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Abstract. Let C be a code of length n over an alphabet of q letters. An n-word y is called a
descendant of a set of t codewords x1, . . . , xt if yi ∈ {x1i , . . . , xt

i} for all i = 1, . . . , n. A code is said
to have the t-identifying parent property if for any n-word that is a descendant of at most t parents
it is possible to identify at least one of them. We prove that for any t ≤ q − 1 there exist sequences
of such codes with asymptotically nonvanishing rate.
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1. Introduction. Let Q be an alphabet of size q, and let us call any subset C
of Qn an (n,M)-code when |C| = M . Elements x = (x1, . . . , xn) of C will be called
codewords.

Let C be an (n,M)-code. Suppose X ⊆ C. For any coordinate i define the
projection

Pi(X) =
⋃
x∈X

xi.

Define the envelope e(X) of X by

e(X) = {x ∈ Qn : ∀i, xi ∈ Pi(X)}.

Elements of the envelope e(X) will be called descendants of X. Observe that X ⊆
e(X) for all X, and e(X) = X if |X| = 1.

Given a word s ∈ Qn (a son) which is a descendant of X, we would like to identify
without ambiguity at least one member of X (a parent). When this is always possible
for any descendant s of an X of size two, the code C is said to have the identifiable
parent property [9]. More generally, we have the following definition.

Definition 1.1. For any s ∈ Qn let Ht(s) be the set of subsets X ⊂ C of size at
most t such that s ∈ e(X). We shall say that C has the identifiable parent property
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of order t (or is a t-identifying code, or is t i.p.p. for short) if for any s ∈ Qn, either
Ht(s) = ∅ or

⋂
X∈Ht(s)

X 
= ∅.

It will be convenient to view Ht(s) as the set of edges of a hypergraph. Its vertices
are codewords of C.

Example. Let C ⊂ {0, 1, 2, 3}4 be the code defined by C = {u, v, w, x, y, z} where

u =
[
0 1 2 3

]
,

v =
[
1 2 3 0

]
,

w =
[
2 3 0 1

]
,

x =
[
3 0 1 2

]
,

y =
[
0 0 0 0

]
,

z =
[
1 1 1 1

]
.

The triple {w, y, z} can produce the son s = (2010). The hypergraph H3(s) contains
three edges, namely, X = {v, w, x}, X ′ = {w, x, y}, and X ′′ = {w, y, z}. Their
intersection is X ∩X ′ ∩X ′′ = {w}, and w is therefore identified as a parent of s. The
code C, however, is not 3-identifying; it is not even 2-identifying since H2(0101) =
{u,w} ∪ {y, z} and {u,w} ∩ {y, z} = ∅.

The concept of t-identification originates with the work of Chor, Fiat, and Naor [5]
on broadcast encryption. It is also related to the problem of fingerprinting numerical
data [4].

It is not difficult to prove that if the minimum Hamming distance of C is big
enough, then C must be t-identifying. We have [5] the following proposition.

Proposition 1.2. If C has minimum Hamming distance d satisfying

d > (1− 1/t2)n,

then C is a t-identifying code.
Actually, this condition implies a stronger property, namely, t-traceability; see [15].
As usual, let R = R(C) = logqM/n denote the rate of the (n,M)-code C.

Let Rq(t) = lim infn→∞maxR(Cn), where the maximum is computed over all t-
identifying codes Cn of length n.

Note that for alphabet sizes q ≤ t2, Proposition 1.2 does not prove that Rq(t) > 0
(because, for example, (n,M)-codes that satisfy the distance condition must have
M ≤ qd; see Plotkin’s bound, e.g., in [12]).

In fact, nontrivial t-identifying codes do not always exist if the alphabet size q
is not big enough. Hollman et al. [9] give constructions of 2-identifying codes and
existence bounds on Rq(2) for any alphabet size q ≥ 3. They prove

Rq(2) ≥ logq(q/(4q2 − 6q + 3)1/3).(1.1)

The case of arbitrary t was discussed in a recent paper [15], where it is shown that
nontrivial t-identifying codes do not exist when t > q − 1 and do exist when q ≥
�(t+ 2)2/4�. Consequently, it was asked in [15] whether Rq(t) > 0 for any t ≤ q − 1.
In this paper we shall answer this question and prove the following theorem.
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Theorem 1.3. Rq(t) > 0 if and only if t ≤ q − 1.
We shall also give a lower bound on Rq(t). We shall give particular attention to

the case t = 3 and in the case t = 2, q = 3 strengthen (1.1) by showing that it can be
achieved by a sequence of linear ternary i.p.p. codes.

2. Decomposing the t-identifying property with the Berge–Duchet the-
orem. Let us call a subset of edges of a hypergraph a star if it has a nonempty in-
tersection. A code C is t-identifying if all the nonempty hypergraphs Ht(s) are stars.
In this section we give necessary and sufficient conditions for Ht(s) to be a star.

Let us say that a family of sets, any t (or less) of which have nonempty intersection,
is t-wise intersecting.

Recall that a family of sets has the t-Helly property if every t-wise intersecting
finite subfamily is a star.

Let us quote a Helly-type result due to Berge and Duchet [3]; see also [6, p. 393].
Theorem 2.1. A hypergraph has the t-Helly property if and only if, for every set

A of t+ 1 vertices, all the edges E such that |E ∩A| ≥ t share a common vertex.
Let us reword this result for our purposes. Recall that a hypergraph on t + 1

vertices whose edges are all the t-subsets is called a t-simplex, denoted Kt(t+ 1).
Corollary 2.2. The hypergraph Ht(s) has the t-Helly property if and only if it

does not contain Kt(t+ 1) as a subhypergraph.
Proof. Consider any set A of size t+ 1 vertices of Ht(s). Let E1, E2, . . . , Em be

all the edges of Ht(s) that have at least t vertices in A. Since the edges of Ht(s) have
at most t vertices we have |Ei| = t for all i and

|E1 ∩ E2 ∩ · · · ∩Em| = t+ 1−m.

Therefore this intersection is nonempty if and only if m < t+ 1; i.e., E1, E2, . . . , Em

do not make up the t-simplex with vertex set A.
Reworded again, we get the following corollary.
Corollary 2.3. Suppose the hypergraph Ht(s) has at least t+ 1 vertices. Then

it is a star if and only if
1. any t (or less) of its edges have a nonempty intersection;
2. it does not contain Kt(t+ 1).

3. Ensuring t-identification for any t ≤ q + 1.

3.1. Hashing families. A subset C of Qn is said to be t-hashing (or t-separa-
ting; see, e.g., [10]) if any t of its members have t distinct entries in some common
coordinate i ∈ {1, . . . , n}.

Lemma 3.1. C ⊂ Qn is (t + 1)-hashing if and only if Ht(s) has the t-Helly
property for every s ∈ Qn.

Proof. Suppose C is (t + 1)-hashing. Let A be any set of t + 1 codewords, and
let s ∈ Qn. Since there is a coordinate where the codewords of A are all different,
there exists at least one subset X ⊂ A, |X| = t, such that s 
∈ e(X). Therefore Ht(s)
cannot contain a t-simplex.

Conversely, suppose C is not (t + 1)-hashing, so that there exists a subset A of
t + 1 codewords such that for every coordinate i, there exist at least two distinct
codewords a, b of A such that ai = bi. Then define s ∈ Qn by choosing, for every
coordinate i ∈ {1, . . . , n}, a value that occurs at least twice among the ai, a ∈ A.
Then we have s ∈ e(X) for every subset X of size t of A, which means that Ht(s)
contains the t-simplex with vertex set A.
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Remark. A consequence of Lemma 3.1 is that when q ≤ t, there are no q-ary
t-identifying codes C of size |C| ≥ t+ 1 (see Lemma 1.6 of [15]).

We now have a condition on C that ensures that all the hypergraphs Ht(s) do
not contain t-simplexes. To apply Corollary 2.3 we now need a condition to ensure
that any t edges of any Ht(s) have a nonempty intersection.

3.2. Partially hashing families.
Definition 3.2. Let us say that a subset C ⊂ Qn is (t, u) partially hashing if

for any two subsets T,U of C such that T ⊂ U ⊂ C, |T | = t, |U | = u, there is some
coordinate i ∈ {1, . . . , n} such that for any x ∈ T and any y ∈ U, y 
= x, we have
xi 
= yi.

Remark. If u = t+ 1, then (t, u) partial hashing is the same as (t+ 1)-hashing.
The motivation for this last definition is the following lemma.
Lemma 3.3. Let X be a subset of edges of Ht(s), and let u be an upper bound

on the number of vertices spanned by the edges of X . If C is (t, u) partially hashing,
then X is a star, i.e., ∩X∈XX 
= ∅.

Proof. Let U = ∪X∈XX, so that |U | ≤ u by the hypothesis. Let T be some
edge of X . Because C is (t, u) partially hashing, there is some coordinate i satisfying
the condition of Definition 3.2 for T and U . Then si = xi for some x ∈ T because
s ∈ e(T ). However, then the definition implies that for all y 
= x, y ∈ U , we have
yi 
= si. Since all edges X of X are in Ht(s) we conclude that they must all contain
x.

Lemma 3.1 means that to enforce t-identification it is sufficient to have (t + 1)-
hashing and any property which forces any t edges of Ht(s) to intersect. Since any t
edges of Ht(s) span at most t

2 vertices, Lemma 3.3, together with the remark after
Definition 3.2, now implies the following corollary.

Corollary 3.4. If C is (t, t2) partially hashing, then C is a t-identifying code.
The (t, u) hashing property is easier to handle than t-identification; in particular,

it will give us a lower bound on Rq(t) through the probabilistic method.

3.3. A lower bound on the size of (t, u) partially hashing codes. Fix
t ≤ q − 1 and let u ≥ t + 1. We apply the probabilistic method with expurgation
(see, e.g., [2]) to (t, u) partially hashing codes. This means that we take a random
(n,M)-code C and compute the expectation E of the number of pairs of subsets T,U ,
T ⊂ U ⊂ C, |T | = t, |U | = u, that contradict the (t, u) partially hashing property.
Whenever E ≤ M/2, then (n,M/2)-codes with the (t, u) partially hashing property
exist.

The probability that a given T and U violate the partially hashing property is

Pt,u,n =

(
1− q(q − 1) · · · (q − t+ 1)(q − t)u−t

qu

)n

=

(
1− q!(q − t)u−t

(q − t)!qu

)n

.

The expectation of the number of pairs T,U that violate the partially hashing property
is

E =

(
M

u

)(
u

t

)
Pt,u,n.

Writing M = qRn and letting n go to infinity we get that infinite sequences of (t, u)
partially hashing codes exist for all rates R such that logq E < Rn, i.e., such that

uR+
1

n
logq Pt,u,n < R.
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Hence we get the following lemma.
Lemma 3.5. Let u ≥ t + 1: infinite sequences of (t, u) partially hashing codes

exist for all rates R such that

R <
1

u− 1 logq
(q − t)!qu

(q − t)!qu − q!(q − t)u−t
.

As a consequence, applying Corollary 3.4, we obtain Rq(t) > 0 for any q ≥ t+ 1
which proves Theorem 1.3.

3.4. Improvements: Forbidding minimal configurations. We shall now
show that the quantity t2 in Corollary 3.4 can be lowered; namely, we shall obtain
the following lemma.

Lemma 3.6. Let u = �(t/2 + 1)2)�. If C is (t, u) partially hashing, then C is a
t-identifying code.

Before proving Lemma 3.6 it will be convenient to decompose all subsets of edges
with empty intersection into “minimal forbidden configurations.”

Let X = (X1, . . . , Xm) be a collection of subsets of codewords with |Xi| ≤ t, i =
1, . . . ,m. We shall call X a configuration if it has an empty intersection, ∩m

i=1Xi = ∅,
and we shall say that X is a minimal configuration if it is minimal under inclusion,
i.e., if ∩i 
=jXi 
= ∅ for any j = 1, . . . ,m.

Let X be a minimal configuration of size m. A set B(X ) = (b1, . . . , bm) will be
called a frame of X if

bj ∈
⋂
i 
=j

Xi.

By minimality, frames of minimal configurations always exist. One useful property of
frames gives rise to the following lemma, which follows somewhat along the lines of
[15].

Lemma 3.7. Let X be a minimal configuration. Then
∣∣∣∣∣
m⋃
i=1

Xi

∣∣∣∣∣ ≤
∑

|Xi| −m(m− 2).

Proof. All the points bj of a frame B(X ) are different since otherwise ∩iXi 
= ∅.
Furthermore, by definition of B(X ) we have (B(X ) \ bj) ⊂ Xj for any j = 1, . . . ,m,
and hence m− 1 ≤ t. Then∣∣∣∣∣

m⋃
i=1

Xi

∣∣∣∣∣ ≤
∑
(|Xi \ (B(X ) \ bi)|) + |B(X )|

=

m∑
i=1

(|Xi| − (m− 1)) +m.

Since |Xi| ≤ t, we obtain |∪Xi| ≤ m(t−m+2). The maximum onm of this expression
for m = 1, . . . , t is u = �(t/2+ 1)2)�, which is also an upper bound on the cardinality
of a minimal configuration (see [15]).

Note that the maximum value of m which gives a positive upper bound is t+ 1.
Also note that the only minimal configurations with m = t + 1 are t-simplexes. In
particular this gives an alternative proof of Corollary 2.3.
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We observe that any configuration must contain some minimal configuration.
Now apply Lemma 3.3 as before to obtain Lemma 3.6. Lemmas 3.5 and 3.6 imply the
following improved lower bound on Rq(t).

Theorem 3.8. Let u = �(t/2 + 1)2)�. We have

Rq(t) ≥ 1

u− 1 logq
(q − t)!qu

(q − t)!qu − q!(q − t)u−t
.

4. Small t. The (t, u) partially hashing property is only a sufficient condition
for a code to be t-identifying. In the case of small t we can obtain precise necessary
and sufficient conditions. A code C is t-identifying if and only if, for every s such
that Ht(s) 
= ∅, the hypergraph Ht(s) has the t-Helly property and any m edges of
Ht(s) have a nonempty intersection for any m, 2 ≤ m ≤ t. Lemma 3.1, together with
Corollary 2.3, tells us therefore that C is t-identifying if and only if it is (t+1)-hashing
and any m edges of Ht(s) have a nonempty intersection for any m, 2 ≤ m ≤ t, and for
any s ∈ Qn. For t = 2, the latter property means that H2(s) does not contain disjoint
edges. Equivalently, for any X = {a, b}, Y = {c, d}, with a, b, c, d distinct codewords,
e(X)∩ e(Y ) = ∅. Equivalently again, this means that there exists a coordinate i such
that

{ai, bi} ∩ {ci, di} = ∅.(4.1)

This property of C was named IPP2 by Hollman et al. in [9]. In other contexts
it has often been called (2, 2)-separation and has been investigated by a number of
authors [7, 8, 11, 13, 14]. The 3-hashing property was called IPP1 in [9].

Let us now characterize the 3 i.p.p. property.

4.1. The case t = 3. This time Lemma 3.1 and Corollary 2.3 tell us that C is
3-identifying if and only if

(i) it is 4-hashing;
(ii) for any s ∈ Qn, any two edges of H3(s) have a nonempty intersection and

any three edges of H3(s) have a nonempty intersection.
Condition (ii) is equivalent to saying that H3(s) does not contain minimal con-

figurations of size m = 2 and of size m = 3.
That H3(s) does not contain minimal configurations of size two is equivalent

to saying that for any X = {a, b, c}, {d, e, f}, with a, b, c, d, e, f distinct codewords,
e(X) ∩ e(Y ) = ∅, which means that there exists a coordinate i such that

{ai, bi, ci} ∩ {di, ei, fi} = ∅.(4.2)

Property (4.2) is usually called (3, 3)-separation [7, 8, 11, 14].
Remark. As proved in [15] and follows from Corollary 2.3, the (t+1)-hashing and

(t, t) separation properties are necessary for a code to have the t i.p.p. property. For
t = 2, they are also sufficient [9]. For t = 3, we show how to complement them to
form a set of sufficient conditions.

There remains to characterize the condition thatH3(s) does not contain a minimal
configuration of three edges, i.e., X = (X,Y, Z) such that X ∩ Y ∩ Z = ∅, but any
two edges of X intersect. Clearly, the only cases that we need to consider are when
|X| = |Y | = |Z| = 3. We have two situations to forbid:

(a) for any X,Y, Z ⊂ (
C
3

)
such that X ∩ Y ∩ Z = ∅ and |X ∩ Y | = |Y ∩ Z| =

|Z ∩X| = 1;
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(b) for any X,Y, Z ⊂ (
C
3

)
such that X ∩ Y ∩ Z = ∅ and |X ∩ Y | = 2 and

|Y ∩ Z| = |Z ∩X| = 1.
Forbidding these configurations means that we must have, in each case,

e(X) ∩ e(Y ) ∩ e(Z) = ∅.

Those two cases involve, respectively, six and five codewords. After a straightforward
examination we finally obtain the following proposition.

Proposition 4.1. C is 3-identifying if and only if the four following conditions
hold:

1. C is 4-hashing.
2. C is (3, 3)-separating.
3. For any six distinct codewords a, b, c, d, e, f there exists a coordinate i such
that

• ai, bi, ci are all different,
• di 
= ai, ei 
= bi, fi 
= ci, and
• di, ei, fi are not all equal.

4. For any five distinct codewords a, b, c, d, e there exists a coordinate i such that
• ci 
= ei and {ai, bi} ∩ {ci, ei} = ∅, and
• di 
= ai and di 
= bi.

Example. q=4. By repeatedly applying the probabilistic expurgation method, we
get lower bounds on the rate of codes satisfying the previous four conditions. Namely,

R1 ≥ 1

3
log4(32/29),

R2 ≥ 1

5
log4(2

10/919),

R3 ≥ 1

5
log4(256/217),

R4 ≥ 1

4
log4(256/226).

Taking the smallest of the Ri’s gives a 3-identifying quaternary code with rate R2,
showing that

R4(3) ≥ 1

5
log4(1024/919) ≈ 0.0156.

The lower bound of Theorem 3.8 gives only

R4(3) ≥ 1

5
log4(1024/1018) ≈ 0.000848.

4.2. Linear i.p.p. codes. Bound (1.1) for q = 3 implies that

R3(2) ≥ (1/3) log3(9/7).

We strengthen this result by proving that the same bound holds for linear codes as
well. The result in [9] implies only the existence of unrestricted codes with the same
rate.

Theorem 4.2. There exists a sequence of linear ternary 2-identifying codes Cn

with R(Cn) ≥ (1/3) log3(9/7).
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Proof. We again apply the probabilistic method and prove Theorem 4.2 by aver-
aging this time over the ensemble of linear ternary codes. Let C be a linear subspace
of Fn

3 . The code C is i.p.p. if any triple of vectors in it is 3-hashing and any quadruple
satisfies the separation condition (4.1).

Linear (2, 2)-separating codes were first studied in [13], where most of the calcu-
lations below were essentially carried out. We include them here for completeness,
showing that there exist such codes of rate R ≥ (1/3) log3(9/7).

Consider condition (4.1). Suppose that dimC = k and let G be a generator
matrix of C, i.e., a k × n matrix whose rows form a basis of C as an F3-linear space.
Let g1, g2, . . . , gn be the columns of G. Any vector c ∈ C has the form aG for some
a ∈ F k

3 . Let c
1, . . . , c4 be some vectors in C. Since the i.p.p. property is translation

invariant, suppose that c4 = 0. Suppose that ci = aiG for i = 1, 2, 3.
Case (a). a1, a2, a3 are linearly independent. Choose a basis f1, . . . , fk in F

k
3 such

that ai ·fj = δij for i = 1, 2, 3; j = 1, . . . , k. (Complement a1, a2, a3 to a basis and
take the dual basis.) Observe {c1m, c2m}∩{c3m, c4m} = ∅ (for any given m = 1, 2, . . . , n)
if and only if the first three coordinates of the column gm in the basis (f) have one
of the following forms:

±1 ±1 0
−1 −1 1
1 1 −1

.

Hence the total number of favorable choices is 6 out of 27. This implies that the prob-
ability for a matrix G to be bad for a given linearly independent triple is (21/27)n =
(7/9)n. The number of triples is less than 33k, so the probability that a given ma-
trix spans a quadruple of vectors that violate condition (4.1) is bounded above by
33k(7/9)n. Hence if R = (1/3) log3(9/7) − ε, for any ε > 0, there exists a favorable
choice.

Case (b). Some of the vectors a1, a2, a3 are linearly dependent. For instance,
suppose that a3 is spanned by a1, a2, and these two are not collinear. Let a3 = a1+a2.
Take the basis dual to a basis that includes a1, a2. As above, we count the number
of unfavorable choices for the column gm. Good choices for (gm1 , g

m
2 ) are (±1,±1).

Hence the fraction of bad choices of G is at most 32k(5/9)n, and this is less than
33k(7/9)n. Other cases of dependence are dealt with analogously; none accounts for a
fraction of bad matrices larger than in Case (a).

Now let us give a lower bound on the rate of linear 3-hashing codes. (This is a
special case of a result announced in [1, Thm. 2].) Again let c1, c2, c3 be some vectors
in C. Since the 3-hash property is translation invariant we can assume that c3 = 0.
Suppose that ci = aiG for i = 1, 2. There are two cases.

Case (a). a1 and a2 are linearly independent. Choose a basis f1, . . . , fk in F
k
3

such that ai · fj = δij for i = 1, 2; j = 1, . . . , k. Observe that c1m 
= c2m 
= 0 if
and only if the first two coordinates of the column gm in the basis (f) equal either
(1,−1) or (−1, 1). Hence the total number of favorable choices is 2 out of 9. This
implies that the probability for a matrix G to be bad for a given linearly independent
pair is (7/9)n. The number of pairs is less than 32k, so the probability that a given
matrix spans a triple of vectors such that a1 and a2 are linearly independent, and
such that they violate the 3-hash condition, is bounded above by 32k(7/9)n. Hence if
R = (1/2) log3(9/7)− ε, for any ε > 0, there exists a favorable choice.

Case (b). a1 and a2 are collinear, i.e., a1 = λa2. As above, take the basis dual
to a basis that includes a1. Good choices for gm1 are ±1. Hence the number of bad
choices of G is at most 32k(1/3)n, and this is less than 32k(7/9)n.
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It remains to find the minimum of the achievable rates for (2, 2)-separating linear
codes and for linear 3-hashing codes. This minimum is (1/3) log3(9/7) as was to be
proved.

The argument in this section is generalized directly to prove existence of linear 2
i.p.p. codes that reach bound (1.1) over any finite field alphabet.
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