method [13] since the matrix En′ can be interpreted as
a coarse grid version of the original matrix En.
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