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Abstract

When minimumorderingsproved too difficult to deal with, Rose, Tarjan, and
Leukerinstead studied minimalorderingsand how to compute them (Algorithmic
aspectsof vertex eliminationon graphs, SIAM J. Comput., 5:266–283, 1976). This
paper introduces an algorithm that is capable of computing much better minimal
orderingsmuch moreefficientlythan the algorithmin Rose et al. The new insightis
a way to use certainstructuresand concepts from modern sparse Choleskysolvers
to re-expressone of the basic resultsin Rose et al. The new algorithm begins with
any initial ordering and then refines it until a minimal ordering is obtained. It
is simple to obtain high-quality low-cost minimal orderingsby using fill-reducing
heuristicorderingsas initialorderingsfor the algorithm. We examine severalsuch
initial orderings in some detail.
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1. Introduction

Let A be an n x n symmetric positive definite matrix, let P be an n x n permutation

matrix, and let L be the Cholesky factor of F’APT. A minimum ordering is any ordering

P that minimizes the number of nonzero entries in L, subject to the usual assumption

that no lucky cancellation occurs. Rose, Tarjan, and Leuker [14] conjectured that the

problem of computing a minimum ordering is NP-complete, and later Yannakakis [17]

verified this conjecture. Rose et al. [14] turned their attention instead to the easier

problem of computing a minimal ordering. This paper revisits this problem: we show

how any initial ordering can be refined to obtain a minimal ordering whose fill is a

subset of the initial ordering’s fill.

Following Rose et al., we use graphs to define minimal orderings. Let G = (V, E)

be the graph of PAPT; that is, V = {1,2,.. . ,TZ}, and an undirected edge {i, j}, i # j,

belongs to E if and only if the (i, j)-entry of PAPT is not zero. (Only the labeling of

the vertices varies as P varies; the structure of the graph and of course the number of

edges, e = j13\,remain the same.) Define G+ to be the@ graph associated with PAPT;

that is, G+ is the graph of L+LT under the usual assumption that no lucky cancellation

occurs. Note that G+ = (V, E U F), where I’ is composed of the fill edges created by

the elimination process; hence, G+ is a supergraph of G. A graph is chordal if every

cycle of length greater than three has a chord, that is, an edge joining two nonadjacent

vertices in the cycle. It is well known [12, 13] that G+ is a chordal supergraph of G. A

minimum ordering P minimizes the number of edges in G+ over all orderings; in this

case, G+ is a minimum chordal supergraph of G. For a minimal chordal supergraph

G* = (V, E U F*) of G, every supergraph G’ = (V, -E U F’) of G such that F’ C F* is

not chordal. A minimal ordering produces a fill graph G+ that is a minimal chordal

supergraph of G.

Broadly speaking, the primary goal of this paper is to carry a few of the key in-

sights in Rose et al. [14] back into the sparse factorization setting in a fhitful way.

We use a key result in Rose et al. [14] to lay the groundwork for a new minimal or-

dering algorithm. Beginning with any initial ordering, the new algorithm generates a

sequence of reordering, each removing additional fill from the current fill graph, until a

minimal chordal supergraph, and hence a minimal ordering, is obtained. Several famil-

iar concepts and algorithms from sparse Cholesky factorization are used to formulate

and implement the algorithm; these include elimination trees, supernodes, supernodal

elimination trees, topological orderings, the minimum degree algorithm, and column

counts. Although we assume some familiarity with these concepts and algorithms, we

also include references and a minimum of background material where needed.

Both the LEX M algorithm of Rose et al. [14] and an algorithm of Ohtsuki [11]

compute a minimal ordering in O(ne) time. Partly because of the use of quotient

graphs and minimum degree in the new algorithm, the new algorithm’s time complexity
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remains unknown; consequently, we rely exclusively on empirical testing to evaluate the

algorithm’s time efficiency. The first tests we conduct in Section 5 show that LEX M

does not measure up to the new minimal ordering algorithm in either ordering quality

or ordering time. The same should hold true for the algorithm of Ohtsuki. These first

tests use minimum degree with internal degree and no multiple elimination (MDint ) to

produce the initial orderings. These initial orderings are often minimal or very close

to minimal; often the minimal ordering algorithm serves merely as a relatively cheap

means to verify that the initial ordering is minimal.

Many of the tests in Section 5 with other initial orderings produce similar results,

though there are some dtierences worth observing. The orderings tested include ran-

dom (Ran) orderings, METIS nested dissection (ND) orderings [6], multisection (MS)

orderings [2, 5] based on METIS ND, and minimum degree with external degree and

no multiple elimination (MDext ) [7]. Roughly speaking, most of the MDint orderings

are minimal, the MDext orderings are very close to minimal, and the MS orderings are

close to minimal. The ND orderings are not as close to minimal as the other ordering

heuristics, and some of the ND orderings are far from minimal. Finally, the random

orderings are extremely far from minimal, but the minimal orderings obtained from

random initial orderings are poor fill-reducing orderings and are expensive to compute.

The following gives an outline of this paper. Section 2 presents background material

from Rose et al. [14] and horn the area of sparse Cholesky factorization. Section 3

presents the main result, which uses some concepts and tools from sparse Cholesky

factorization to recast one of the insights in Rose et al. In Section 4 the main result

forms the basis for a new minimal ordering algorithm. Section 5 compares the new

algorithm with the LEX M algorithm and experiments with various initial orderings.

Section 6 summarizes and adds a few concluding remarks.

2. Background

In Section 2.1, we state a scheme for obtaining a minimal chordal supergraph from a

nonminimal chordal supergraph; the scheme is implicit in a result of Rose et al. [14].

With further development and refinement, this scheme will become an algorithm for

computing minimal orderings. Section 2.1 also states another key result from [14]. In

Section 2.2, we give some concepts and tools from sparse Cholesky factorization that

will be used to develop the new minimal ordering algorithm.

2.1. Computing minimal chordal supergraphs

Let G* be a chordal supergraph of the graph G. A candidate edge {u, v] is any fill edge

such that G* remains chordal after {u, v} has been removed from the graph. Rose et

al. [14] showed that every nonminimal chordal supergraph has a candidate edge. As

an immediate consequence of this result and the definition of candidate edges, we have
.



the following proposition.

Proposition 1 (Rose et

has no candidate edges.

al. [14] ). A chordal supergraph is minimal if and only if it

As an immediate consequence of Proposition 1, the scheme shown in Figure 1 will

produce a minimal chordal supergraph. The set of candidate edges changes as edges

are removed from the graph: some noncandidate fill edges may become candidate edges;

some candidate edges may cease to be candidate edges.

Input: a chordal supergraph G* of the graph G.
while there is a candidate edge in G* do

remove a candidate edge from the graph G*;
endwhile;

Figure 1: Scheme for generating a minimal chordal supergraph.

The following proposition from Rose et al. [14] characterizes the candidate edges.

Proposition 2 (Rose et al. [14]). Let G*, which is (V, E U F), be a chordal super-

graph of G, which is (V, E). A fill edge {u, v} ● F of G* is not a candidate edge if and

only if there exist two vertices a and z such that a and z are both adjacent to u and v

in G*, but not adjacent to one an,other in G*.

In Section 3, we use concepts and tools from sparse Cholesky factorization to recast

this characterization in the case where G* is the fill graph G+ associated with the graph

G of PAPT.

2.2. Concepts and tools from sparse factorization

The fill graph G+ is obtained from the graph G of PAPT by an elimination process

that models the factorization elimination process. Let G~ be the graph obtained from

G by adding every edge needed to make the vertices adjacent to k (adjG [k]) a clique

and then by eliminating k and the edges incident upon k. The elimination process

replaces G with Gl, G with G2, G with G3, and so on, until it finally replaces G with

G._l. The fill graph has the edges belonging to the original graph G along with the fill

edges generated by the elimination process. We also define an elimination graph GX

for an arbitrary subset of vertices X. This graph is obtained by using the elimination

process to eliminate in any order the vertices of X (and only the vertices of X). The

resulting graph is independent of the order in which the vertices of X are removed.

For a vertex k of a graph G’, let madj~, [kl be the neighbors of k in G’ that are num-

bered higher than k. The parent function of the elimination tree (or forest) associated
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with a fill graph G+ is defined as follows: if madjG+ [k] is empty, then the parent of k

is null and k is a root in the forest; otherwise, the parent of k is the lowest numbered

member of madjG+ [k]. The following fact [9] proves useful later on. Let c1, C2,. . .>Q
be the children of a vertex p in the elimination tree. Then

1

( ){p}u ‘adjG+b] = b‘adjG+[d u {p} u‘adjGb]. (1)
i=l

Note that Eq. (1) holds only for fill graphs G+ and not for arbitrary chordal super-

graphs.

A vertex a is an ancestor of vertex d (and d is a descendant of a) if a lies on the

path from d to the root of d’s tree in the elimination forest. The vertex a is a prope~

ancestor of vertex d (and d is a proper descendant of a) if a is distinct from d and an

ancestor of d.

Supernodes have become a familiar tool in various computations associated with

sparse factorization. The fundamental supernode partition is commonly used and has

received some attention. Liu, Ng, and Peyton [10] give an algorithm that computes the

fundamental supernode partition in O(n + e) time. The supernode partition defined

here is similar to supernode partitions used in practice, but it does not consist of

fundamental supernodes nor does it define the maximal cliques of the chordal graph.

This departure from the usual supernode partitions is motivated entirely by the problem

at hand; the reason for it will become apparent in the proof of our main result, presented

in Section 3.

Definition 1. Let G+ be the fill graph associated with the graph G of PAPT. We

define a supernode partition as follows: a child-parent pair c and p in the elimination

tree belong to the same supernode if and only if c is the only child of p for which

madj~+ [c] = {p} U madjG+ ~].

For a given elimination tree, this supernode partition is unique. Note that each super-

node is a path in the elimination tree from a lowest vertex to an ancestor of the lowest

vertex. All references to supernodes in this paper are to those defined by Definition 1.

We will also need the supernodal elimination tree associated with this supernode

partition. Each supernode S is a vertex in the supernodal elimination tree. Supernode

P is the parent of supernode C if the parent (in the elimination tree) of the “top”

vertex in C is a vertex in P. Supernode R is a root if the top vertex in R is a root

vertex in the elimination tree (or forest).

Let S be a supernode. A vertex u is a proper descendant of S if u @ S and u is a

descendant of some vertex in S in the elimination tree. Let 2’[S] be the subtree of the

elimination tree rooted at S; that is, ‘2’[S] includes the vertices of S and all vertices

that are proper descendants of S in the elimination tree. Let D[S’1 := TIS1 \ S so that
it contains precisely the proper descendants of S in the elimination tree. Note that a

.
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supernode S’ is a“proper descendant of a supernode S in the supernodal elimination

tree if and only if the vertices of S’ are proper descendants of S in the elimination tree.

3. A characterization of candidate edges

We now state and prove an alternative characterization of the candidate edges, which

is the basis for the algorithm we develop in Section 4.

Proposition 3. Let G+ be the fill graph associated with the graph G of PAPT. Let

S be a supei-node in the supernode partition given by Definition 1. Assume that

(1) u ~ S, (2) u < v in the elimination order, and (3) {u, v} is a fill edge. We then

have the following: {u, v} is a candidate edge if and only if {u, v} is not an edge in the

elimination graph G~[sl -

Proof: Throughout the proof, let j be the first vertex (i.e., the lowest numbered

vertex) in supernode S.

Assume that {u, v} is not a candidate edge. By Proposition 2 there exist then

two vertices a and z that are adjacent to u and v in G+ but not adjacent to each

other in G+. Now, by assumption u e S, and ~ is the first vertex in supernode S.

It follows that madjG+ [u] Q {j} U madjG+ [j]. The lower numbered neighbors of u in
G+ must be descendants of u in the elimination tree [9, 16]. Therefore, these lower

numbered neighbors belong to Z’[Sl, which is S U D[5’1. Since S C {~} Umadj@ [j], we

have adj~+ [u] < D[S] U {~} U madj~+ [j]. It then follows that both a and z belong to

D[S] U {j} U madjG+ [f]. Since {~} U madjG+ [f] is a clique in G+, at least one of the
two nonadjacent vertices a and z belongs to D [S]. It follows that {u, v} is an edge in

the elimination graph G~[sl.

To prove the other direction, assume that {u, v} is a candidate edge and that {u, v}

is a fill edge in the elimination graph GDIS1. It suffices to derive a contradiction from

these assumptions.

Since {u, v} is a fill edge in the elimination graph GDIS1, there exists a vertex

a c D[S’1 that is adjacent to both u and v in G+. For the following reasons we may

assume without loss of generality that a is a child of a vertex in S. Any descendant

vertex d of S has as one of its ancestors a vertex c that is a child of some vertex in S;,

moreover, for any child c of a vertex in S and any descendant d of c, we have

madjG+ [dl n ({~} U madjG+ [f]) ~ mdjG+ [c] n ({f} u m@jG+[. f]).

Now, since {u, v} is a candidate edge by assumption, it follows that any pair of

vertices adjacent to both u and v are adjacent to one another. Since u and v are both

adjacent in G+ to every vertex in {~} U madjG+ [~]\{u, v}, it follows that a is adj scent in

G+ to every vertex in {~} U madjG+[~], so we can write {f} U madj~+[j] G madjG+ [Q].
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It moreover follows that a is a child of j; for if it were a child of some other vertex of S

then it could not be adjacent in G+ to ~ because j would then be neither an ancestor

nor a descendant of a. Furthermore, madjG+ [a] = {~} U madjG+ [~], because by (1),

madjG+ [a] L {j} U madjG+ [f].
Now, supernode S begins at vertex ~; that is, no descendants of ~ belong to S.

Consequently, existence of the child a off for which madjG+ [a] = {f}u madjG+[f]
implies the existence of another child z of f for which madjG+ [z] = {f}u m@G+ [f];
were there no such vertex z, vertex a would have been incorporated into the supernode

S and S would not begin at ~. Vertices a and z clearly are adjacent to u and v in G+,

but they are not adjacent to each other because they are siblings in the elimination
tree. From Proposition 2 it follows that {u, v} is not a candidate edge, contrary to our

assumption that it is a candidate edge. The result follows from this contradiction. ■

4. A minimal ordering algorithm

Let G+ be the fill graph associated with the graph G of PA.PT, and consider the

supernode partition given by Definition 1. In the following definition, we partition

the candidate edges among the supernodes. The vertices of S are listed in elimination

order.

Definition 2. Let S = {f=U1, U2 ,. ... uT} be a supernode in the supernode partition

given by Definition 1. The candidate edges of S in G+ include every candidate edge
{u, v) for which u ~ S and v > f.

Proposition 3 says that the candidate edges of S are missing from the elimination

graph GDIS1. If S has any candidate edges, then some of them can be removed simply

by reordering the vertices of S; what follows in Subsections 4.1 and 4.2 expands on and

justifies the preceding statement. The algorithm is presented in Subsection 4.3.

4.1. Candidate edges and degrees in an elimination graph

First, we need two more definitions. Define the degree of a

be the number of neighbors of v in G’, that is, degG, (v) :=

and w in a graph G’ are said to be indistinguishable if

{v} U adj~,[v] = {w} U adjG,[w].

vertex v in a graph G1 to

@dj@[v]l. Two vertices v

Let S={j=ul, u2,.. ., Ur} be a supernode in the supernode partition given by

Definition 1. Again, the vertices of S are listed in elimination order. “Consider the

elimination graph GDIS1. Recall that for each vertex in S the set D [q cent ains every

descendant in the elimination tree that does not belong to S. Since vertex f has no

proper descendant that belongs to S, every proper descendant off belongs to D[S’J.
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*

Note also that none of the ancestors off are included in D[5’1. It follows [9] that

{f} u adjGD[.l[f] = {f} u‘adjG+[.f]. (2)

Now, consider the elimination graph obtained by eliminating ~ from G~[S1, that is,

the elimination graph GX where X = {~} U D[fi. From (2) it follows that madjG+[~]

is a clique in Gx. Since {UZ, ..., UT} G madjG+ [j], it follows that for i, 2< i s r,

From (3) and the fact that

{ui}udkx [w]2 m@iG+[f]. (3)

S is a supernode in G+, it follows that for i, 2 s i < r,

{w}U @Gx[w] = m@jG+ [f]. (4)

In other words, the vertices U2,.. ., Ur become indistinguishable from one another after

~ is removed from GD[sl to obtain Gx, as described previously. But the vertices

f,u2.,... , Ur are not necessarily indistinguishable from one another in Gqsl, and this

is the key to the algorithm.

Now we shift the focus back to GD[51. It follows directly from (4) that for every i,

2Si Sr, we have

{w} u adjGD[.l[~z] C {f} U madjG+[j]. (5)

Note that since {j} UmadjG+ [j] is a clique in G+, any pair of vertices from this clique

that is not joined by an edge in the original graph is joined by a fill edge in G+. From (2)

and Proposition 3, it follows that S has no candidate edges incident upon ~. It follows

from (5), Proposition 3, and the preceding comment on fill edges that the candidate

edges of S incident upon Ui (2 < z < r) are precisely those joining Ui to any vertex in

({f} u ‘adjG+ [f)) \ ({%} u adjGD[q[ui]). (6)

It follows from (2) and the preceding statement that the number of candidate edges of

S incident upon ui is

degG~[~l(.f) – degG~[~l(ui). (7)

4.2. Using minimum degree to remove candidate edges

From the last statement of the preceding subsection, it follows that a vertex ui G S

with minimum degree degG~l~l(ui) has the most candidate edges of S incident upon it

in G+. Select such a vertex Ui to be eliminated from GDISI. The set adjG~[~l[ui] will be

the monotone adjacency set of ui no matter how the elimination process is completed.

The candidate edges of S incident upon ui in G+ join Ui with the vertices of

({f} U madJG+[fl) \ ({”i} u ad.iGD{~l[uil);
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such candidate edges exist if and only if degG~l~l(u~) < degG~l~l(j). Since the set

adjG~[S1[ui] will be the monotone adjacency set of Ui, it follows that all the candidate

edges of S incident upon ZGdo not appear in the new elimination graph; moreover, .

these candidate edges are the only edges to disappear from the monotone adjacency

set of ui. Note that no new edges that are not in G+ are introduced since

adjGqq [Ui] Q {i] u m@G+[.f]\ {Ui}.

We then repeat the process. Let X = {ui} U D[S], and consider the elimination

graph Gx. Choose from the uneliminated vertices of S a vertex Uj with minimum

degree degGx (uj). Vertex uj has the most candidate edges of S incident upon it in

G+ that were not filled in by the previous elimination of ui. The vertex uj will be

eliminated from Gx; hence, the set adjGx [uj] will be the monotone adjacency set of Uj

no matter how the elimination process is completed. Any nonfilled candidate edges of

S incident upon uj in G+ join Uj with the vertices of

such candidate edges exist if and only if degGx (Uj) < degGx (~). Since the set adjGx [uj]

will be the monotone adjacency set of uj in the new elimination graph, it follows that

all the nonfdled candidate edges of S incident upon Ui do not appear in the new

elimination graplq moreover, these candidate edges are the only edges to disappear

from the monotone adjacency set. Note that no new edges that are not in G+ are

introduced since

adkx[uj] C U} u mab+[. fl \ {Ui>uj}.

We continue this process until all the vertices of S are removed from the original

elimination graph G~[sl. If S has any candidate edges at all, then some are removed by

applying the minimum degree ordering heuristic to the vertices of S in the elimination

graph G~[~l, as we did previously. Moreover, only candidate edges of S are removed by

this process. If S has no candidate edges, then the vertices of S are indistinguishable

from one another in GDI.S1,and applying the minimum degree ordering heuristic to

the vertices of S in the elimination graph GDIS1 produces an arbitrary ordering of

S and does not change the fill. In this case, the sequence of degrees is degG~[~l(~),

‘egG~[s] (f)-l,..., and ‘egG~ [q (~) –T-+ 1; moreover, if u~l,uj2,..., u~r is any ordering
of S, then the monotone adjacency sets are {f} UmadjG+ [f] \ {Uil }, {f} u m@G+ [f] \

{’242,,U,*}, --- >and {-f} U madj&[~] \ {%1, z%, . . . . %}.

4.3. The algorithm

The algorithm for computing a minimal ordering, includlng some implementation de-

tails, appears in Figure 2. The algorithm requires an initial ordering; it will work with

.

.
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.

.

.

any initial ordering, including a random one. The algorithm repeats the major step

until there is no reduction in the factor nonzero count (i.e., the fill edges). A major
* step breaks into two parts:

1.

2.

.

,

symbolic processing using the current ordering, and

a block elimination process with minimum degree refinement on each block (super-

node) to obtain a new ordering.

[Initialordering can be any ordering]

[Repeat ordering refinementstep until no progress is encountered]
until the total factor nonzero count is not reduced do

[Symbolic preprocessingusing current ordering]
Compute eliminationtree and postorder it [9];
Compute column factor nonzero counts [4];
Compute the supernodes (Definition 1);
Compute supemodal eliminationtree and a topological ordering
of this tree;

[block eliminationprocess in block topological order and with
minimum degree refinementto obtain new refinementof old ordering]
Begin eliminationprocess with original graph;
for each supernode S (in topological order) do

until all vertices in S have been eliminateddo
Select a vertex v c S whose internal degree in the
current eliminationgraph is minimum among the
uneliminatedverticesin S;
Eliminatev and form the quotient graph
representationof the new eliminationgraph;

end until;
end for;

Replace old ordering with new ordering;
[Herewe check new total factor nonzero count againstold]

end until;

Figure 2: Algorithm for computing a minimal ordering, including some implementation
details.

During the symbolic part of a major step, the algorithm first computes the elimina-

tion tree, and then postorders it. We use the fast algorithm in [7] to compute the elim-

ination tree; the postordering is needed to compute the column factor nonzero counts.

(Column factor nonzero counts refer to the number of nonzero entries in each column of
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the Cholesky factor under the current postordering of the elimination tree.) Comput-

ing the column factor nonzero counts is achieved using the fast algorithm in [4]. With

the elimination tree and column counts in hand, it is trivial to compute the supernodes

of Definition 1 and the associated supernodal elimination tree. Finally, the algorithm

computes a topological ordering of the supernodal elimination tree; this also is trivial.

During the elimination part of a major step, the algorithm processes the supernodes

in the given topological order of the current supernodal elimination tree. The elimi-

nation process is a block elimination process; for any supernode S, the algorithm uses

the minimum degree algorithm to eliminate the vertices of S together, and only after it

has removed in the same fashion, supernode by supernode, the descendant vertices of

S, D [S]. The topological ordering also ensures that no vertex from an ancestor super-

node is removed before the vertices of the supernode and its descendants. In short,

the analysis presented in Subsections 4.1 and 4.2 applies directly to the elimination

graphs generated by the algorithm. That is, any supernode S that has candidate edges

will have some of the candidate edges removed with no edges added beyond the fill

generated by the current ordering. Moreover, any edges removed are candidate edges.

The elimination process generates a new ordering. During the elimination process,

the algorithm accumulates the amount of fill incurred by this ordering, and when

the elimination process is finished, the algorithm compares it with the amount of fill

incurred by the old ordering. If there is no reduction, then the algorithm stops. From

the argument in the previous paragraph, a major step of the algorithm removes only

candidate edges and removes them if and only if there exist such edges in the current fill

graph. Since there are a finite number of edges, the algorithm must terminate at some

point, and clearly it will be at the point where there are no candidate edges in the old fill

graph and no candidate edges in the new fill graph. It follows from Proposition 1 that

the algorithm terminates with a minimal ordering and minimal chordal supergraph.

The algorithm is, indeed, merely an elaboration of the scheme shown in Figure 1.

Note that it is important to use internal degree rather than external degree during

the block elimination process. Internal degree gives priority to vertices incident upon

the most candidate edges, as desired. External degree may give priority to a vertex

incident upon no candidate edges even though there are vertices available that are

incident upon candidate edges. Consequently, external degree could fail to detect

candidate edges for a supernode that has some, while internal degree is sure to detect

and remove some candidate edges from any supernode that has some.

Note also that we have adapted a minimum degree code to perform the supernode-

by-supernode elimination process. The adapted code inherits several of the standard

enhancements that have been incorporated into such codes [3, 7]; these include mass

elimination, indistinguishable nodes, incomplete degree update, and the generalized

element storage scheme. Because any two vertices from distinct supernodes must be

treated as separate vertices, some opportunities for mass elimination or detecting in-

.

.
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.

distinguishability must be passed over. On the other hand, because the elimination

process needs to know degrees of vertices in one supernode at a time, we can greatly

reduce the number of degree calculations needed. Our timings indicate that the gains

from the latter typically far outweigh the costs from the former.

5. Test results

We wrote Fortran 77 implementations of the.new minimal ordering algorithm described

in the previous section and the LEX M algorithm described on pages 273 and 280–281

of Rose et al. [14]. We used Fortran compiler F77 with compiler optimization level -O,

and we ran the tests on a SUN Spare 20 workstation (model 41).

The primary purpose of Subsection 5.1 is simply empirical proof of concept for

the new algorithm. To achieve this goal it suffices to show that, in practice, the

new algorithm can produce high-quality minimal orderings very efficiently compared

with the LEX M algorithm. Since we are interested in obtaining high-quality minimal

orderings as efficiently as possible, we chose minimum degree orderings to be the initial

orderings in Subsection 5.1. To be consistent with the later use of internal degree in

the refinement step, we use internal degree rather than the superior external degree [7]

to compute the initial ordering, too. For the same reason we do not use multiple

elimination; we use minimum degree with internal degree and no multiple elimination

(MDint). While establishing proof of concept, we wiI.1also observe that MDint often

computes minimal orderings.

We examine random (Ran) intitial orderings in Subsection 5.2, minimum degree

initial orderings with external degree and no multiple elimination (MDext ) in Sub-

section 5.3, METIS nested dissection (ND) initial orderings in Subsection 5.4, and

multisection (MS) initial orderings based on METIS ND in Subsection 5.5.

5.1. Proof of concept

The large run times of LEX M limited us to relatively small matrices for our test runs.

Despite their limited size, the test matrices suffice for our purposes. For more accurate

comparisons we computed ten random permutations for each graph, we computed ten

permuted versions of the adjacency structure for each graphl and we ran both algo-

rithms on each of the ten permuted adjacency structures for each of the matrices. We

then averaged the reported statistics over the ten runs for each matrix. We report

factor floating point operations rather than fill because comparing factor flops usu-

ally emphasizes the differences between orderings more than comparing factor nonzero

counts. Table 1 reports average factor flops for the initial MDint ordering, the final

ordering obtained by the new algorithm, and the LEX M ordering. Table 2 reports av-

erage run times for both algorithms and the average number of major iterations taken

by the new algorithm.



Matrix
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTI%23
BCSSTK24
BCSSTK25
BCSSTK26

MDint/new-minimal
Initial MDint

11,647,635
49,259,575

132,932,902

5,587,100

32,173,189

44,214,573

18,833,613

81,138,522

213,760,890

68,694,616

10,432,368

193,568,418

169,108,792

220,082,381

155,701,425

121,633

160,449,169

40,172,956

399,921,493

1,646,503

Final i LEX M
II

11,647,635 II 20,493,469

49,259,575 114,737,552

132,932,902 345,508,373

5,587,100 49,813,698

32,173,189 96,484,650

44,214,573 341,965,690

18,833,613 35,749,867

81,138,522 186,792,889

213,760,890 617,861,622

68,694,616 144,702,445

10,432,368 28,393,024

193,568,418 481,766,496

169,108,792 145,053,771

219,444,619 637,065,955

155,701,425 2,012,990,730

117,440 126,733

160,449,169 304,238,013

40,172,956 107,450,852

399,921,493 525,698,984

1,646,417 14,716,146

Table 1: Average factor floating point operations associated with MDint/new-minimal

12

and with LEX M. Averages are taken over ten runs with randomly permuted adjacency
structures.
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DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26

MDint/new-minimal
mixiF

time

0.23
0.80
1.44
0.08
0.22
0.28
0.18
0.62
1.17
0.24
0.10
0.54
0:40
1.02
1.15
0.02
0.53
0.13
3.35
0.11

i@i-
iter.

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.1

1.0

8.1

1.0

1.0

1.0

1.3

Minimal
time

0.21
0.54
1.07
0.08
0.28
0.24
0.15
0.48
0.92
0.15
0.09
0.28
0.43
1.80
0.70
0.17
0.18
0.19
1.58
0.12

Total
time
0.44
1.34
2.51
0.16
0.50
0.52
0.33
1.10
2.09
0.39
0.19
0.82
0.83
2.82
1.85
0.19
0.71
0.32
4.93
0.23

LEX M
time
22.30

134.27
440.42

6.09
31.02
47.88
18.89

126.72
452.17

11.88
7.87

37.15
90.07

331.14
138.01

0.37
12.84
37.98

565.62
4.43

Table 2: Average ordering times (in CPU seconds) and average number of major iter-
ations for MDint/new-minimal and for LEX M. Averages are taken over ten runs with
randomly permuted adjacency structures.



A “1.0” in column three of Table 2 means that for all ten permutations of

adjacency structure the initial MDint ordering is minimal. Consequently, for all

permutations of the adjacency structure the new minimal ordering algorithm takes

14

the

ten

one .

major step. For 17 of the 20 problems, the initial MDint ordering is minimal for all ten

permutations of the adjacency structure. For these problems, the initial factor flops

and the final factor flops are the same. For BCSSTK17 and BCSSTK26, there is, on

average, a small change: less than a 0.5% reduction in factor flops. The largest change

is for the very smalI probIem BCSSTK19, but it is still only a 3.5% reduction in factor

flops. Clearly, the new minimal ordering algorithm serves most often merely to verify

that the initial MDint ordering is minimal; in the other three cases, it trims away fill

(and factor flops) from nearly minimal MDint orderings until minimality is achieved.

In short, the MDint ordering heuristic comes very close to being a minimal ordering

algorithm in our tests.

Also note in Table 1 that the MDint/new-minimd orderings consistently cost far

fewer factor floating point operations than the LEX M orderings. For only one problem,

BCSSTK16, does LEX M outperform MDint/new-minimal in this regard. Typically,

LEX M requires anywhere horn a factor of two to a factor of four more factor flops

than MDint/new-minimal; sometimes LEX M requires a factor of eight or nine more

factor flops than MDint/new-minimal. This superiority of MDint /new-minimal is not

surprising; LEX M, which is a breadth-first search ordering, has much in common with

bandwidth and profile reducing orderings, and hence a good general sparse ordering

like MDint is naturally expected to reduce factor flops better than LEX M. The tests

serve to confirm this expectation.

In Table 2, the total run-times of the MDint/new-minimal algorithm are, with one

except ion (B CSSTK19), a very small fraction of the corresponding run times of the

LEX M algorithm. This is not surprising; the time complexity for LEX M is O(ne), and

the O(ne) time complexity is fully realized by the implementation [14]. Although the

time complexity of the minimum degree heuristic is unknown, the empirical efficiency of

modern implementations of this heuristic is well established [3, 7]; it would be somewhat

surprising to see minimum degree ordering times exceed any significant fraction of the

corresponding LEX M ordering times.

There are known problems with the time efficiency of the minimum degree algo-

rithm. For example, it is well known that a dense or near-dense row in the matrix

seriously degrades the time efficiency of conventional implementations. Such rows are

rare in practice and rare in most test collections; we apparently included no test prob-

lems on which the minimum degree algorithm runs very inefficiently.

In the cases where the new minimal ordering algorithm merely confirms the mini-

mality of the initial MDint ordering, the time to cofirm minimality is usually smaller

than, but comparable ,to, the MDint ordering time. Exceptions include BCSSTK23

and 13CSSTK25, for which the time to confirm minimality is unusuaIly smaIl, and
.

.



Matrix
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26

Ran/new-minimal
Initial R&
4,757,731,242

54,861,712,933

312,439,901,383

1,062,532,716

6,447,802,052

18,158,402,295

4,963,022,985

56,608,430,168

321,186,967,378

1,870,073,867

1,210,729,528

13,688,813,940

29,179,705,516

253,889 >063,160

137,861,398,502

13,056,150

4,771,733,090

10,566,075,667

548,110,368,126

814,879,011

Fhml

37,682,529
220,798,340

756,179,560

42,332,133
142,705,755
384,032,920
62,885,285

339,173,406
1,112>385,506

277,115,570
31,954,148

1,048,872,525
553,218,374

1,361,456,809
4,006,320,908

197,659
1,167,104,345

95,085,626
20,380,728,988

9,266,978

LEX M
20,493,469

114;737,552

345,508,373

49,813,698

96,484,650

341,965,690

35,749,867

186,792,889

617,861,622

144,702,445

28,393,024

481,766,496

145,053,771

637,065,955

2,012,990,730

126,733

304,238,013

107,450,852

525,698,984

14,716,146
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Table 3: Average factor floating point operations associated with Ran/new-minimal
and with LEX M. Averages are taken over ten runs with randomly permuted adjacency
structures.

NASA291O and BCSSTK24, for which the time to coniirm minimality is significantly

greater than the MDint ordering time. For BCSSTK17, BCSSTK19, and BCSSTK26,

the average time to compute the minimal ordering divided by the average number of

major iterations gives the average time per major iteration, which for each of these prob-

lems is less than but roughly comparable to the MDint ordering time. Only BCSSTK19,

with its 8.1 major iterations, has an MDint /new-minimal time (O.19) that approaches

in magnitude the time for LEX M (0.37).

5.2. Random

In the previous subsection, on the whole, the MDint initial ordering did the work

of computing minimal orderings, while the new minimal ordering algorithm merely

detected minimality. In this subsection we look at the opposite extreme: the initial

orderings are random, and the effort to achieve minimality is exerted solely by the new

minimal ordering algorithm. Because of large run times, we run tests on the same test

set of relatively small problems used in the previous subsection. The results of the

Ran/new-minimal runs are presented in Tables 3 and 4.

The initial random orderings are very poor, as expected; the factor flops for the

random orderings are one or two orders of magnitude larger than the factor flops for



Matrix
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26

time
0.02
0.05
0.09
0.01
0.02
0.03
0.02
0.05
0.09
0.01
0.01
0.02
0.03
0.07
0.07
0.01
0.02
0.02
0.09
0.01

Ran/
_

iter.
178.8

371.4

570.5

112.9

83.6

232.6

188.1

380.5

591.8

188.4

69.0
291.5

133.3

410.1

1171.7

45.1

47’3.5

103.3

1441.3

120.1

;w-minim
Minimal

time
50.30

383.54
1665.96

15.36
25.37

133.07
52.46

403.84
1766.61

52.60
8.45

190.56
84.36

1315.54
9608.18

1.20
350.30
31.20

17374.76
16.11

Total
time

50.32
383.59

1666.05
15.37
25.39

133.10
52.48

403.89
1766.70

52.61
8.46

190.58
84.39

1315.61
9608.25

1.21
350.32
31.22

17374.85
16.12

16

LEX M
time
22.30

134.27
440.42

6.09
31.02
47.88
18.89

126.72
452.17

11.88
7.87

37.15
90.07

331.14
138.01

0.37
12.84
37.98

565.62
4.43

Table 4: Average ordering times (in CPU seconds) and average number of major iter-

.

ations for Ran/new-minimal and for LEX M. Averages are taken over ten runs with
randomly permuted adjacency structures.
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the corresponding final minimal orderings. The large reductions in factor flops require

many major iterations; generally, hundreds of iterations are required, with over a thou-

sand iterations required for BCSSTK18 and BCSSTK25. Though the final orderings,

greatly improve upon the initial random orderings, the final orderings are poor com-

pared with the MDint orderings; moreover, the Ran/new-minimal orderings are poor

compared with the LEX M orderings, with Ran/new-minimal orderings producing more

factor flops than LEX M for 17 of the 20 problems. For the following matrices, the

Ran/new-minimal ordering produces over twice as many factor flops as LEX M: DIS120,

BCSSTK15, BCSSTK16, BCSSTK17, BCSSTK23, and BCSSTK25. The three matri-

ces where Ran/new-minmal outperforms LEX M are small (NASA1824, BCSSTK24,

and BCSSTK26), and the improvement of LEX M over Ran/new-minimal orderings

for these matrices is relatively small.

It is not surprising that the run times to compute the initial random orderings are

extremely small compared with the large run times to compute the associated mini-

mal orderings. After all, a random ordering is. obtained by a single O(n log n) sort.

Several factors contribute to the exceptionally large run times for Ran/new-minimal

orderings. First, and most obvious, is the large number of major iterations required for

each problem. Second, the cost of each iteration is increased by the large amounts of

fill that must be represented by the sequence of quotient graphs. Third, random order-

ings lead to relatively small supernodes, so the minimum degree refinement algorithm

enjoys limited compression from supernodes. Fourth, the minimum degree refinement

code uses the trick described by Amestoy, Davis, and Duff [1] of recompressing the

quotient graphs when space is exhausted; the large amounts of fill and relatively small

supernodes lead to many recompression.

The run times for Ran/new-minimal are often poor compared with the LEX M

orderings, with 17 out of 20 problems requiring more run-time than than LEX M. For

many of the matrices, it requires a factor of two up to a factor of four more time. The

results in this subsection, along with the rest of the results in this section, indicate

that the new minimal ordering algorithm depends on a high-quality initial ordering to

obtain a high-quality minimal ordering using small run time.

5.3. Minimum degree with external degree

Next, we obtained initial orderings from a minimum degree algorithm with external

degree and no multiple elimination (MDext) [7]. We include it because it has become

a standard by which other orderings are evaluated and because we wish to compare it

with MDint. We include all the test matrices used in the previous two subsections and

add some larger matrices to the test set, increasing the total from 20 to 33 matrices.

Tables 5 and 6 present the results of our tests.

The results are quite similar to those obtained with initial orderings from MDint.

However, among the 20 smaller problems used in the previous two subsections, only



Matrix

CRYO1
CRY02
CRY03
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK28
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
BCSSTK35
BCSSTK36
BCSSTK37

MDext/new-minimal
AVK.factor flom

Initial MD~xt
318,558,468

4,042,557,744
13,427,942,015

9,854,297
40,515,917

112,984,002
4,922,550

23,065,112
36,171,302
16,804,878
66,258,263

181,019,709
59,521,086
9,276,441

169,602,058
140,546,882
197,614,074
134,648,713

101,040
141,524,137
36,204,596

325,741,745
1,726,326

38,771,930
429,195,651
933,847,752

2,510,827,417
1,059,279,331
1,318,874,270

400,228,680
619,945,112
556,241,428

~inal
318,451,818

4,042,253,531
13,427,137,055

9,854,297
40,515,917

112,984,002
4,912,521

23,042,832
36,171,302
16,804,878
66,258,263

181,019,709
59,417,976
9,276,441

169,601,988
140,423,998
197,505,968
134,058,723

98,941
141,420,609
36,204,596

322,543,996
1,725,622

38,752,863
427,430,429
933,847,752

2,509,665,848
1,057,542,718
1,318,744,558

398,868,766
619,939,799
556,221,089

x@G-
iter.

1.3
1.2
1.3
1.0
1.0
1.0
1.2
2.0
1.0
1.0
1.0
1.0
1.2

1.0

1.1

1.6

1.5

2.2

5.6

1.3

1.0

3.0

2.0

2.0

2.0

1.0

2.0

2.3

1.5

3.1

1.4

2.0

Table 5: Average factor floating point operations associated with MDext/new-minimal.
Average is taken over ten runs with randomly permuted adjacency structures.
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Matrix

C!RYO1
CRY02
CRY03
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BC!SSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK28
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
BCSSTK35

E&&

MDextInew-minima
MDext
time

0.51
2.11
5.46
0.13
0.34
0.73
0.08
0.23
0.24
0.13
0.34
0.72
0.30
0.13
0.77
0.43
1.13
1.13
0.01
0.65
0.16
2.48
0.11
0.21
2.00
4.20

6.03

6.76

1.38

3.54

2.08

2.43

Ii@
iter.

1:3
1.2
1.3
1.0
1.0
1.0
1.2
2.0
1.0
1.0
1.0
1.0
1.2
1.0
1.1
1.6
1.5
2.2
5.6
1.3
1.0
3.0
2.0
2.0
2.0
1.0
2.0
2.3
1.5
3.1
1.4
2.0

Minimal
time

0.60
2.15
4.91
0.13
0.35
0.83
0.08
0.51
0.24
0.13
0.36
0.80
0.19
0.09
0.35
0.71
1.43
1.60
0.12
0.25
0.19
4.12
0.14
0.53
2.78
3.71
7.60

11.71
1.53
8.94
2.80
4.42

Total
time

1.11
4.26

10.37
0.26
0.69
1.56
0.16
0.74
0.48
0.26
0.70
1.52
0.49
0.22
1.12
1.14
2-56
2.73
0.13
0.90
0.35
6.60
0.25
0.74
4.78
7.91

13.63
18.47
2.91

12.48
4.88
6.85

Table 6: Average ordering times (in CPU seconds) and average number of major it-
erations for MDext /new-minimal. Averages are taken over ten runs with randomly
permuted adjacency structures.
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9 have all ten initial orderings minimal, in contrast to 17 when the initial orderings

are produced by MDint. Nonetheless, for every matrix but two, the reduction in factor

flops from initial to final ordering is less than 0.5%. For BCSSTK25, an average of three

major iterations leads to an average of 170reduction in factor flops; for the extremely

small problem BCSSTK19, an average of 5.6 major iterations leads to an average of

2% reduction in factor flops. The initial MDext orderings are very nearly minimal and

stand to gain very little from trying to squeeze out critical edges.

I 5.4. Nested dissection

An ND ordering finds a node bisector of the graph of A and numbers these vertices

last in the ordering. It applies this numbering process recursively to the remaining

pieces (i.e., connected components) of the graph. Current implementations apply this

numbering process to the graph until each of the remaining pieces has fewer than some

given number of vertices. (The ordering package we use subdivides no piece with 200 or

fewer vertices.) Following Ashcraft and Liu [2], we call these small pieces that remain

to be labeled domains.

We obtained initial ND orderings from the M13TLSND algorithm [6]. We executed

routine METIS-NODENDin version 3.0.3 of METIS with the default user-supplied options

(option (0) =0). We made one change to the algorithm in METIS; we postprocessed the

ordering obtained from METLS so that each domain is ordered using the constrained

minimum degree algorithm (with external degrees). Constrained minimum degree was

introduced by Liu [8] and has been used in the ND algorithms of Hendrickson and

Rothberg [5] and Ashcraft and Liu [2]. Constrained minimum degree applies minimum

degree to the vertices of a domain, using degrees in the complete elimination graph.

The results of our tests are shown in Tables 7 and 8. None of the initial ND

orderings are minimal; some are quite close to minimal, while others are quite far from

minimal (as measured by the percent decrease in factor flops from the initial to the

final orderings). For 20 of the 32 matrices there is a decrease in factor flops of 2% or

greater; for 12 of the 32 matrices there is a decrease in factor flops of 4% or greater;

for 5 of the 32 matrices there is a decrease in factor ffops of 11% or greater. Note that

the number of major iterations is only loosely connected with the percent reduction in

factor flops: for example, BCSSTK16 has a 14.10% reduction in 4.7 major iterations,

while BCSSTK13 has a O.7570reduction in 6.3 major iterations,

It is known that ND does not necessarily order the vertices of the separators in

the most efficient manner [2, 5, 15]. The vertices within a separator are numbered

arbitrarily by ND even though one ordering of the separator may reduce fill better

than another. On a more global level, an ND ordering may create significant amounts

of extra fill when it is used to order matrices arising from long, narrow structures. A

canonical example of this is ND applied to a path: minimum degree numbers the

singleton separators from the ends on in creating no fill, while ND imposes an order

.

.
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Matrix
CRYO1
CRY02
CRY03
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK28
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
BCSSTK35
BCSSTK36
BCSSTK37

ND/new-minimal
Avg. factor fioDs

Initial ND
269,627,898

1,880,205,121
5,569,301,060

11,401,297
42,021,435

109,090,527
5,781,541

23,121,841
35,646,032
15,157,149
55,866,936

138,377,652
52,599,234
7,991,080

86,038,909
151,625,532
189,513,839
86,877,095

116,858
95,742,282
37,133,108

372,742,122
2,058,885

47,149,103
330,065,817

1,164,467,420
1,186,768,833
1,338,162,758

848,645,138
486,821,573
653,046,189
641,497,837

w Final ‘
262,579,422

1,874,577,047
5,319,366,551

11,100,794
40,995,218

105,289,465
5,695,467

22,688,614
34,814,447
15,154,770
55,600,237

138,232,951
52,206,328
7,959,466

84,751,326
130,252;776
161,230,829
84,761,781

99,760
94,088,996
36,344,740

255,754,708
1,934,046

45,211,552
315,180,812

1,034,372,362
1,170,581,409
1,264,908,765

838,896,022
460,586,443
639,185,353
595,023,291

70decrease
2.61
0.30
4.49
2.64
2.44
3.48
1.49
1.87
2.33
0.02
0.48
0.10
0.75
0.40
1.50

14.10
14.92
2.43

14.63
1.73
2.12

31.39
6.06
4.11
4.51

11.17
1.36
5.47
1.15
5.39
2.12
7.24

W
iter.

2.0
2.0
2.0
2.3
3.6
2.9
3.0
5.0
4.1
1.6
2.1
2.7
6.3
1.2
6.0
4.7
6.9

11.7
19.9
10.2
2.3

12.4
7.6
5.5
8.8
8.5
8.3
9.0
2.5

11.9
6.0
7.6

Table 7: Average factor floating point operations associated with ND/new-minimal.
Average is taken over ten runs with randomly permuted adjacency structures.



ND/new-minimal

Matrix

CRYO1
CRY02
CRY03
DIS060
DIS090
DIS120
NASA1
NASA2
NASA4
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK28
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
BCSSTK35
BCSSTK36
BCSSTK37

ND
time

0.69
3.09
6.20
0.65
1.85
3.73
0.16
0.73
0.65
0.62
1.88
3.54
0.58
0.38
1.75
0.66
2.40
3.48
0.04
0.84
0.20
5.56
0.19
0.19
5.54
7.47

11.42
9.96
3.59
3.35
1.97
3.44

IiGjF-
iter.
2.00
2.00
2.00
2.30
3.60
2.90
3.00
5.00
4.10
1.60
2.10
2.70
6.30
1.20
6.00
4.70
6.90

11,70
19.90
10.20
2.30

12.40
7.60
5.50
8.80
8.50
8.30
9.00
2.50

11.90
6.00
7.60

Minimal
time

0.92
3.33
7.14
0.30
1.27
2.31
0.24
1.19
0.84
0.21
0.72
2.14
0.94
0.11
1.69
2.01
5.99
8.18
0.43
2.08
0.44

15.76
0.53
1.57

12.13
30.53
32.92
46.97
2.56

34.93
11.91
17.56

22

Total
time

1.61
6.42

13.34
0.95
3.12
6.04
0.40
1.92
1.49
0.83
2.60
5.68
1.52
0.49
3.44
2.67
8.39

11.66
0.47
2.92
0.64

21.32
0.72
1.76

17.67
38.00
44.34
56.93
6.15

38.28
13.88
21.00

Table 8: Average ordering times (in CPU seconds) and average number of major itera-
tions for ND/new-minimal. Averages are taken over ten runs with randomly permuted
adjacency structures.

.

.



23

on the singleton separators that creates fill. The matrix BCSSTK25 in our test set is

an example of this phenomenon. It arises from a finite element model of a long narrow

structure, namely, a 76-story skyscraper, and it incurs by far the greatest reduction in

factor flops: 31.39%.

The times for the ND orderings are greater than those for the MDext orderings, but

they are still quite reasonable. Because the ND orderings are not so nearly minimal,

the number of major iterations for the initial ND orderings are much greater than the

number of major iterations for the initial MDext orderings. Rising with the number

of major iterations is the time to compute the minimal orderings, which can be quite

substantial. Neither the number of major iterations nor the run times, however, ap-

proach in magnitude the number of major iterations or the run times, respectively, for

Ran/new-minimal.

5.5. Multisection

The MS ordering algorithm was a response to difficulties encountered using the ND

ordering algorithm. An MS ordering is obtained from an ND algorithm as follows. The

set of separators and domains is computed as before, and the vertices of the domains

are to be ordered before the vertices of the separators as before. The domains are again

eliminated using constrained minimum degree. Let X be the set of vertices obtained by

forming the union of all the domains. An MS ordering is then obtained by applying the

minimum degree ordering (with external degree) to the quotient graph representation

of the elimination graph Gx. This strategy for ordering the separators has appeared

in [2, 5, 15]. Our results using an MS initial ordering appear in Tables 9 and 10.

Our results with MS ordering corroborate those reported in Ashcraft and Liu [2].

Overall, the MS ordering reduces factor flops better than either the MDext or ND

orderings. For four of the matrices, the MS initial ordering is a minimal ordering.

Overall, the number of major iterations lies between the number of major iterations for

the MDext ordering and the number of major iterations for the ND ordering. Applying

minimum degree to the elimination graph Gx causes the initial MS orderings to be

much closer to minimal than the initial ND orderings were. For all but four matrices,

the reduction in factor flops is under 1.OYO.For three of these four matrices the reduction

is small: 1.l% for NASA291O, 1.370 for BCSSTK25, and 3.4% for BCSSTK26. The

only problem for which there is a large reduction is the tiny problem BCSSTK19, and

here we are merely obtaining exactly the same results that we obtained for the initial

ND ordering.

The MS run times are simply ND run times with the time for ordering Gx by

minimum degree added in. The code was written for ease of programming and not for

optimal time efficiency; still the MS run times are reasonably small. Because the major

iterations are reduced in number, the total run times are generally smaller than those

for ND/new-minimal.



Matrix

CRYO1
CRY02
CRY03
DIS060
DIS090
DIS120
NASA1824
NASA291O
NASA4704
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BC!SSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK28
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
BCSSTK35
BCSSTK36
BCSSTK37

MS
Avg. fat

Initial MS

248,164,448
1,877,497,131
5,587,997,831

9,418,207
32>561,032
82,128,063
5,437,036

22,946,750
35,236,673
14,158,894
50,515,064

125,367,743
51,187,752
7,976,010

85,158,867
125,842,140
146,569,782
84,328,146

116,858
96,860,748
34,742,704

242,388,850
1,977,138

36,264,698
343,010,925
867,524,321

1,458,766,012
923,649,582
754,734,712
377,911,035
498,846,780
466,486,791

lew-minimal
m flops

Final

248,141,000
1,877,497,131
5,587,987,076

9,417,758
32,559,649
82,127,446
5,433,668

22,700,805
35,193,747
14,158,894
50,515,064

125,364,701
51,135,554
7,952,477

85,069,649
125,142,088
145,858,491
83,745,632

99,760
96,666,031
34,?42,704

239,125,956
1,909,224

36,226,333
341,157,227
867,090,637

1,457,656,825
922,128,407
754>522,294
376,542,336
498,749,689
466,085,474

24

Ii@ix
iter.

1.2
1.0
1.1
1.1
1.6
1.5
1.8
3.7
2.4
1.0
1.0
1.8
1.6
1.2
2.7
2.6
3.3
7.8

19.9
5.9
1.0
8.7
6.3
2.6
7.0
4.6
5.3
5.0
1.2
4.4
2.9
4.4

Table 9: Average factor floating point operations associated with MS/new-minimal.

.

Average is taken over ten runs with randomly permuted adjacency structures.

.

.



25

matrix

CRYO1
CRY02
CRY03
DIS060
DIS090
DIS120
NASA1
NASA2
NASA4
SPA060
SPA090
SPA120
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK28
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
BCSSTK35
BCSSTK36
BCSSTK37

MS/new-minimal
SMS

time
1.21
4.96

10.15
0.80
2.34
4.48
0.23
1.05
0.86
0.79
2.31
4.55
0.76
0.49
2.23
1.13
3.38
4.42
0.07
1.08
0.40
7.48
0.28
0.45
7.19

11.21
15.71
14.94
4.61
6.24
4.12
5.87

iter.
1.2
1.0
1.1
1.1
1.6
1.5
1.8
3.7
2.4
1.0
1.0
1.8
1.6
1.2
2.7
2.6
3.3
7.8

19.9
5.9
1.0
8.7
6.3
2.6
7.0
4.6
5.3
5.0
1.2
4.4
2.9
4.4

minimal
time

0.58
1.74
3.95
0,14
0.56
1.17
0.12
0.86
0.49
0.13
0.33
1.47
0.23
0.11
0.85
1.11
3.03
5.74
0.47
1.16
0.19

11.42
0.43
0.70
9.89

15.79
20.45
24.57
1.22

13.15
5.77
9.90

total
time

1.79
6.70

14.10
0.94
2.90
5.65
0.35
1.91
1.35
0.92
2.64
6.02
0.99
0.60
3.08
2.24
6.41

10.16
0.54
2.24
0.59

18.90
0.71
1.15

17.08
27.00
36.16
39.51
5.83

19.39
9.89

15.77

Table 10: Average ordering times (in CPU seconds) and average number of major itera-
tions for MS/new-minimal. Averages are taken over ten runs with randomly permuted
adjacency structures.
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6. Concluding remarks

We devised a new characterization of candidate edges that leads to a simple “block-

restricted minimum degree” elimination process to remove candidate edges. We then

devised an algorithm that removes candidate edges untiI a minimal chordaI supergraph

and a minimal ordering are obtained. Empirically, the method MDint/minimal-new

improves on both the ordering qualky and the ordering time of the old method LEX M.

In the past, minimal orderings were not good heuristic orderings; they did not

approximate minimum orderings well [14, page 282]. The new approach in this paper

deals with this shortcoming of past minimal ordering algorithms. Because it starts

with any initial ordering and refines that ordering until minimality is achieved, the

algorithm can turn good “heuristic orderings into good minimal orderings.

However, we saw that this capability makes little or no difference when the initial

ordering is produced by MDint. It also makes little difference when the initial ordering

is produced by MS or MDext. Each of these ordering heuristics produces orderings

that are “nearly” minimal and trying to improve them by making them minimal makes

little sense in the practical setting. We did see, however, that initial ND orderings can

be quite far from minimal. MS can be viewed as a way to fix this problem with ND.

The time complexity of the new minimal ordering algorithm is unknown, in part

because of the use of minimum degree and quotient graphs, and in part because a

bound on the number of major steps in the new algorithm is unknown. We conjecture

that the number of major steps is O(n).
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