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Abstract. The weak order polytopes are studied in Gurgel and Wakabayashi [Discrete Math.,
175 (1997), pp. 163–172], Gurgel and Wakabayashi [The Complete Pre-Order Polytope: Facets and
Separation Problem, manuscript, 1996], and Fiorini and Fishburn [Weak order polytopes, submitted].
We make use of their natural, affine projection onto the partition polytopes to determine several new
families of facets for them. It turns out that not all facets of partition polytopes are lifted into
facets of weak order polytopes. We settle the cases of all facet-defining inequalities established for
partition polytopes by Grötschel and Wakabayashi [Math. Programming, 47 (1990), pp. 367–387].
Our method, although rather simple, allows us to establish general families of facets which contain
two particular cases previously requiring long proofs.
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1. Introduction. In order to solve real-life problems which require finding an
optimal linear ordering, Grötschel, Jünger, and Reinelt [8] have studied the facial
structure of the “linear ordering polytope.” They found several facets and used these
results in the so-called branch-and-cut technique which combines branch-and-bound
with cutting planes techniques. The same polytope had appeared before under the
name “binary choice polytope” in the theory of probabilistic utility; see the refer-
ences in Fishburn [7]. Recently, several papers were devoted to the geometry of this
polytope and closely related ones; see Fiorini and Fishburn [6] or Fiorini [5] and their
bibliographies.

For a general definition, let F be a family of reflexive relations on the set n = {1,
2, . . . , n}. Each element R of F is encoded by its characteristic vector xR, which has
a coordinate xR

(i,j) for each pair (i, j) of distinct elements in n; this coordinate equals
1 when iRj, and 0 otherwise. A subset of vertices of the unit cube in Rn(n−1) is thus
associated to F . The study of its convex hull, called the F-polytope, includes, for
instance, the determination of (many) facets, or, more ambitiously, of the full com-
binatorial structure. Several particular cases have been investigated. In the previous
paragraph, F is the family of all linear orderings on n. (For recent references, see, e.g.,
[3] and [4].) When F is the set of all equivalence relations on n, the F-polytope is also
called the partition polytope Pn

PA, or the clique-partitioning polytope; see Grötschel
and Wakabayashi [9]. Here we focus on the weak order polytope Pn

WO. A weak order
on n is a reflexive, transitive, and complete relation on n. Such a weak order W is a
ranking of the elements of n with ties allowed, typically

C1 ≺ C2 ≺ · · · ≺ Ck,(1.1)

where {C1, C2, . . . , Ck} is the partition of n corresponding to the equivalence relation
W ∩W−1. The mapping W 7→W ∩W−1 leads to the “induced partition projection”
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from the weak order polytope Pn
WO onto the partition polytope Pn

PA, which we will
exploit to produce new facets of weak order polytopes.

Adjacency of vertices in the weak order polytope Pn
WO is studied by Gurgel and

Wakabayashi [12], while facets are determined by Gurgel and Wakabayashi [11] (see
also Gurgel [10]). The results of these two papers are extended by Fiorini and Fishburn
[6], who also spell out some motivation for the study of Pn

WO. By “lifting” known
facets from Pn

PA (that is, taking in Pn
WO preimages of facets of Pn

PA), we derive several
new families of facets of Pn

WO. For instance, two isolated examples of facets are given
by Gurgel and Wakabayashi [11], the 20-page proof for one of them being omitted
(see, however, Gurgel [10]); they are the first two instances of a general family of
facets which we establish easily along our approach.

It should be stressed that not any facet of Pn
PA has a preimage which is a facet

of Pn
WO. Thus a case by case analysis is required, whose outcome is reported here

for all facet-defining inequalities established for Pn
PA by Grötschel and Wakabayashi

[9]. (Additional facets of Pn
PA were recently provided in [1]; they are reserved for

later work.) In summary, we derive facets of Pn
WO from trivial, 2-chorded even wheel,

and 2-chorded path facets of Pn
PA, and also from 2-partition facets, except for the

“smallest” one. On the other hand, triangle and 2-chorded cycle facets are lifted into
ridges; we describe the two facets of Pn

WO containing such a ridge. Thus we show how
a natural relation between the two polytopes can be useful in their study.

2. Permutation subspaces. Assume n ≥ 2 throughout the paper. The weak
order polytope Pn

WO lies by definition in the real affine space Rn(n−1) and has one
vertex xW for each weak order W on n = {1, 2, . . . , n}. Its dimension equals n(n−1).
On the other hand, as equivalence relations are symmetric, it is simpler to see the
partition polytope Pn

PA in the real affine space R(n
2) in which any point has one

coordinate y{i,j} for each unordered pair {i, j} in n. In fact, Pn
PA is of dimension

(
n
2

)
.

Its vertex corresponding to the equivalence relation R will be denoted as yR.
The mapping W 7→ E = W ∩W−1, where W is a weak order on n and E is the

equivalence relation of W , provides a mapping from vert Pn
WO (the set of all vertices of

the weak order polytope) onto vert Pn
PA: in the same notation, xW is mapped onto yE .

The latter mapping extends to the affine projection (i.e., surjective, affine mapping)

π : Rn(n−1) → R(n
2) : x 7→ y with y{i,j} = x(i,j) + x(j,i) − 1,(2.1)

called the induced partition projection. As π(Pn
WO) = Pn

PA, the linear mapping π
induces an inclusion preserving correspondence from the face lattice of Pn

PA to the
face lattice of Pn

WO. If f(y) ≤ b is a linear inequality valid for Pn
PA which defines the

face F , then π̇−1(F ) = Pn
WO ∩ π−1(F ) is the face of Pn

WO defined by the inequality
(f ◦ π)(x) ≤ b (which is valid for Pn

WO). We say that the latter inequality is lifted
from inequality f(y) ≤ b and also that the preimage π̇−1(F ) is lifted from F ; here π̇
denotes the restriction of π to Pn

WO.
In particular, when the face F consists of a single vertex yE , its preimage π̇−1(yE)

is a face of Pn
WO which is affinely equivalent to the linear ordering polytope Pk

LO, with
k the number of equivalent classes of E; indeed, vertices of π̇−1(yE) correspond to all
weak orders which linearly order the k classes of E.

The (affine) dimension of a set S of points in Rn(n−1) is the dimension of the
affine subspace aff S it spans and is denoted as dimS. Now choose any point o in
the affine space Rn(n−1) as an origin, thus transforming Rn(n−1) into a vector space
Rn(n−1)

o . (This point does not need to be (0, 0, . . . , 0).) The rank rkS of a set S of
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points in Rn(n−1)
o is the rank of the vector subspace it generates.

Given a vertex yE of Pn
PA, the permutation subspace permsub(yE) is the (unique)

vector subspace of Rn(n−1)
o that forms a translate of aff π̇−1(yE). Equivalently,

permsub(yE) consists of all linear combinations of vectors −→op with p ∈ π̇−1(yE), whose
coefficients sum up to 0. Although dimπ−1(yE) =

(
n
2

)
, the face π̇−1(yE) can have a

lower affine dimension; the latter equals rk permsub(yE). A basis for permsub(yE) can
be easily found, as we now indicate. The trick is to consider the difference between two
vertices xW , xW ′ of π̇−1(yE) with W and W ′, disagreeing only in the transposition
of two consecutive classes. (The argument is classic for the linear ordering polytope.)

For two nonempty, disjoint subsets U and V of n, define in Rn(n−1)
o the transposi-

tion vector transp(U, V ), located at o, by specifying as follows its components in the
canonical base (also located at o):

(transp(U, V ))(i,j) =

 1 if i ∈ U and j ∈ V,
−1 if i ∈ V and j ∈ U,

0 otherwise.
(2.2)

The set of all transposition vectors transp(U, V ), for U , V distinct classes of the equiv-
alence relation E, span permsub(yE) but is linearly dependent (since transp(U, V ) =
−transp(V,U)). A basis of permsub(yE) is formed by selecting one of the two transpo-
sition vectors transp(U, V ) and transp(V,U) for any unordered pair {U, V } of classes
of E. Such vectors transp(U, V ), with U and V two classes of E, are also called
transposition vectors of the vertex yE . When U = {u}, V = {v}, we abbreviate the
notation by writing transp(u, v).

Proposition 2.1. Let E and E′ be two equivalence relations on n with E ⊆ E′.
Then permsub(yE) ⊇ permsub(yE′).

Proof. From the assumption, any two classes U ′, V ′ of E′ are unions of classes of
E, say U ′ = ∪k

i=1Ui and V ′ = ∪l
j=1Vj . Then

transp(U ′, V ′) =
k∑

i=1

l∑
j=1

transp(Ui, Vj),(2.3)

and transp(U ′, V ′) ∈ permsub(yE).
If F is a nonempty face of Pn

PA, its permutation subspace permsub(F ) is the vector
subspace spanned by the union of the permutation subspaces of the vertices of F . By
Proposition 2.1, we can ignore here any vertex yE′ of F for which there exists a vertex
yE of F with E ⊂ E′.

The next result is the main tool we will use to derive facets of Pn
WO.

Proposition 2.2. For any face F of Pn
PA,

dimF + rk permsub(F ) ≤ dim π̇−1(F ) ≤ dimF +
(
n

2

)
.(2.4)

Proof. Choose a vertex o′ of F as an origin in R(n
2) and then choose a vertex o of

π̇−1(F ) as an origin in Rn(n−1). As π(o) = o′, the affine mapping π becomes a linear
mapping. Setting f = rkF , we may select f linearly independent vertices q1, q2, . . . ,
qf of F . Pick in π̇−1(F ) vertices p1, p2, . . . , pf with π(pi) = qi for i = 1, 2, . . . ,
f . With g = rk permsub(F ), select next a basis r1, r2, . . . , rg of permsub(F ) which
consists of transposition vectors of vertices of F . Thus any rj is a difference between
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two vertices of π̇−1(F ). As is easily checked, the vectors p1, p2, . . . , pf , r1, r2, . . . ,
rg are linearly independent. Because with o they all belong to aff π̇−1(F ), we have
f + g ≤ dim π̇−1(F ), which is the first inequality to be proved. The second inequality
follows at once from rkπ−1(o′) =

(
n
2

)
.

Remark. Both inequalities in Proposition 2.2 become equalities at least when yid

belongs to F (where id is the equivalence relation with n classes) but not always (as
will be seen later, e.g., in Proposition 4.1).

As we now show, Proposition 2.2 greatly helps understanding preimages by π̇ of
various facets of Pn

PA.

3. Lifting the trivial, triangle, and 2-partition inequalities. For i, j dis-
tinct elements in n, inequality x{ij} ≥ 0 defines a facet of Pn

PA; see Grötschel and
Wakabayashi [9]. (Notice how we sometime abbreviate indices {i, j} in {ij}.) The
lifted inequality xij + xji − 1 ≥ 0 defines a facet of Pn

WO as shown by Gurgel and
Wakabayashi [12]. (In index position, (i, j) is from now on abbreviated in ij or i, j.)
On the other hand, if F is the facet of Pn

PA defined by the triangle inequality

x{ij} + x{jk} − x{ik} ≤ 1,(3.1)

where i, j, k are distinct elements in n, the preimage π̇−1(F ) defined by

xij + xji + xjk + xkj − xik − xki ≤ 2(3.2)

turns out to be a ridge. (We skip the proof.) This ridge is the intersection of the two
facets defined by the two following transitivity inequalities [11], [10]:

xij + xjk − xik ≤ 1,
xkj + xji − xki ≤ 1.

Now consider two nonempty, disjoint subsets S, T of n with |S| < |T |. Grötschel
and Wakabayashi [9] show the 2-partition inequality∑

i∈S
j∈T

x{ij} −
∑
i,j∈S
i<j

x{ij} −
∑

i,j∈T
i<j

x{ij} ≤ |S|(3.3)

to be facet-defining for Pn
PA. Its lifted inequality in Rn(n−1), that we also call a

2-partition inequality,∑
i∈S
j∈T

(xij + xji)−
∑
i,j∈S
i6=j

xij −
∑

i,j∈T
i6=j

xij ≤ |S|+ |S| |T | −
(
|S|
2

)
−
(
|T |
2

)
(3.4)

is valid for Pn
WO. When S = {j} and T = {i, k} this inequality coincides with

inequality (3.2), so it is clearly not facet-defining.
Theorem 3.1. Let S and T be two disjoint subsets of n such that 0 < |S| < |T |

and (|S|, |T |) 6= (1, 2). Then inequality (3.4) defines a facet of Pn
WO.

Proof. According to the trivial lifting lemma of Fiorini and Fishburn [6], any
facet-defining inequality for Pn

WO is also facet-defining for Pm
WO when m > n. We

may thus assume S ∪ T = n. Let F be the facet of Pn
PA defined by inequality (3.3).

Then, inequality (3.4) defines the preimage π̇−1(F ) in Pn
WO. We proceed by showing

that all transposition vectors transp(i, j), for i, j distinct in n, belong to permsub(F );
the thesis then follows from Proposition 2.2.
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For every injective mapping f : S → T , an equivalence relation E yields yE ∈ F
when it has the classes {s, f(s)} for all s in S and {t} for all t in T \ f(S).

When |S| + 2 ≤ |T |, we deduce that all transposition vectors transp(j, k), for
j, k ∈ T , and j 6= k, belong to permsub(F ). Also, for i ∈ S and j, k ∈ T with j 6= k,
we get transp({j}, {i, k}) ∈ permsub(F ) which, after subtraction of transp(j, k), gives
transp(j, i) ∈ permsub(F ). If S contains two distinct elements h, i, similar arguments
give transp(h, i) ∈ permsub(F ). Thus permsub(F ) contains all transp(u, v) for u, v
distinct in S ∪ T = n.

When |S| + 1 = |T |, we have |S| ≥ 2 by assumption. Let i, j be two distinct
elements in S and k, l be two distinct elements in T . By considering appropriate
partitions encoded as vertices of F , we find the following six linearly independent
transposition vectors in permsub(F ):

transp(k, i) + transp(k, l),
transp(k, j) + transp(k, l),
transp(l, i) + transp(l, k),
transp(l, j) + transp(l, k),
transp(k, j) + transp(k, l) + transp(i, j) + transp(i, l),
transp(i, j) + transp(i, k) + transp(l, j) + transp(l, k).

All transposition vectors transp(u, v) with u, v distinct in {i, j, k, l} are linear com-
binations of the six vectors in the above list. Thus again permsub(F ) contains all
possible transposition vectors.

4. Lifting the 2-chorded cycle inequalities. Consider a cycle in n; to simplify
notation, we relabel the elements of n in such a way that the cycle has vertices 1, 2,
. . . , k. We denote by ⊕ and 	 the addition and subtraction on k = {1, 2, . . . , k}
with results reduced modulo k to a value in k. The 2-chorded cycle inequality

k∑
i=1

x{i,i⊕1} −
k∑

i=1

x{i,i⊕2} ≤
k − 1

2
(4.1)

is facet-defining for Pn
PA when k is odd and at least 5 (see [9]). In what follows, we

assume this double condition on k. Taking the preimage by the induced partition
projection π, we derive the following inequality valid for Pn

WO:

k∑
i=1

(xi,i⊕1 + xi⊕1,i)−
k∑

i=1

(xi,i⊕2 + xi⊕2,i) ≤
k − 1

2
.(4.2)

As will be shown in Proposition 4.1, this inequality defines a ridge of Pn
WO; the

two facets containing the ridge are specified in Theorem 4.2. We use the notation

Dk = {(i, j) ∈ k× k | i	 j is odd and i 6= j},
Ek = {(i, j) ∈ k× k | i	 j is even}.

Proposition 4.1. For k odd and at least 5, inequality (4.2) defines a ridge of
Pn

WO. Any vertex of Pn
WO satisfying inequality (4.2) with equality also satisfies the

linear equation ∑
ij∈Ek

xij −
∑

ij∈Dk

xij = 0.(4.3)
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Proof. Let F denote the facet of Pn
PA defined by inequality (4.1); then inequal-

ity (4.2) defines the face G = π̇−1(F ) of Pn
WO. We show that any vertex xW of G also

satisfies (4.3). Indeed, π(xW ) ∈ F , and a vertex yE belongs to F iff the equivalence
relation E, hereafter denoted as ∼, enjoys up to cyclic rotation of 1, 2, . . . , k either
the conditions

1 6∼ 2 ∼ 3 6∼ 4 ∼ 5 6∼ 6 ∼ 7 6∼ · · · 6∼ k − 1 ∼ k 6∼ 1(4.4)

or the conditions

1 ∼ 2 ∼ 3 6∼ 4 ∼ 5 6∼ 6 ∼ 7 6∼ · · · 6∼ k − 1 ∼ k 6∼ 1.(4.5)

Either set of conditions implies that xW also satisfies (4.3).
Now to prove that G is a ridge, it suffices by Proposition 2.2 to prove that

permsub(F ) plus the transposition vector transp(1, 2) generate all transposition vec-
tors transp(i, j) with i, j distinct in n. Take a minimal equivalence relation E such
that yE satisfies (4.1) with equality. Then E admits the class {i} for all i ∈ n \ k;
moreover, we may assume, after relabeling if necessary, that E admits the class {1}.
As yE ∈ F , we get transp(1, i) and transp(i, j) in permsub(F ) for all i, j distinct in
n \ k. Taking appropriate cyclic images of E, we see that the same holds if 1 is re-
placed with any element in k. Now using the minimal equivalence relation defined by
(4.4) together with its cyclically rotated images, we can check that permsub(F ) plus
transp(1, 2) generate transp(1, 3), transp(2, 3), transp(2, 4), transp(3, 4), transp(1, 4),
transp(3, 5), etc., thus all transp(i, j) with i, j distinct in k.

Theorem 4.2. Let k be odd and at least 5. One of the two facets of Pn
WO

containing the ridge obtained in Proposition 4.1 is defined by the inequality

k + 1
2

k∑
i=1

(xi,i⊕1 − xi,i⊕2) +
k − 3

2

k∑
i=1

(xi⊕1,i − xi⊕2,i)

+
(k−1)/2∑

j=3

k∑
i=1

(−1)j+1(xi,i⊕j − xi⊕j,i) ≤ (k − 1)2

4
,

(4.6)

and the other facet containing the ridge is defined by the similar inequality obtained
by substituting xij with xji for all i, j in k with i < j.

Gurgel and Wakabayashi [11] present two facet-defining inequalities for Pn
WO

which are the two particular cases of Theorem 4.2 for k = 5 and k = 7; the 20-page
proof for k = 7 is omitted there but appears in Gurgel [10]. Our proof of Theorem 4.2
is rather short and uses the following known result on tournaments (see Bermond [2]
or Laslier [13]).

Lemma 4.3. For k odd, the relation Dk is a tournament on k whose Slater index
(or feedback arc-number) equals k2−1

8 . The same holds for the relation Ek.
Proof. As k is assumed to be odd, i 	 j is even iff j 	 i is odd; thus Dk is a

tournament. Let L be any linear ordering on k obtained by reversing certain arcs of
Dk. For i = 1, 2, . . . , (k − 1)/2, the outdegree of the element of rank i in L equals
k − i, while in Dk it equals (k − 1)/2. Thus the number of reversed arcs is at least∑(k−1)/2

i=1 ((k − i)− (k − 1)/2) = (k2 − 1)/8. The following linear ordering T requires
no more arc reversings than this number:

1 ≺ 3 ≺ 5 ≺ · · · ≺ k − 2 ≺ k ≺ 2 ≺ 4 ≺ 6 ≺ · · · ≺ k − 3 ≺ k − 1.(4.7)
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Finally, notice that Dk and Ek are dual relations.
Proof of Theorem 4.2. Let G be the ridge defined by inequality (4.2), written

more compactly as

〈c, x〉 ≤ k − 1
2

for
k∑

i=1

(xi,i⊕1 + xi⊕1,i)−
k∑

i=1

(xi,i⊕2 + xi⊕2,i) ≤
k − 1

2
.(4.8)

We know that G also satisfies (4.3), which we summarize as

〈d, x〉 = 0 for
∑

ij∈Ek

xij −
∑

ij∈Dk

xij = 0.(4.9)

Then

〈2(k − 1)c+ 4d, x〉 ≤ (k − 1)2(4.10)

is inequality (4.6) up to a factor 4. There remains to show that inequality (4.10) is
valid for any vertex of Pn

WO and that it becomes an equality at some vertex of Pn
WO

not in G.
Let W be a weak order on n. By a class segment we mean a subset S of k of the

form {i, i⊕1, . . . , i⊕ `} such that all elements of S belong to a same class of W , and,
moreover, S cannot be extended in k while keeping this double condition. The length
of S is `+1. (Thus k itself may be a class segment, and its length is by convention k.)
Now denote by s the number of class segments of length strictly greater than 1 and by
r the number of class segments of odd length. It is not difficult to check 〈c, xW 〉 = s.

We now prove

2(k − 1)〈c, xW 〉+ 4〈d, xW 〉 ≤ (k − 1)2.(4.11)

Only coordinates xW
ij with i, j ∈ k appear in inequality (4.11); thus we may assume

that any element in n \ k is isolated in its equivalence class. Next, if a class segment
S = {i, i⊕1, . . . , i⊕`} has ` > 1, we modify W by breaking only the class C containing
S into two successive classes, namely {i, i ⊕ 1} and C \ {i, i ⊕ 1}; this modification
does not decrease 〈c, xW 〉 and leaves 〈d, xW 〉 unchanged (as easily verified). We may
now assume that all class segments of W have length 1 or 2.

If a class C strictly contains a one-element segment {i∗}, let W+ and W− be the
weak orders obtained from W by pushing i∗ out of its equivalence class one position
down and one position up, respectively; that is,

W− = W \ {(j, i∗) | j ∼ i∗ and j 6= i∗},

W+ = W \ {(i∗, j) | j ∼ i∗ and j 6= i∗}.

(As before, ∼ denotes the equivalence relation W ∩W−1.) Either 〈d, xW+〉 = 〈d, xW−〉
= 〈d, xW 〉 or 〈d, xW+〉−〈d, xW 〉 = 〈d, xW 〉−〈d, xW−〉 6= 0; thus we may extract i∗ from
its equivalence class and get another weak order, also called W , without decreasing
either 〈d, xW 〉 or 〈c, xW 〉. We may now further assume that any element i∗ isolated
in its segment is also isolated in its class.

In the evaluation of 〈d, xW 〉, all pairs of W touching one class segment of length
2 have a total contribution zero. Thus, we need look only at the linear ordering T
induced by W on the set R of the r elements of k which are alone in their classes.
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Notice that Dk induces on R a relation which is naturally isomorphic to Dr. Thus
using Lemma 4.3 we get

〈d, xW 〉 = |T ∩ Er| − |T ∩ Dr|
= |T | − 2|T ∩ Dr|

≤ r(r − 1)
2

− 2 · r
2 − 1

8

=
(r − 1)2

4
.

Hence, as s = (k − r)/2,

2(k − 1)〈c, xW 〉+ 4〈d, xW 〉 ≤ 2(k − 1)
k − r

2
+ 4

(r − 1)2

4

=
(
r − k + 1

2

)2

+
3(k − 1)2

4
.

As k is odd, we cannot have r = 0. For r varying in k, the last expression has
maximum value (k − 1)2, attained for r = 1 or r = k.

We have thus established that inequality (4.10) defines a face of Pn
WO which

contains the ridge G. A vertex xT in this face but not in G is obtained for T , the
linear ordering specified in the proof of Lemma 4.3.

To get the other facet of Pn
WO which contains the ridge G, we apply the linear

permutation mapping (xij) onto (xji); this permutation stabilizes both Pn
WO and

G.

5. Lifting the 2-chorded path and 2-chorded wheel inequalities. Again,
by making use of our fundamental tool (Proposition 2.2), we infer additional facets
of Pn

WO from two families of facets of Pn
PA.

A 2-chorded path inequality for Pn
PA is obtained as follows (under a specific choice

of labels for the elements in n). Let 1, 2, . . . , `− 1 be (a path) in n, and let ` be an
additional element in n. Grötschel and Wakabayashi [9] prove that the inequality

`−2∑
i=1

x{i,i+1} −
`−3∑
i=1

x{i,i+2} +
`−2∑
j=2

jeven

x{j`} −
`−1∑
j=1

jodd

x{j`} ≤
`− 2

2
(5.1)

is facet-defining for Pn
PA when ` is even and at least 4.

Theorem 5.1. The inequality lifted from inequality (5.1),

`−2∑
i=1

(xi,i+1 + xi+1,i)−
`−3∑
i=1

(xi,i+2 + xi+2,i)

+
`−2∑
j=2

jeven

(xj` + x`j)−
`−1∑
j=1

jodd

(xj` + x`j) ≤ `− 2
2

,

(5.2)

defines a facet of Pn
WO for ` even, ` ≥ 4.

Proof. Because of Proposition 2.2, it suffices to show that permsub(F ), for F the
facet of Pn

PA defined by inequality (5.1), contains all transposition vectors transp(u, v)
for u, v distinct in n. To this aim, we notice that vertex yE belongs to F at least
when E is an equivalence relation with the following equivalence classes, where i, j ∈
{1, 2, . . . , `− 1} and i < j:



120 JEAN-PAUL DOIGNON AND SAMUEL FIORINI

(i) for i and j odd,

{1, 2}, {3, 4}, . . . , {i− 2, i− 1},
{i},
{i+ 1, `},
{i+ 2, i+ 3}, {i+ 4, i+ 5}, . . . , {j − 2, j − 1},
{j},
{j + 1, j + 2}, {j + 3, j + 4}, . . . , {`− 2, `− 1},
{`+ 1}, {`+ 2}, . . . , {n};

(5.3)

(ii) for i even and j odd,

{1, 2}, {3, 4}, . . . , {i− 1, i}, . . . , {j − 2, j − 1},
{j},
{j + 1, j + 2}, {j + 3, j + 4}, . . . , {`− 2, `− 1},
{`}, {`+ 1}, . . . , {n};

(5.4)

(iii) for i odd and j even,

{1, 2}, {3, 4}, . . . , {i− 2, i− 1},
{i},
{i+ 1, i+ 2}, {i+ 3, i+ 4}, . . . , {j, j + 1}, . . . , {`− 2, `− 1},
{`}, {`+ 1}, . . . , {n};

(5.5)

(iv) for i and j even ,

{1, 2}, {3, 4}, . . . , {i− 1, i}, . . . , {j − 1, j}, . . . , {`− 3, `− 2},
{`− 1}, {`}, . . . , {n}.(5.6)

By (i), we get transp(i, j) ∈ permsub(F ) when i and j are odd. For i even and j odd,
(ii) gives transp({i − 1, i}, {j}) ∈ permsub(F ), and by subtracting transp(i − 1, j)
(which was just shown to belong to permsub(F )), we get transp(i, j) ∈ permsub(F ).
The cases (i odd, j even) and (i, j even) follow in a similar way from (iii) and (iv).
The other transposition vectors transp(u, v), for u, v ∈ n with u 6= v, also belong to
permsub(F ).

With an adequate relabeling of the elements in n, a 2-chorded even wheel inequality
for Pn

PA, with 1 ≤ k ≤ n− 1 and k even, is written as

k∑
i=1

x{i,i⊕1} −
k∑

i=1

x{i,i⊕2} +
k∑

j=1
jeven

x{jn} −
k∑

j=1
jodd

x{jn} ≤
k

2
(5.7)

(where i and j are taken modulo k in {1, 2, . . . , k}). According to [9], this inequality
defines a facet of Pn

PA when k is even and k ≥ 8.
Theorem 5.2. The inequality lifted from inequality (5.7) gives a facet-defining

inequality for Pn
WO when k is even and k ≥ 8, which reads

k∑
i=1

(xi,i⊕1 + xi⊕1,i)−
k∑

i=1

(xi,i⊕2 + xi⊕2,i)

−
k∑

j=1
jeven

(xjn + xnj)−
k∑

j=1
jodd

(xjn + xnj) ≤ k

2
.

(5.8)
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Proof. As the arguments are similar to those in the previous proof, we just list one
example of a useful partition of n; the corresponding equivalence relation E provides
a vertex yE of Pn

PA which belongs to the facet defined by inequality (5.7). For i, j
odd in 1, 2, . . . , k with j /∈ {i	 2, i, i⊕ 2} (the case j ∈ {i	 2, i⊕ 2} requires a slight
modification), we list the classes of E:

{i},
{i⊕ 2, i⊕ 3}, {i⊕ 4, i⊕ 5}, . . . , {j 	 2, j 	 1},
{j},
{j ⊕ 2, j ⊕ 3}, {j ⊕ 4, j ⊕ 5}, . . . , {k 	 1, k},
{1, 2}, {3, 4}, . . . , {i	 2, i	 1},
{i⊕ 1, j ⊕ 1, n},
{k + 1}, {k + 2}, . . . , {n− 1}.

(5.9)

This partition and similar ones obtained by cyclically rotating 1, 2, . . . , k help in
showing that permsub(F ) contains all transposition vectors transp(u, v), where F is
the facet of Pn

PA defined by inequality (5.7), and 1 ≤ u < v ≤ n.
Grötschel and Wakabayashi [9] present still one more facet-defining inequality for

Pn
PA, an isolated example which is not “symmetric,” and has some coefficients equal

to 2. We leave it to the reader to verify that this inequality is lifted into an additional
facet-defining inequality for Pn

WO.
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