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Abstract

The multicovering radii of a code are recently introduced natural generalizations
of the covering radius measuring the smallest radius of balls around codewords that
cover all m-tuples of vectors. In this paper we prove a new identity relating the
multicovering radii of a code to a relativized notion of ordinary covering radius.
This identity is used to prove new bounds on the multicovering radii of particular
codes. 1
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1 Introduction and Definitions

The concept of multicovering radius was introduced by Klapper [5] in the context of
studying the existence of stream ciphers secure against a large class of attacks. Let C
be a code of length n and m be a positive integer. The m-covering radius of C is the
smallest integer r such that every set of m vectors in Fn is contained in at least one ball
of radius r around a codeword in C.
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We denote the m-covering radius of a code C by Rm(C). Then R(C) := R1(C) is the
covering radius of C. For results on the covering radius, we refer to the book by Cohen,
Honkala, Litsyn and Lobstein [1]. For earlier results on multicovering radii, see [4, 5, 6].

In general we are interested in various extremal values associated with this notion:

tm(n) = Rm(Fn) = the smallest m-covering radius among length n codes.

tm(n,K) = the smallest m-covering radius among (n,K) codes, i.e., codes of

length n with cardinality K.

Km(n,R) = the smallest cardinality of a length n code with m-covering radius R.

`m(a, R) = the smallest length of a linear code with codimension a and m-covering

radius R.

When m = 1 we sometimes omit the subscript m. As usual, when we are only concerned
with linear codes, parentheses are replaced by square brackets and the size K is replaced
by the dimension k. As with the classical covering radius, a variety of bounds are known
for these quantities [5, 6], but precise values are only known in a few cases.

There are, of course, relationships among these values. These can be proved by
straightforward generalizations of the arguments used by Cohen, et al. [1].

Lemma 1.1 For positive integers m, n, R, a, k, and n0 we have

1. If `m(a, R) ≤ n0 and n ≥ n0, then tm(n, 2n−a) ≤ R.

2. If Km(n,R) ≤ K ≤ 2n, then tm(n, K) ≤ R.

3. If Km(n,R) > K, then tm(n, K) > R.

The purpose of this paper is to derive new bounds by relating the multicovering radii
of a code to a relativized notion of covering radius. We obtain the following results: new
upper bounds and, in some cases, precise values for Rm(Fn); precise values for R3(Hr),
where Hr is the Hamming code of degree r; lower bounds for Rm(C) for certain values
of m; and an upper bound on Rm(C) in terms of the minimum distance of C.

For generality, we define the notion of relativized covering radius for multicovering
radii, although we only use the ordinary covering radius version in this paper.

Definition 1.2 Let C and S be codes of length n, and let m be a positive integer. Then
the m-covering radius of S relative to C, Rm(S, C), is the smallest integer r such that
for every c1, · · · , cm ∈ C there is an x ∈ S such that d(ci, x) ≤ r for all i = 1, · · · , m.
We also let tm(s, C) = min{Rm(S, C) : |S| = s}.

Note that Rm(S,Fn) = Rm(S) and tm(s,Fn) = tm(n, s).
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2 A Fundamental Identity

In this section we prove a new identity relating the m-covering radius of a code C to the
covering radii of cardinality m codes relative to C. For any code S, we denote the set of
word-complements of elements of S by S̄ (the complement of a word x is x + 111 . . . 1
by definition).

Theorem 2.1 Let C be a code of length n. Then

Rm(C) = n− t1(m,C).

Proof: Let S be any (n, m) code. Then

R1(S̄, C) ≥ t1(m, C), (1)

with equality for at least one such S. Therefore there is some c ∈ C such that for every
x ∈ S̄, d(c, x) ≥ t1(m, C). This is the same as saying that there is some c ∈ C such that
for every x ∈ S, d(c, x) ≤ n− t1(m,C). Since this holds for every (n, m) code S, we have
Rm(C) ≤ n− t1(m,C).

If equality holds in (1), then for every c ∈ C, there is an x ∈ S̄ such that d(c, x) ≤
t1(m, C). This is the same as saying that for every c ∈ C, there is an x ∈ S such that
d(c, x) ≥ n − t1(m, C). Thus Rm(C) ≥ n − t1(m, C). Since (1) holds with equality for
at least one S, we have Rm(C) = n− t1(m, C). 2

For C = Fn we obtain the following corollary, which is essentially a restatement of
Theorem 19.4.4 of Cohen, et al. [1] (cf. also Theorem 19.4.2).

Corollary 2.2 For all natural numbers n, m ≥ 1, tm(n) = Rm(Fn) = n− t1(n, m).

Proof: This follows from Theorem 2.1 with C = Fn and the fact that t1(m,Fn) =
t1(n, m). 2

Thus bounds on t1(n,m) give bounds on Rm(Fn). It was previously shown [5] that

Rm(Fn) ≥ n + blog2(m)c − 1

2
(2)

for all m ≤ 2n. Since t1[n, k] ≥ t1(n, 2k), an upper bound on t1(n, m) or t1[n, k] also
gives us a lower bound on Rm(C) for any length n code C. Furthermore, by Lemma 1.1,
a bound of the form `1(a, R) = `(a, R) ≤ n0 gives a bound R2n−a(C) ≥ n − R for any
n ≥ n0 and any C of length n. Similarly, K1(n, R) ≤ k if and only if Rk(C) ≥ n − R
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k t[n, k] R2k(C) ≥ if
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n
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⌋ ⌈
n
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⌉
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2
⌊
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3
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⌉
n ≥ 3

4
⌊
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2

⌉
n ≥ 4, n 6= 5

5
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n− 5

2

⌋ ⌈
n + 5

2
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n ≥ 5, n 6= 6

6 ≤
⌊
n− 8

2

⌋ ⌈
n + 8

2

⌉
n ≥ 14

7 ≤
⌊
n− 9

2

⌋ ⌈
n + 9

2

⌉
n ≥ 19

8 ≤
⌊
n− 16

2

⌋ ⌈
n + 16

2

⌉
n ≥ 127

2p + 1 ≤
⌊
n− 2p

2

⌋ ⌈
n + 2p

2

⌉
n ≥ 22p − 1

2p ≤
⌊
n− 2p−1/2

2

⌋ ⌈
n + 2p−1/2

2

⌉
n ≥ 22p−1

Table 1: Lower bounds on R2k(C).

for every code of length n. Many such bounds are known, and they are well surveyed
by Cohen, et al. [1]. We summarize the implications for the m-covering radius of Fn

in several tables. Table 1 is a corollary of Cohen et al.’s Theorems 5.2.3, 5.2.7, 5.2.10,
5.2.16, and 5.2.21. Here C is any code of length n. We also have t1[5, 4] = t1[6, 5] = 1,
so R16(C) ≥ 4 if C has length 5, and R32(C) ≥ 5 if C has length 6. The first three lines
of the table actually follow from inequality (2). In fact, this earlier result gives equality
in these cases.

Another set of bounds arises from bounds on `(a, b). Table 2 arises from Theorems
5.3.7, 5.4.27, 5.4.28, and 5.4.29 of Cohen et al.’s book [1].
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n ≥ m ≥ a R2a(C) ≥

22m+1 − 2m − 1 1 n− 4m n− 2

22m+1 + 22m − 2m − 2 2 n− 4m− 1 n− 2

22m+2 − 2m − 2 2 n− 4m− 2 n− 2

22m+2 + 22m+1 − 2m − 2 2 n− 4m− 3 n− 2

27 · 2m−4 − 1 4 n− 2m n− 2

5 · 2m−1 − 1 1 n− 2m− 1 n− 2

155 · 2m−6 − 2 6 n− 3m n− 3

152 · 2m−6 − 1 9 n− 3m n− 3

3 · 2m − 1 7 n− 3m− 1 n− 3

1024 · 2m−8 − 1 4 n− 3m− 2 n− 3

822 · 2m−8 − 2 8 n− 3m− 2 n− 3

821 · 2m−8 − 1 13 n− 3m− 2 n− 3

47 · 2m−4 − 1 11 n− 4m n− 4

896 · 2m−8 − 2 8 n− 4m− 1 n− 4

896 · 2m−8 − 3 10 n− 4m− 1 n− 4

895 · 2m−8 − 1 15 n− 4m− 1 n− 4

992 · 2m−8 − 2 8 n− 4m− 2 n− 4

992 · 2m−8 − 3 10 n− 4m− 2 n− 4

991 · 2m−8 − 1 15 n− 4m− 2 n− 4

1248 · 2m−8 − 3 10 n− 4m− 3 n− 4

1247 · 2m−8 − 1 15 n− 4m− 3 n− 4

Table 2: Lower bounds on R2a(C) for large a.

3 Corollaries

It is known from Klapper [5] that for all n ≥ 3

R2(F
n) = R3(F

n) =
⌈
1

2
n

⌉
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and

R4(F
n) = R5(F

n) =
⌈
1

2
(n + 1)

⌉
.

Using Corollary 2.2 and the known results about K(n, R), the minimum cardinality of
a binary code of length n and covering radius R, we can determine R6(F

n) and R7(F
n).

Theorem 3.1 For all n ≥ 4 we have

R6(F
n) =

⌈
1

2
(n + 1)

⌉
and

R7(F
n) =

⌈
1

2
(n + 2)

⌉
.

Proof: We know — see Cohen, Lobstein and Sloane [2] and Honkala [3] — that K(2R+
2, R) = 4 for all R ≥ 1, K(2R + 3, R) = 7 for all R ≥ 1 and K(2R + 4, R) ≥ 8 for all
R ≥ 0.

By Lemma 1.1 this implies that t1(n, 6) = 1
2
(n − 1) for odd n ≥ 5 and t1(n, 6) =

1
2
(n− 2) for even n ≥ 4. Hence t1(n, 6) =

⌊
1
2
(n− 1)

⌋
and, by Corollary 2.2,

R6(F
n) = n− t1(n, 6) =

⌈
1

2
(n + 1)

⌉
.

Similarly, t1(n, 7) = 1
2
(n−3) for all odd n ≥ 5 and t1(n, 7) = 1

2
(n−2) for even n ≥ 4.

Hence t1(n, 7) =
⌊

1
2
(n− 2)

⌋
and, by Corollary 2.2,

R7(F
n) = n− t1(n, 7) =

⌈
1

2
(n + 2)

⌉
.

2

Using Corollary 2.2 and the results in Section 12.5 of Cohen, et al. [1] we obtain
asymptotic results on Rm(Fn). For instance, using Theorems 12.5.1 (sphere-covering
bound) and 12.5.10. (from Lovász, Spencer and Vesztergombi [7]) we obtain the following
two theorems.

Theorem 3.2 For all n and m,

Rm(Fn) ≤ 1

2
n +

√
n log2 m ln 2/2.

Theorem 3.3 For all n and m,

Rm(Fn) ≤ 1

2
n + 12

√
m.
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4 On the 3-covering radius of Hamming codes

Let Hr denote the Hamming code of order r. It was shown by Klapper [5] that for any
m ≥ 2 and r ≥ 2,

2r−1 ≤ Rm(Hr) ≤ 2r−1 + cm,

where cm is a constant depending only on m. It was also shown that Rm(H2) = 3 for
m ≥ 2; for r ≥ 3 we have R2(Hr) = 2r−1; and for m = 3, 4, 5 we have

2r−1 ≤ Rm(Hr) ≤ 2r−1 + 1.

However, in this last case the precise value was unknown. In this section, using Theorem
2.1, we determine exactly the 3-covering radius of the Hamming codes. The proof is
based on the following lemma.

Lemma 4.1 A binary code of odd length n, cardinality three and covering radius 1
2
(n−1)

contains a word-complement pair.

Proof: Step 1: We first show that the covering radius of the code consisting of the
three codewords

c1 11 . . . 1 00 . . . 0 00 . . . 0
c2 00 . . . 0 11 . . . 1 00 . . . 0
c3 00 . . . 0︸ ︷︷ ︸ 00 . . . 0︸ ︷︷ ︸ 11 . . . 1︸ ︷︷ ︸

α β γ

where α ≤ β ≤ γ equals

t = α +

⌊
β + γ

2

⌋
.

For every x ∈ Fn we have d(x, C) ≤
⌊

1
2
(d(x, c2) + d(x, c3))

⌋
≤ t. On the other hand,

take x ∈ Fn which has α ones in the beginning, then
⌈

1
2
(α + β)

⌉
ones among the next β

and
⌈

1
2
(α + γ)

⌉
ones among the last γ coordinates. Then

d(x, c1) =
⌈
1

2
(α + β)

⌉
+

⌈
1

2
(α + γ)

⌉
,

d(x, c2) = α +
(
β −

⌈
1

2
(α + β)

⌉)
+

⌈
1

2
(α + γ)

⌉
=

⌊
1

2
(α + β)

⌋
+

⌈
1

2
(α + γ)

⌉
,

and

d(x, c3) = α +
⌈
1

2
(α + β)

⌉
+

(
γ −

⌈
1

2
(α + γ)

⌉)
=

⌈
1

2
(α + β)

⌉
+

⌊
1

2
(α + γ)

⌋
.
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Because d(x, c1) ≥ d(x, c2), it suffices to show that d(x, c2) ≥ t and d(x, c3) ≥ t. If β and
γ have the same parity, then d(x, c2) and d(x, c3) both equal t. If β and γ have different
parities, then t = α + 1

2
(β + γ − 1), and exactly one of d(x, c2) and d(x, c3) equals t and

the other t + 1. Hence d(x, C) = t, proving that C has covering radius t.

Step 2: Assume now that we have a code of odd length n with three codewords
and covering radius 1

2
(n− 1). By taking a suitable translate if necessary we may assume

that in each coordinate all codewords have 0’s or at most one of the codewords has 1.
Assume that the number of identically zero coordinates is i, and that by puncturing these
i coordinates we obtain the code C in Step 1 of length n − i. By Step 1, the covering
radius of our original code equals

s = i + α +
⌊
1

2
(β + γ)

⌋
and in particular

s ≥ i +
⌊
1

2
(n− i)

⌋
>

1

2
(n− 1)

if i > 0. Hence i = 0 and

s =
⌊
1

2
(n + α)

⌋
>

1

2
(n− 1)

unless α = 0. Hence α = 0, and c2 is the complement of c3. 2

Theorem 4.2 t1(3,Hr) = 1
2
(n− 1) = 2r−1 − 1 for all r ≥ 3.

Proof: Assume that C consists of three codewords c1, c2, and c3 of length n = 2r − 1
such that the balls of radius 1

2
(n− 3) = 2r−1 − 2 centered at the codewords of C contain

all the codewords of the Hamming code Hr. Because the covering radius of the Hamming
code is one, this implies that the balls of radius 2r−1 − 1 centered at the words c1, c2

and c3 cover the whole space Fn. By the previous lemma this is only possible if the set
{c1, c2, c3} contains a word-complement pair: say, c2 is the complement of c3. But we
know that R2(Hr) = 1

2
(n+1) = 2r−1 for r ≥ 3 and that there is a codeword c ∈ Hr such

that d(c, c2), d(c, c3) ∈ {1
2
(n−1), 1

2
(n+1)}. The Hamming code is self-complementary: it

is linear and the all-one vector is a codeword, because the sum of all columns in its parity
check matrix is the zero column. Therefore also c ∈ Hr. Neither c nor c is contained in
the spheres B(n−3)/2(c2) and B(n−3)/2(c3). Since their mutual distance is n, they cannot
both belong to B(n−3)/2(c1), either. This contradiction proves that t1(3,Hr) ≥ 1

2
(n− 1).

The opposite inequality is clear. 2

Theorem 4.3 R3(Hr) = 1
2
(n + 1) = 2r−1 for all r ≥ 3.

Proof: This now immediately follows from Theorems 2.1 and 4.2. 2
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5 A Sphere Bound

Theorem 5.1 Suppose C is a code with length n, and m < |C|. Then

Rm(C) ≤ n− 1

2
d0,

where d0 is the largest minimum distance among the (m + 1)-element subcodes of C. In
particular, if the minimum distance of C is d, then Rm(C) ≤ n− 1

2
d.

Proof: By Theorem 2.1 it suffices to prove that t1(m, C) ≥ 1
2
d0. If not, t1(m,C) < 1

2
d0,

which is impossible because we know that C has an (m + 1)-element subcode C0 with
minimum distance d0 and therefore no ball Bt(x) with t < 1

2
d0 can cover more than one

element of C0. 2
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