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Abstract

We study the structure of the set of tilings of a polygon P with bars of fixed
length. We obtain a undirected graph connecting two tilings if one can pass
from one tile to the other one by a flip (i. e a local replacement of tiles).

Using algebraic tools (as tiling groups and their quotients and subgroups), we
give a formula to compute the distance in this graph (i. e. the minimal number
of necessary flips) between two tilings. Moreover, we prove that, for each pair
(T,T") of tilings, the set Y7 7 formed from tilings which are in a path of
minimal length from T to T” canonically has a structure of distributive lattice.

Keywords: tiling, group, lattice

Résumé

Nous tudions ici I’ensemble des pavages d’un polygone P par des barres de
longueur fixe. Nous obtenons un graphe non orient en reliant deux pavages si
I’on peut passer de I’'un a 'autre par une transformation locale appele flip.
Avec des outils algbriques (les groupes de pavages et leurs quotients et sous
groupes), nous donnons une formule pour calculer la distance dans ce graphe
(i. e. le nombres de flips necessaires) entre deux pavages. De plus, nous prou-
vons que , pout toute paire (T,7") de pavages, 'ensemble Y7 7 form par les
pavages qui sont sur une geodsique entre T et T’ est canonique ment muni
s’une structure de teillis distributif.

Mots-clés: pavage, groupe, treillis
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Abstract

We study the structure of the set of tilings of a polygon P with bars of
fixed length. We obtain a undirected graph connecting two tilings if one
can pass from one tile to the other one by a flip (i. e a local replacement
of tiles).

Using algebraic tools (as tiling groups and their quotients and sub-
groups), we give a formula to compute the distance in this graph (i. e.
the minimal number of necessary flips) between two tilings. Moreover,
we prove that, for each pair (T,T") of tilings, the set Y1 7/ formed from
tilings which are in a path of minimal length from T to 7" canonically has
a structure of distributive lattice.

1 Introduction

In 1990, J. H. Conway and J. C. Lagarias [1] introduced the notion of tiling
groups, which is a very powerful tool to study tiling problems. Using tiling
groups, a lot of necessary conditions for a simply connected figure to be tileable
(see [3], [4]) were discovered and unified.

This work has been prolonged by W. P. Thurston [9] who especially studied
tilings formed from dominoes (i. e. rectangles 2 x 1) and tilings formed from
calissons (i. e. lozenges formed from two equilateral triangles of unit side, with
a common edge). For these examples, W. P. Thurston [9] introduced the notion
of height function associated to a tiling of polygon P. Such a height function
permits to encode each tiling as a mappings from vertices in P to the set Z of
relative integers.

Using this new notion, a linear algorithm which, given a polygon as input,
produces a tiling of this polygon as output (if there exists one tiling ; otherwise
the claim of the impossibility is the output) is exhibited.

W. P. Thurston’s ideas have been taken again by C. Kenyon and R. Kenyon
[2], who obtained a tiling algorithm for the case when tilings are formed from
m-bars (rectangles of length m and unit width), and E. Rémila [5], who obtained
tiling algorithms for the case when tilings are formed from equilateral triangles
of side of length 2 and ”leaning dominoes” (parallelograms formed from four



equilateral triangles of sides of unit length). For these authors, height functions
appear as heights on special trees.

Each of these authors also uses local transformations, called flips, which
permit to transform a tiling into another one (for example, for dominoes a flip
is the replacement of two tiles covering a 2 x 2 square by the two other tiles
covering the same square). The space of tilings of P is the (undirected) graph
Gp = (Vp, Ep) whose vertices are the tilings of P , and two tilings are linked
by an edge if and only if one can pass from a tiling to the other one using only
one flip. This space has been precisely studied for the cases of dominoes and
calissons [8] [6]. The main result is that the space of tilings has a canonical
structure of distributive lattice. At the opposite, before, the only result known
about spaces of tilings introduced in [2] and [5] was the connectivity of these
spaces.

In this paper, which is an extended and improved version of [7], we first
study the space of tilings with m-bars. After recalling general notions about
tiling groups and their applications (Section 2), we focus on the structure of the
tiling group used for m-bars (Section 3). We especially show the importance
of a special normal subgroup of the main quotient of the tiling group. Using
this subgroup, we are able to give an algebraic characterization of functions
which encode tilings, and give definition of a distance between tilings. We
prove (Section 4) that this distance is (up to a multiplicative constant) the
distance in the space of tilings, i. e. the minimal number of necessary flips
to transform a tiling into another one. This fact gives the flip formula, which
permits to compute this number of flips, and an algorithm to find a shortest
path between two tilings given as input. From the algebraic characterization
of functions which encode tilings, we prove (Section 5) for each pair (T',7") of
tilings, the subgraph of the space of tilings induced by tilings which are in a
path of minimal length from T to T', canonically has a structure of distributive
lattice. Afterwards, we prove that the same method gives similar results for
examples in spaces of tilings induced by tilings in the triangular lattice.

2 Tiling groups and tiling functions

2.1 Tilings

let A be the square lattice of the Euclidean plane. A (finite) figure F' of A is a
(finite) union of closed square cells of A. A figure F' is simply connected if F
and its complement R?— F both are connected. A finite simply connected figure
F is called a polygon of A. The boundary of a polygon P canonically induces
a cycle in A, which is called the boundary cycle of P. A set S of prototiles is
a fixed finite set of polygons of A. A tile is a translated copy of a prototile.
A tiling T of a figure F' is a set of tiles included in F, with pairwise disjoint
interiors, such that the union of the tiles of 1" equals F'.

2.2 Groups and their representation

let ¥ be the set {a,b,a™',b7'}, F,; be the free group generated by a,b and 7
denote the canonical surjection from the language X* of words with letters in ¥
to Fa7b-



Let R = {ri,rs2,...,rp} be a finite set of words of ¥*. The group
Ngr denotes the normal group of F,; generated by the elements of w(R)
and < a,b|ry,rs,...,r, > denotes the quotient group F,;/Ng. The group
< a,blr1,,r2,...,7p > has a classical graphic representation : the Cayley graph
Cr is the directed graph with labeled edges with labels in {a,b} such that :

e vertices of Cr are elements of < a,b|r1,72,...,7p >,
e the set of labels is {a, b},

e for each 3-uple (g,¢',u) of elements of (< a,b|ri,r2,...,rp, >)? x {a,b},
gu = g' if and only if there exists an edge of Cg from g to ¢, labeled by
u.

Hence, the underlying graph of A can be seen as the Cayley graph C.oy =
Cr,, with Ry = {aba—'b'}, each element of {a,b} being associated to a unit
move (a for a horizontal rightwards move, b for a vertical upwards move). By
this way, each vertex of A is identified to an element of < a,blaba=1b=! >.

2.3 Tiling groups

Let p = (vg,v1,...,vp) be a path of A, i. e. a sequence of vertices such that,
for each integer 7, with 0 < i < p’, there exists an element of ¥ such that
v;u; = vit1. The path word w(p) is the word uouy ... uy—1. Moreover, if p is a
boundary cycle of a polygon P, we say that w(u) is a contour word of P.

Let S = {t1,t2,...,tp} be a set of prototiles, and let R = {rq,r2,...,7p} be a
set of words such that for each integer i such that 1 < ¢ < p, w; is a contour
word of ¢;. The tiling group of S is the group Gyye =< a,b|r1,72, ...,7p >, and
the tiling Cayley graph of S is the graph C;e = Cg.

Remark that tiling groups and tiling Cayley graphs only depend on the set
S, and not on the contour words chosen for each prototile.

For Sy = {co}, where ¢ denotes the unit cell of A, the tiling group Gey of
Sp is isomorphic to Z2 and can be identified to A.

2.4 Tiling functions

let T be a tiling of a figure F. The graph Gy of T is the subgraph of A(=
Geent = Z?%) generated by the set of edges which are on boundaries of tiles of T
(i. e. which cut no tile of T').

Definition 1 let T be a tiling of a figure F. A tiling function induced by T is
a mapping fr from the set Vi of vertices of Gp to Gy such that, for each pair
(v,u) of Vr x {a,b}, if the edge outgoing from v labeled by u is an edge of Gr,
then the equality : fr(vu) = fr(v)u holds.

Proposition 1 (J. H. Conway) let F be a figure of A, T be a tiling of F, vy be
a vertex of Gt and v, be a vertex of G-

If F is connected (respectively is a polygon), then there exists at most one
(respectively exactly one) tiling function fr induced by T such that fr(vy) = v{.



Proof. : (sketch) function fr can easily be constructed successively exploring
the contour of each tile : function f is first defined on the vertices of a tile ¢
which has vy on its boundary. Afterwards, fr is defined on the vertices of a tile
t; which has a common vertex with ¢, and so on.

This method gives the uniqueness of fr, for F' connected. Nevertheless, a
conflict (i. e. a vertex v such that two distinct values of fr(v)) can arise if F'
has some holes, which yields that there is no tiling function. |

Remark 1 : let P be a polygon and vg be a vertex of the boundary of P. If f
and f' are tiling functions such that f(vo) = f'(vo), then for each vertez v of
the boundary of P, f(v) = f'(v).

The use of tiling functions is a main method to study tilings. Interesting
examples are developed in [1], [2], [3], [4], [5], [9]-
We apply the theoretical notions on our special case below.

3 Groups for tilings with bars

Let m and n being fixed positive integers such that m > 2 and n > 2. The first
sets of prototiles on which we apply notions of the previous section is (as in [2])
the set Spyn = {hm,vn}, where

e the prototile h,, denotes an m X 1 horizontal rectangle, which admits
a™ba~™b~! for contour word,

e the prototile v,, denotes a 1 x n vertical rectangle which admits b”ab~"a ™!

for contour word.

Thus, a set Ry,s of contour words of prototiles is {a™ba="b"1, b"ab~"a "'},
which gives a group Gpars =< a,bla™ba"™b"1,b"ab "a~* >. Since this group
has a complex structure, quotients groups of Gp,,-s will be used, in order to have
groups that can be easily described. This is an indirect way to understand the
structure of Gpgyrs-

3.1 Quotient groups

To obtain such quotient groups, it suffices to exhibit a set R' = {r},r5,...,7},}

of words such that the words of Rpers are null in < a,b|ry,75,...,7,, >. In this

case, we have a natural surjection from Gpars to < a,b|ri,rh, ..., >.

3.1.1 The cycle group

As in [2], the principal quotient group used is constructed from the auxiliary set
R' = {a™,b"}. Obviously, the elements of Rp,-s are null in < a, bla™,b"™ >,
which guarantees that we have a canonical surjection s from Gpurs to <
a,bla™, b"™ >.

The structure of < a,bla™,b™ > is rather simple : it is isomorphic to the
free product of a cyclic group of m elements and a cyclic group of n elements.
The associated Cayley graph Cg/ is formed from directed cycles of length m
with edges labeled by a and directed cycles of length n with edges labeled by b,
each vertex being element of exactly two cycles, one of each type (see figure 1).



Figure 1: The Cayley graph of the group Gcycres (example with m = 4 and
n=3).

Moreover, C'rr is a tree of cycles : the only cycles of C'g: are those described
above. Thus we state Cr = Ceyeres and < a,bla™, b >= Geyctes.

We introduce some definitions which permit us to have a geometrical under-
standing of Gcycies-

Definition 2 (canonical expression, length, distance, order in the cy-
cle group) For each element w of Geycies, there exists a unique finite sequence
(®1,81,22,%2,...,Tp,1p) sSuch that :

e for each integer j, x; is element of {a,b}, and (for j <p), x; # xj11,

o the equality : w = x'2¥ ... 27, holds in Geyeres,

e if z; = a (respectively x; =b), then 1 < i; < m (respectively 1 <i; <n).

With these notations, we say that :

o the word xi'x ... xy is the canonical expression of w,

e the integer p is the length of w (denoted by l(w)),

e for p > 2, the element mif:fmi,” of Geycies i called the final part of w
(denoted by fin(w)) ; otherwise, for p <1, we state fin(w) = w,

e for p > 2, the element m’fa}? of Geycies 15 called the initial part of w
(denoted by init(w)) ; otherwise, for p < 1, we state init(w) = w,

o the distance d(w',w”) between two elements of Geycres is equal to
l(w’_lw”),

e for each integer p' such that 0x < p', the word :r;il :1r;;2 ...x;’?’ is called a
well formed prefiz of the canonical expression of w,

o ifw' and w” are elements of Geycres such that the canonical expression of
w' is a well formed prefix of the canonical expression of w', then w' < yces

7

w.



Remark 2 The relation < y..s defined above is obviously an order relation
such that each element w of G (such that w # 1g.,.,.,) has a unique immediate
predecessor, denoted by preycies(w). In other words, the relation < ycies induces
a structure of tree on Geycles-

Thus, for each pair for each pair (w',w”) of elements of Geycles, there ex-
ists an element inf(w',w”) in Geyees (i. €. infeycres(w',w”) is such that
infcycles(wlaw”) Scycles 'LU’, Z.nfcycles(lwla’w”) Scycles w' and fOT‘ each element
w'"' such that " <cyeres W' oand W' <cyeres w7, we have : W' < ycres

infcycles (wla w” ) .

3.1.2 The cell group

Another quotient group of Gpe,s is the group G..; defined from the set Ry =
{aba"'b"1}. As we have seen before, this group isomorphic to Z2.

3.1.3 The torus group

The third quotient group which will be wused is Giorus =<
a,bla™,b”, aba=b=! >, constructed using the set R* = R U Ry =
{a™,b",aba"tb~1}. This group is isomorphic to Z,, x Z,, i. e. the di-
rect product of a cyclic group of m elements and a cyclic group of n elements
: each element can be seen as a pair (i,7) of Z,, X Z,,. The associated Cayley
graph Cpg» is formed from directed cycles of length m with edges labeled by a
and directed cycles of length n with edges labeled by b, in such a way that a
and b commute. It has the structure of a torus T,,x,. Notice that Giprus 18
also a quotient group of both Geycres and Geer.

3.2 Bar tiling projections

Let T be a tiling of a polygon P, and fr be a tiling function induced by T'.
Function g7, defined by : gr = 7'ofr, (where n' denotes the canonical surjection
from Gpors t0 Geyeles and o denotes the composition of functions) is called a
tiling projection of T'. Notice that, for a set of bars as set of prototiles, the set
of vertices of G is the set of vertices which are elements of P (since each vertex
of P is on the boundary of a bar of T').

Fix a vertex vy of the boundary of P and assume that gr(vo) = lg,,...-
Let v be any vertex of P ; how can we compute gr(v) ? we have to find a path
of P from vy to v which cuts no tile of 7', and, from the definitions of fr and
gr, the word associated to this path, seen as an element of Gycies, is equal to
gr(v) (see Figure 2).

Remark 3 Let (T,T") be a pair of tilings of P, and v be a vertez of the boundary
of P. taking a path from vy to v on the boundary of P, we obtain : gr(v) =
gr'(v). In other words, the value gr(v) does not depend on the tiling chosen.

Remark 4 Let (v,v') be a pair of neighbor vertices of P. If the edge which join
them is on the boundary of a bar, then d(gr(v),gr(v')) = 1. If, otherwise, this
edge cuts a bar, then d(gr(v),gr(v')) = 3. Thus function gr completely gives
the tiling T .



Figure 2: Computation of gr(v)

Definition 3 For each element v of the planar grid, there exists a unique pair
(iv,jv) of Z% such that v = voa®b;,. We define congiorus(v) as the element of
Giorus Such that :

CONGtorus (U) =a" ij

Hence, congiorys i a function from the planar grid to Giopys-

Remark 5 Let s denote the canonical surjective morphism from Geycies to
Giorus- One obuviously sees (by induction on the length of a shortest path, from
vo to v, which cut no tile) that, for each tiling T and each vertex v of P, we
have : s(gr(v)) = congtorus(v).

Thus, for each pair (T, T') of tilings of P and each vertex v of P, we have

gr(v) " g1 (v) € ker(s)

Fa,b

.o

Gbars

97 / \
chcles Geell
G

torus

Figure 3: mappings used (dark arrows represent canonical surjective group mor-
phisms)

The proposition below gives a characterization of tiling projections, from
a congruence condition and a local Lipschitz condition. It gives an algebraic
interpretation of the the geometrical regularity of a tiling.



Proposition 2 Let g be a function from the set of vertices of P to Gycies such
that :

b g(’Ug) = ]'chcles’
e for each vertex vertex v of P, s(g(v)) = congtorus(v),

e for each pair (v,v") of neighbors vertices of P, d(g(v),g(v")) < 3, and if,
moreover, the line segment [v,v'] is included on the boundary of P, then
d(g(v),g(v")) = 1.

There exists a tiling T of P such that g = gr.

Proof. Let v and v’ be vertices of the polygon P such that v = va (respectively
v' = vb). Let u be the element of Gy s such that g(v') = g(v)u. We necessarily
have s(u) = a (respectively s(u) = b). Thus, since I(u) < 3, there exists an
integer j , with 0 < j < n, such that u = b/ab™7 (respectively there exists an
integer i , with 0 < i < m, such that u = a’ba™?).

We claim the following fact (we can also claim the symmetric fact) :

Fact : Assume that v' = va and there exists an integer 7, with 0 < j < n
such that g(v') = g(v)b?ab=7. Then, for each integer j' such that j —n < j' < j,
we have : g(vb’ ) = g(v)b’ and g(v'b’ ) = g(v'")b?

We prove this fact as follows : first notice that the cells an edge of which
is the line segment [v,v'] are included in P, since d(g(v),g(v")) # 1. Thus, the
vertices vb and v’'b both are in P.

Now let u' and w” such that g(vb) = g(v)u’ and g(v'b) = g(v")u”. There
exists a pair (4,i') of {0,1,...,m — 1}? such that u' = a’ba~? and w =
a” ba~". With these notations, using the path (vb,v,v',v'b), we have g(v'b) =
g(vb)(u')"tbab Iu’. From our hypothesis, we have I((u') 1b/abIu”) < 3,
which necessarily yields i’ = ¢” = 0, since j # 0.

We have obtained the claim for j;' = 1, and, moreover, g(v'd) =
g(vb)b?~Lab=i*1. Thus, if j — 1 # 0, we can repeat the same argument for
g(v'b?) and g(vb?), and so on for g(vb') and g(vb’'), while j' < j. We can also
use the same argument in the other direction (for j' < 0) while j' > j — n,
which concludes the proof of the fact.

We now introduce the set T" of tiles defined as follows : a vertical (respectively
horizontal) bar is in 7' if and only if there exists a vertex v of P and an integer
j with 0 < j < n (respectively an integer i with 0 < i < m), such that
g(va) = g(v)b/ab™7 (respectively g(vb) = g(v)a‘ba™?).

There is no overlap, from the fact above. Let (vo,v1,v2,v3,04 = vg) be a
contour cycle of a cell, in the trigonometric sense, such that vg is the south west
corner of the cell. If we have d(g(vp), g(v1)) = d(g(v1), g(v2)) = d(g(v2), g(vs)) =
d(g(vs3),g(vs)) = 1, then we have g(vg) = g(vo)aba 1b~!, which is a contradic-
tion. Thus there exists an integer ¢ of {0, 1,2, 3} such that d(g(v;), g(vi+1)) =3
, which guarantees that the cell is covered by a bar of 7. Thus there is no gap
and T is actually a tiling of P.

The fact that gr = ¢ is obvious, from the definition of 7" and the fact above,
which concludes the proof. |



3.3 The kernel of the morphism from G yues t0 Giopus

Let s denote the canonical surjective morphism from Gcyces t0 Giorus. We will
see that the subgroup ker(s) of G¢ycies has a fundamental importance in the
comparison of tilings. This is a consequence of remark 5.

We have to explore the structure of this group.

Let Syect be the subset of Geycres defined by Syecr = {a'b/a= b7, blalb a7,
for 1 <i<mand1l<j<n}. One easily verifies that Sy is closed by inverse
(i. e. if t € Spect, then t=1 € Speer) and Speer C ker(s).

Remark 6 Let w be an element of kers(s). By projection (since Giorus 1S
commutative), one obuviously verifies that l(w) < 4 if and only if w € Spect U

{chycles}'

We need the following result to study the space of tilings of P with bars :

Proposition 3 Let w be an element of ker(s). There exists a unique finite

sequence (t1,ta,...,tp) of elements of Syect (called the decomposition of w), such

that w = IIY_, t; and, for each integer i such that 0 <i < p, titi1 # la., ... -
Moreover, the decomposition of w can be computed in O(l(w)) time units.

We decompose the proof of the above proposition into two lemmas :

Lemma 1 (existence and computation of a decomposition) Let w be
an element of ker(s) (different from lq.,.,.,) such that the initial part of w
is a'b! (respectively bVa'). We state : w = a'b’a=b~Iw' (respectively w =
batb=ia~w').

We have : [(w') < l(w) — 1

Proof. Assume that the the initial part of w is a’¥’. From remark 6, we can
state w = a’b/a*u, with [(u) = [(w) — 3 and the canonical expression of u begins
by 0.

Thus w' = ba*~tu, which gives I(w') < l(u) +2 = I(w) — 1.

The symmetric case can be treated in a symmetric way. |

Lemma 2 (unicity of the decomposition) Let (ti,t2,...,t,) be a (non-
empty) sequence of elements of S,ect such that, for each integer i such that
0<i<p,titiz1 #1. Let w be defined by w = II7_,t;. Then :

o [(w)>p+3,

o t,=a b Ia'tl (respectively t, = b Ja"ba’) if and only if the final part
of w is a'b! (respectively bla’).

Proof. By induction on the integer p. The result is obvious if p = 1. As-
sume that the result is true for each element w such that w is a product of p
elements of S,..;. Let w' be an product of p + 1 elements of S,..;. we state
w' = tity...tytyr1. By induction hypothesis, if ¢, = a='b77a'b’, the canon-
ical expression of element w = t1t2...t, is of type ua’®’, with u such that
[(u) > p+ 1 and the canonical expression of u finishes by b.



If t,y1 = a *b'a*b!, then the canonical expression of w' is
ua't? a™kpn—lakp! | which gives the first item and the direct part of the second
item of the lemma.

If tpr1 = b la *bla®, then we have w' = ua’®la *bla®. If j # [, then the
results of the lemma hold. If j — I = 0, then we have w' = ua’~*b'a*. Notice
that if i = k, then t,t,11 = 1 which is a contradiction. Thus a*=* # 1, which
gives the first item and the direct part of the second item of the lemma.

Conversely, if the final part of w' is a'b*, then we necessarily have t,,; =
b—la"*b'a*, since, otherwise, the direct part of the second item of the lemma
would be contradicted.

The symmetric cases can be treated in a similar way. |

The proposition proved above allows the definitions below :

Definition 4 (decomposition number of an element of ker(s)) The de-
composition number of an element w of ker(s) (denoted by num(w)) is the
number of factors of its decomposition.

Definition 5 (order on ker(s)) Let w and w' be elements of ker(s) whose

decompositions are w = IIY_,t; and w' = II_ ¢, We say that w <gecomp W' if

p <p' and for each integer i such that 1 <i < p, we have t; =t}

Remark 7 The relation defined by this way is obviously an order relation on
the set ker(s). Moreover, each element w of ker(s) (such that w # lq.,.,.,) has
a unique immediate predecessor (denoted by priecomp(w)) for this relation. In
other words, the relation defined induces a structure of directed tree on ker(s).

Thus, for each pair (w,w') of elements of ker(s), there exists an element
w” such that w” = in faecomp(w, w'). Notice that in fecomp(w,w') is the unique
element w” of ker(s) such that :

y—1 »—1 »—1 »—1

Z-nfdecomp(’LU’ w,w ’LU’) = Z-77‘fdt»3comp(’w , W 'LU) = Z-77‘fdt»3c07np('w” 717 nt

w ’LU,) = ]'chcles

From Lemma 1, we have the following remark :

Remark 8 For each element w of ker(s) (such that w # 1g_,.,.. ), Praccomp(w)
is the unique element w' such that there exists an element t; of Syect such that
w' =wt; and (') <l(w) — 1

Moreover, for each element tj of Srect such that t; # t;, we have l(wt;) >
l(w)+1

4 Distance between tilings

Definition 6 (distance between two tilings) Let (T, T") be a pair of tilings
of P, and let gr and g be the associated projections (such that gr(vg) =
gr(vo) = la., ... ). The distance A(T,T") is defined by the equality :

A(T,T') =Y num(gr:(v) " gr(v))

veP

We will prove that the distance defined above has a geometric interpretation,
using the local flips defined below.
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4.1 Local flips

Let T be a tiling of P. Assume that there exists an m x n rectangle Ry such
that 7' contains a tiling Ty of Ry (in this case, tiles of Ty are copies of the same
prototile). Another tiling T'y;;, of P is obtained replacing tiles of T by tiles of
T, where T} denotes the only tiling of Ry different from Ty. We say that Ty
is deduced from T by a local flip whose support is Ry (see figure 4).

gp(v)

a
a a
a
N
T
a 9p(rg) a
a a a a
ro a
T a
V]
a  igq, (ry)
a a
a
T, T
Iy (V)

Figure 4: Local flips for bars.

If v is a vertex of P which is not in the interior of Ry, then there exists a
path from vy to v which cuts not tile of T and does not go through the interior
part of Ro. This path also cuts not tile of T'sy;,. Thus, gr(v) = g7y, (v).

If v is an interior vertex of Ry, let ro be the lower left corner of Ry. Let
state v = roa’! (= rob’a’). Assume that Ty is formed from h,, tiles. Then we
have g7 (v) = gr(ro)b/a’ and gry,,, (v) = gr(ro)a’t’. Thus

9Tsiip (U) = gT('U)a_ib_jaibj

This equality means that local flip induces a multiplication of the tiling
projection of each interior vertex of Ry by an appropriate element of S,ect.
Thus

AT, Tyiip) = (m = 1)(n - 1)
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4.2 The flip formula

It has been proved, as a consequence of the algorithm of tiling, [2] that for each
pair (T,T") of tilings of P, there exists a sequence of local flips which permit to
deduce T" from T'. We will improve this result, giving a formula for the minimal
number min flip(T,T") of necessary flips.

Proposition 4 For each pair (T,T") of tilings of P, we have :
AT, T") < (m —1)(n — V)ymin flip(T,T")

Proof. Let (T' = Ty, T1,...,T, = T') be a sequence of tilings such that, for
0 < i < p, Tiy1 is deduced from T; by a local flip. We have A(T,T") <
S ATy, Tiga).

From the study of local flips, we see that, for 0 < i < p, A(T}, Tiq1) =
(m—1)(n—1) : if v is not in the interior part of the rectangle on which the flip
is done, then gr,(v) = gr,,, (v), thus num(gr, (v)"'gr,,, (v)) = 0; if v is in the
interior part of the rectangle on which the flip is done (we have (m—1)(n—1) such
interior vertices), then g7, , (v) is obtained multiplying g7, (v) by an element of
Srect, thus num(gr; (U)_lgTiH (v)) = 1.

Thus A(T;,Ti+1) = (m—1)(n—1), which yields that A(T,T") < (m—1)(n—
1)p, which gives the result. |

We will prove that the inequality of the previous proposition is actually an
equality. To do it, we have to exhibit a local flip in 7" which decreases A(T,T")
of (m —1)(n — 1) units. This flip will be done in the neighborhood of a special
point which will be called a maximal vertex.

4.2.1 Maximal vertex

Definition 7 A mazimal vertez for a pair (T, T') of distinct tilings is a vertex
v of P such that :

e gr(v) # g1 (v) ,
o sup[l(gr(v)),l(gr (v))] is mazimal with the previous condition.

There exists such a maximal vertex (since otherwise gr = g/, which yields
that T'=T"). Let v; be a maximal vertex. It can be assumed without loss of

generality that (g7 (v1)) < L(gr(v1)).

Lemma 3 We have [(g7(v1)) > 2 and, moreover,

fin(gr(v1)) = fin(gr (v1) ™ gr(v1))

Proof. We state gr(vi) = ww and g (vi) = ww', where u denotes
Z-77‘.](‘cyclt»35>'(gT(Ul)7gT’ (vl))' Thus; gr (’Ul)ilgT(Ul) = wlilw' Since it is assumed
that (g7 (v1)) < l(gr(v1)), we have l(w') < I(w). Moreover, 4 < l(w'lw) <
I(w") + I(w), which yields that 2 < [(w)

If w = a’b’, then we necessarily have w’ = b/a’ since [(w') < l(w), w' # w
and w'™l'w = gp(v1)"tgr(v1) is element of ker(s). This fact gives the result
(the same argument can be used in the symmetric case, when w = b/a?).

If [(w) > 3, then the result is obvious, since in feycres(w,w') = lg,,.p.,. O
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Proposition 5 Assume that the final part of gr(vy) is a’b’ (respectively biat).
Let o be the vertex of the plane defined by vi = roa'b’ (respectively vy = roblat).
This vertex is the lower left corner of an m Xn-rectangle Ry such that T contains
a tiling Tr, of Ry formed from vertical (respectively horizontal) tiles.

Proof. We treat the case when the final part of gr(vi) is a’d’. Let u; be the
element of Gyeres such that uia’®’ = gr(vi). By definition of gr, there exists a
unique integer [, such that 0 <1 < n and gr(v2) = gr(v1)b labl = uya’b’bab’.
If we have I # j, then I(gr(v2)) = l(gr(v1)) + 2, thus I(gr(v2)) > I(gr(v1)).

Moreover, from the previous lemma, the canonical expression of
gr(v))"tgr(vy) is wia'd?, with w; finishing by b, thus g7 (vi) tgr(ve) =
wia'b’b~labl.  Thus, if | # j, then we have d(g9r(v2),g7 (v1)) =
d(gr(v1), gr (v1)) + 2, which gives d(gr(ve), g1 (v1)) > 6.

On the other hand, we have d(grr(v2), g7 (v1)) < 3, which yields that
gr(v2) # gr(ve). The previous facts contradict the maximality of v, Thus
we necessarily have j = [ and, consequently, g7(v2) = gr(v1)b~7ab’. This last
equality implies (using the same kind of argument used in the proof of the fact
of Proposition 2) that the vertical tile whose lower left corner is roa’ is element,
of T.

If, moreover, vy is an interior vertex of Rp, then i + 1 # m, thus

l(gr(v2)) = Ugr(v1)) and d(gr(va), g7 (v1)) = d(gr(vi), g1 (v1)) > 4, which
gives : gr(va) # g (v2). Hence, vy is also a maximal vertex and we can repeat
the argument for vz, the right neighbor of v, and so on. The same kind of
argument can also be used leftwards. This gives the tiling Tr, of Ry.

(I

Proposition 6 Let Ty, be the tiling deduced from T' by a flip on Ry. We have
the equality : A(Tyip, T") = AT, T) = (m = 1)(n —1) .

Proof. Let state, for any vertex v of the interior of Ry, v = roa’ b7 (= rob/ a’’,
and g7+ (v) tgr(v) = IY_ ¢;. The final part of gr(v) is a* b/, which yields that
the last factor of g7 (v) 'gr(v) is t, = a=* b7 'a” b/, On the other hand,
g7(0) " 91710, (W) = (97(0) " g7 (00)) (g7 (v0) T 91700, () = b7 @7 W 0" = (t,)7
Thus,

g7/ () " 91310, (0) = (g7 (0) " g7 () (g7 (0) " G100, (v)) = (T, 1) (8) ™" = TIEZ

which yields that : num(gz (v)~'gr,,,, (v)) = num(gr (v)~'gr(v)) — 1, which
gives the result. 1

Corollary 1 (flip formula) For each pair (T, T") of tilings of P, we have :
AT, T") = (m —1)(n — V)minflip(T, T")
Proof. obvious, by induction on A(T,T"). |

4.3 Algorithm

4.3.1 Presentation

The notion of maximal vertex permits to give an algorithm which, given a
pair (T',T") of tilings of a polygon gives a sequence (Ry, Rz, ..., Ruyinfiip(T,77))
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of rectangles on which flips can successively be done, to go from T to T".
Informally, such a sequence is a space economic way to encode a shortest path
of tilings from T to T". The algorithm is presented below :

Input : a pair (7,7") of tilings of a same polygon P.

Initialization : Construct a spanning tree rooted in a fixed vertex wvp.
When a new vertex v is reached, compute the canonical expressions of gy (v),
g1 (v), g+ (v) () , compute sup(l(gr) (v)), (g7 (v))), and place v in a "list
of lists” such that each vertex v’ is in a basic list corresponding to the value
: sup(l(gr(v")),l(gr (v"))), and those basic lists are ordered according to their
decreasing corresponding values.

A variable list L of rectangles stores the sequence of rectangles used. The
beginning of this list is formed from rectangles which are supports of flips de-
duced from 7" and the end of the list contains the rectangles which are supports
of flips deduced from T”. For initialization, L is empty and each insertion is
done just between both parts.

We also need a variable vertex vy, which, for initialization, is the first element
of the ”list of lists” of vertices.

Repeat : Take the first element of the ”list of lists” for v;.

If gr(v1) = g7 (v1), then delete the value of vy from the ”list of lists”.

Otherwise, vy is a maximal vertex, which (in the case when [(gr(vi)) >
[(gr+ (v1)), the symmetric case being treated in a symmetric way) is in a rectangle
R on which a flip of tiling T’ can be done (R is defined by the final part of g7 (v1)).

Insert this rectangle in L, and update replacing T' by T, : for each vertex
v of the interior of R, update gr(v), sup(l(gr(v)),l(gr (v))) and the place of v
in the "list of lists” of vertices.

Notice that I(gr(v)) — 4 < I(gr;,;, (v)) < (gr(v)), which permits to update
the place of v in a constant time.

Until : the ”list of lists” is empty.

4.3.2 Analysis

Correctness : just before the i+ 1% passage through the loop, a pair (T} ;, 7% ;)
of tilings is stored. At the initialization, (T1,0,T%,0) = (T,T"), at each passage
through the loop (T ;,T>,;) is replaced by a pair (T4 i1, T2,i+1) such that :

o minflip(Th,iv1,T2,i+1) = minflip(Th;,T2,:) — 1,

e either T} ;11 = T4 ; and 15 ;41 is deduced from T ; by a flip, or T ;41 =
T5,; and T4 ;41 is deduced from T ; by a flip.

The algorithm stops for the integer ig such that T ;, = 1% ;-

We define a finite subsequence of (T1,0,71,1,.-.T1,i,) constructed extracting
different tilings : precisely (17 o, 17 ;,... 17 ,) is the sequence of tilings such that
17 o = Th0, T{ , = T1 i, and for each integer i such that i < p, T} ;| equals the
first element 7' ; of the sequence (71,0, 71,1,.-.71,;,) such that 71 ; # 17 ;. We
similarly define a subsequence (73 o, 75 1, ... 15 ) of (20,121, ... 15 ).

By this way, the sequence (17,71 ,... 17, = T3, 15 ,_q,---T5) is a
shortest path of tilings from T to T”. The sequence of supports of flips necessary
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to pass from a tiling of this sequence to its successor is exactly the final list L, ob-
tained at the end of the execution of the algorithm. This proves the correctness.

Time complexity : the characteristic values of a vertex v can be deduced
from those of its father in the spanning tree in O(1) time units. Thus, the
initialization can be done in O(A(P)) time units, where A(P) denotes the area
(i. e. the number of cells) of P.

Each passage through the loop costs O(1) time units (for m and n been
fixed). and reduces the distance between the current tiling and 7" from (m —
1)(n — 1). Thus the second part of the algorithm costs at most O(A(T,T"))
time units.

Thus the complete time cost is O(A(P) + A(T,T")), which is optimal since
O(A(P)) time units are necessary to read the input and O(A(T,T")) time units
are necessary to write the output.

5 Structures of lattices and semi-lattices

5.1 Order relations on the set of tilings

In this section, a tiling Ty of P is fixed and the tiling projection induced by Tp
is denoted by go-

Definition 8 Let (T,T") be a pair of tilings of P. We say that T <, T' if, for
each vertex v of P, go(v) ™' gr(v) <decomp go(v) " g1 (v).

The relation defined by this way is obviously an order relation on the set
YT p of tilings of P.The proposition below gives a geometrical interpretation of
this order.

Proposition 7 Let (T,T') be a pair of tilings of P. We have T <g, T" if and
only if there exists a sequence (To,T1,...,Tp) of tilings of P such that : T, =T",
p = manflip(Ty,T"), for each integer i such that 0 < i < p; T; + 1 is deduced
from T; by a local flip, and there exists an integer ig such that 0 < iy < p and
T=T,.

Proof. T <, T" if and only if we have the equality :
A(To, T') = A(To, T) + A(T,T")

from the definition of the distance between tilings. Moreover, from the flip
formula, the above equality is equivalent to :

minflip(To, T') = minflip(To, T) + min flip(T, T")
which means that there exists a sequence of tilings as described in the proposi-
tion. O
5.2 The infimum property

Proposition 8 Let (T,T") be a pair of tilings of P. We define the function
Ginf(T,1") by, for each vertex v of P,

Gins(r,1) (V) = gO(U)infdecomp(go(’U)ilgT(’U); go(v) " tgr (v))
There exists a tiling T” of P such that gr» = ginp(T,17)-
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The proof of the above proposition is based on the following lemma.

Lemma 4 Let (w,w') be a pair of elements of ker(s) such that
infaecomp(w,w') = lg_, .. and (j,j') be a pair of integers. We state u =
a twbiab7 and u' = a twb’ ab~7" (notice that u and u' both are elements of

ker(s)).

o If there exists an integer j” such that 0 < j7 < n and b < eyeles
infcycles(w;w’), then infdecomp(u,u’) =a v abI ,

o N
e otherwise, in foecomp(u,u') = la,, ..., -

Proof. First assume that there exists an integer j” such that 0 < 7”7 < n and
b7 Zeyeles N feyetes(w,w'). Thus, we can state w = b3 w; with the canonical
expression of w; beginning by a and [(w;) > 3 (since I(w) > 4)

If [(w) = 4, then w is element of Sy., thus [(wbiab™/) = 7 and
init(wbab=7) = init(w). If [(w) > 5, we obviously have [(wb/ab=7) > 2 and
init(wb’ab=7) = init(w). Thus, in any case, we can state w = b’ a’w; with
0 <t < m and either w; = 1¢ or the canonical expression of w; begins by
b.

cycles

In a similar way, we can state w'b'ab~/ = b"a’w]. Notice that
i # i', from Lemma 1. Thus, v = (a= ' ab™7")(b/"a ' Tiw;) and v =
(a7 ab=7") (b7 a1+ w}), which gives the result, since init(b"a~tiw,) #
init(b7” a1 wy).

Now we treat the second alternative of the lemma, : if w = ab’a—1b"7, then
u=1lg which obviously gives the result. The same argument can be used if

cycles?
w' = ab’ a—1b=3" In any remaining case, one can remark as it has been done for
the first alternative that init(wb’ab=) = init(w) and init(w'b’ab=7) = init(w').
Thus init(wbiab=7) # init(w'bab=7), which yields that init(u) # init(u'),
which gives the result from Lemma 1. O

Proof. (of Proposition 8) We prove this proposition, proving that g,z 7
satisfies the hypothesis of proposition 2. The only non-trivial point
is the verification that for each pair (v,v') of neighbors vertices of P,

d(Gins(r,17) (V) Ging(r,7) (V")) < 3.

We will prove it assuming, moreover, that v = va (which can be done
without loss of generality, since the case when v' = wvb can be treated in a
symmetric way).

We need some notations : we state go(v') = go(v)boab 0, gr(v') =
gr(0)VTab™IT and gr/ (v') = g (V)BT ab I,

We also state:  ginpr,r)(v) 'g0(v) = wo, Ginpr(0) tgr(v) =
wr, Gingra) () rgr(v) = wr. With these notations, we have
infdecomp(wmwT) = infdecomp(WO:wT’) = infdecomp(wT:wT’) = 1chcles'

Afterwards, we state : wy = a ‘wobab P, ur = a lwpbiTabIT,

urr = a’lez bir b~z

A) If there exists an integer j” such that 0 < j7 < n and b <cycles
infeyetes(Wo, wr, wrr), then, from the previous lemma, we have :

infdecomp(“O: U'T) = infdecomp(UO: UT’) = infdecomp(uT: UIT’) = (l_lbf7 ab_j”
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Thus, if we state t = a~'67"ab™7”, we have :

infdecomp(t71U0: tiluT) = infdecomp(t71U0: tiluT’) = infdecomp(t71UT7 tiluT’) = 1chcles
which means that g, ¢ 1) (va) = gmf(TT)(v)bj”ab’j" and gives the result.

B) If there exists an integer j” such that 0 < j7 < n and b <iycles
infeyctes(wo, wr) (which yields that in fiecomp(uo, ur) = a~ b ab™7" =t), and
infdecomp(u(); uT’) = Z-77‘.](‘decomp(uTa uT’) = ]'chcles ) then

infdecomp(t71U0:t71uT) = infdecomp(t71U0:t71uT’) = infdecomp(tiluT:tiluT’) = 1chcles

which means that g, ¢ 1) (va) = gmf(TT)(v)bj”ab’j" and gives the result.

C) If infdecomp(UO: UT) = infdecomp(UO: UT’) = infdecomp(uT: UT’) =
lG.,u..» then we have gi,,¢(r,17)(va) = ging(r,17)(v)a, which gives the result.

We have treated all the cases, (up to symmetry), from the previous lemma.
|

Corollary 2 For each tiling Ty of P, the order relation (Y p, <t,) is an inferior
semi-lattice.

Proof. obvious. O

Proposition 9 For each pair (Ty,T}) of tilings of P, we define the set Y7, 1
formed from tilings T such that To <1, T <1, T§).
The order relation (Y,,17, <t,) is a distributive lattice.

Proof. We have seen that T, 77 has the minimum property. Notice that 7o <r,
T <g, T} if and only if T§ <r; T <g; To. Thus Tr, 7; has the maximum
property, since TT(;7T0 has the infimum property. We have proven that TTO’T(;
has a lattice structure.

For each vertex v of P, we state g1/ (v) = gr, (v)Hfivl) t;(v), where Hfgl)ti (v)is
the decomposition of gz, (v) " gr;(v). Let T be a tiling of T, 77. There exists a
unique integer g7 (v) such that 0 < g(v) < p(v) and gr(v) = gz, (V)IZ ¢ (v).
Thus, one can define the injective mapping ) from TTO’T(; to ZV (where V
denotes the set of vertices of P) such that Q(T) is the vector formed from
values gr(v).

By definition of the order on Yy 7, the mapping @ is a lattice morphism (i.
e. QUnf(T,T")) = inf(Q(T),Q(T")) and Q(sup(T,T")) = sup(Q(T),Q(1"))),
which yields that Y, 77 is isomorphic to a sublattice of Z V' and, consequently,
is a distributive lattice. |

6 Tilings with leaning dominoes and triangles

From a similar method, we will see that similar results and algorithms can be
obtained working with sets of prototiles of the triangular lattice. In this section
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we limit ourselves to present the general framework and the main tools used,
and do not give proofs, since most of they are very similar to those of previous
sections, about tilings with bars.

The triangular lattice I' induces three unit moves in the plane : rightwards,
denoted by a, and b and ¢, such that angle(a,b) = angle(b,c) = angle(c,a) =
2I1/3. Let v be a vertex of I' and u denote an element of {a,b,c,a 1, b1 ¢},
The element of I which is reached from v with a u-move is denoted by vu.

We now study the set of prototiles S = {ldy,lds,lds,ldys,lds,lds, tre,tr2}
(previously studied in [5]), where Id; (respectively ¢r;) denotes a parallelogram
(respectively an equilateral triangle) formed from four cells of I'. Each prototile
ld; is called a leaning domino.

A set of contour words of S is R =
{a?ba=2b71, a%ca™2c7 1, b?ab=2a=t, b2chb ™2 ¢!, Pac™2a 7Y,
b2, a?b?c?, a’c?b?}thus the tiling group Gyge is the group gener-
ated by {a,b, c} whose set of relators is R (i. e. the quotient group Fy j ./Ng)

-

Figure 5: A leaning domino and a triangular prototile. Counterclockwise, start-
ing from the lower left corners, the contour words respectively are ac™2a~'c?

and a?bc2.

6.1 Quotient groups
6.1.1 The tricolored group

Since Gy is complex, we use quotients of it. The main quotient group used
is < a,b,cla®,b%,¢®> >. This group is isomorphic of the free product of three
groups, each of them with only two elements. If we identify opposite arcs with
the same label, the induced Cayley graph is a tree.

Each element w of G¢ricotoreq has a canonical expression : w can be written
in a unique way as w = II?_,z; with, for each integer i, z; € {a,b,c} and,
for i < p, ®; # wi+1. This permits to define the initial (respectively final
part) of w (the word formed by the two first (respectively last) letters of the
canonical expression of w), the length I(w) of w by : I(w) = p and the distance
d(w',w”) between elements of Gyricotorea by d(w',w”) = I(w'"tw”). One can
also canonically define an order relation (denoted by <tricotored) 00 Gtricotored-
This relation obviously has the infimum property.

Let P be a fixed polygon formed from cells of the triangular lattice and vg
be a fixed vertex of the boundary of P. As in Section 3, for each tiling 7" of P,
one can define a tiling projection gr, which associates an element of Gtricotored
to each vertex v of the polygon. Such a tiling projection encodes the tiling 7.

6.1.2 The cell group and the tetrahedron group

Another quotient group of Gie is Geen =< a,b,clabc,ach > (i. e. the set of
relators is a set of contour words of cells). This group is isomorphic to Z? and
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Figure 6: The Cayley graph of Giricotored

the induced Cayley graph is the planar triangular grid.

The third quotient group is Gietrahedron =< a, b, cla?,b?, c2, abe,ach >. This
group has four elements and the induced Cayley graph is a tetrahedron. Since
the exists a canonical morphism from G..; (which can be seen as the planar
triangular grid) to Gietrahedron, We can define (after an origin vertex vy has
been fixed), for each vertex v of the grid, the element congetranedron(v) of
Gtetrahedron-

Given a tiling T of a polygon P with a fixed vertex vg of its boundary, one
can define a tiling projection gy from vertices of P to Giricotored- We have, in
a similar way as in Section 3, the proposition below.

Proposition 10 Let g be a function from the set of vertices of P to Gricolored-
There exists a tiling T of P such that g = gr if and only if the following
constraints are satisfied :

d g(Uo) =16, icotomreas
e for each vertex vertex v of P, s(g(v)) = congietrahedron(v),

e for each pair (v,v") of neighbors vertices of P, d(g(v),g(v")) <3, and if,
moreover, the line segment [v,v'] is included on the boundary of P, then
d(g(v),g(v")) = 1.

Proof. (sketch) The direct part of the proposition is very easy. Conversely,
assume that g satisfies the constraint above and let [v,va] be a line segment
included in P. We necessarily have g(v)'g(va) € {a,bc, cb, cac,bab} (we have
a similar fact for line segments [v, vb] and [v, vc]).

Moreover, we have a large information about the values of g(vb~!) and
g(vet) @ precisely, if g(v)~'g(va) = bab, then g(v)~lg(ve™!) = ba and
g(v)"lg(wb™t) = b ; if g(v)"tg(va) = be, then g(v)~tg(vb™!) = b and
g(v)~tg(vb™t) € {c,ba,bcb} (we also have a lot of symmetric equalities).

The above equalities imply that the set of edges [v,v'] such that
d(g(v),g(v")) = 1 draw a tiling T of P : precisely, for each cell C of P, the
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set of cells C’ such that there exists a path starting in C' and finishing in C’
which cuts no edge [v,v'] such that d(g(v),g(v")) = 1, form a tile. The set of
those tiles form a tiling T" of P and we obviously have g = g7. O

As a corollary, we obtain that, for each pair (T, T") of tilings of P and for each
vertex v of P, gr(v) gy (v) is element of the kernel of the canonical morphism
from Giricotored 10 Gtetrahedron- For the following, this kernel is denoted by
NI

cell”

6.1.3 Structures induced by N/,

We state Siriangte = {abc, acb, bac, bea, cab, cba} (i. e. the set of possibles con-
tour words of triangular cells). As in Section 3, one can prove that each element

w of N/, can be written in a unique way as w = Hf;lxi with, for each integer
i, T; € Smangze and, for i < p, ; # x;41.
Moreover, the canonical expression of w finishes by ab (respectively ac, ba,
be, ca, cb) if and only if x,» = cab (respectively bac, cba, abe, bea, ach).
Thus, as in Section 3, one can define the order relation <gecomp on N,
the decomposition number num(w) of w by num(w) = p', and, afterwards, the

distance A(T,T") between two tilings of a same polygon P.

6.2 Local flips

We have to kind of local flips (see figure 7) : a lozenge Lo, formed from height
triangular cells of P admits three tilings. Two of those tilings are formed from
two leaning dominoes and the third one is formed from two triangles. The
replacement of a tiling of Ly formed from parallelograms by a tiling formed
from triangles (or the inverse) is our first kind of local flip (the lozenge flips).

An isoceles trapeze Try formed from height triangular cells of P admits
two tilings, each of them formed from a parallelogram and a triangle. The
replacement of one of these two tilings by the other one is our second kind of
local rotations (the trapeze flips).

VANAT U ANNG TN

Figure 7: Flips for leaning dominoes and triangles

Let T be a tiling and T, be a tiling deduced by a flip of support Sup.
(which is either a lozenge or a trapeze). Let vg,, denote the only vertex which
is in the interior part of Sup. For each vertex v of P such that v # vsyp, we
have gr(v) = gr,,;, (v) and gT(vsup)*lng”p (vsup) is element of S¢riangie-

6.2.1 Maximal vertex

A maximal vertex for a pair (T, T") of tilings can be defined exactly as in section
3, but the use of maximal vertices is a little different.

Let v; be a maximal vertex for a pair (T',T") of distinct tilings. One can
assume without loss of generality that I(gy(v1)) < 1(gr(v1)).
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From the tree structure of Gipicoiored, One easily proves that {(gr(vy)) > 2.
Moreover, if the final part of gr(v1) is ab , then, since (g7 (v1)) < I(gr(v1)),
the last factor of the decomposition of g7 (vy) 1 gr(v1) is necessarily cab.

Proposition 11 Consider the line segment [v1b~1,v1b]. This line segment is
the common side of two tiles of T'. Moreover, each leaning domino of T a large
side of which is [v1b~!,v1b] admits b>a=1b~2a as contour word.

Proof. (sketch) We first claim that the line segment [v1, v1¢] necessarily cuts a
tile of T' : otherwise, we have I(gr(vic)) = l(gr(v1)) + 1.
On the other hand, since the final part of g7 (v1) " gr(v1) is ab,we have

d(gr(v1), gr(vic)) = d(gr (v1),9r(v1)) +1>3+1=4

These inequalities prove that g7 (vic) # g (v1c), since d(gr (v1), g (vic)) <
3. Thus v;c contradicts the maximality of v .

The same argument can also be used for via, vic™
the first part of the proposition.

If we assume that a leaning domino, whose sides issued from v,b~! are
[v1b7 1, v10] and [v1b~ 1, v1b7 L], is element of T', then one proves as above that
l(gr(vic)) = U(gr(vi)) + 1 and gy (vic) # gr (vic), which contradicts the maxi-
mality of v;. This gives the second part of the proposition. O

! and via~'. This gives

From the above proposition, it follows that a flip can be done around such
an extremal vertex v;. This flip decreases the distance between T and T". Thus,
by a similar study as in Section 3, we obtain :

e a flip formula : minflip(T,T") == Z num(gr (v) " tgr(v)),
veEP

e an algorithm which, given a pair of tilings, produces a sequence of minimal
length of necessary flips to transform the first tiling into the second one.

6.3 Lattice structures

For each tiling Ty, we can define, as in Section 5, an order relation <r,, which can
be geometrically interpreted by : for each pair (T,T") of tilings of P, T <, T"
if and only if there exists a sequence (Tp,T1,...,Tp) of tilings of P such that
: T, =T, p = minflip(Ty,T"), for each integer ¢ such that 0 < i < p; T; + 1
is deduced from T; by a local flip, and there exists an integer i¢ such that
0<ip<pand T =T;,.

Lemma 5 Let (w,w') be a pair of elements of N., such that
iNfaecomp(W, W) = 1G,icoiorea 0nd (s,8') be a pair of elements of
{a,be, b, cac,bab}. We state v = aws and u' = aws' (notice that u and
u' both are elements of N ;).

o Ifb <iricolored inftricolored(wa wl); then infdecomp(ua UII) = abe,
o If ¢ <tricotored inftricolored(w: wl); then infdecomp(ua UII) = ach,

. . A
° Otherwwe; lnfdecomp(uau ) = thricolored'
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From this lemma, as in Section 5, one deduces that the order <iricorored
induces a structure of inferior semi-lattice on the set of tilings of P, with Tp
as minimum element, and a structure of distributive lattice for each interval of
tilings.

7 Tilings with calissons

The same method can easily be applied to the set of prototiles S =
{caly, cals, cals} (the calissons, studied in [9]), each element of S being formed
from two cells of T' with a common edge. A set of contour words is
{aba= b1, aca et beb e}

The main quotient group used is Giine =< a,blab™!,ac™! >. Each element
w of Gine has a canonical expression : there exists a unique relative integer
such that w = a?. This permits to define the length {(w) of w by I(w) = |p|.

Given a tiling 7' of a polygon P, one can define a tiling projection gy from
vertices of P to Gyine. One can prove that, for each vertex v of P, g7+ (v) 1 gr(v)
is element of the normal group N7 .. of Gine generated by {abc,acb} = {a®}.
Thus, each element w of N”..; can be written in a unique way as w = a3 .
This permits to define the decomposition number num(w) of w by num(w) =
|p'|(= l(w)/3), and, afterwards, the distance A(T,T") between two tilings of a
same polygon P.

The local flips are induced by the two possible tilings or a hexagon formed
from six cells of I" (see figure 8). In this case, the end of the study is very simple,
since Gyine 18 isomorphic to Z. we obtain :

o aflip formula : minflip(T,T") = Y _ [I(gr)(v) — l(gr(v))|/3,
veP

e an algorithm which, given a pair of tilings, produces a sequence of minimal
length of necessary flips to transform the first tiling into the second one,

e a structure of distributive lattice in the set of tilings (the addition of a
fictive maximum is not needed because of the structure of line of the

quotient group).
O

Figure 8: Flips for calissons
As for the dominoes, results about calissons were previously obtained

using elementary methods ([6], [8]), but here, we explain them with a general
framework.
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