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Abstract. In the manufacture of oligo arrays for DNA hybridization experiments, manufacturing
defects must be detected and their position determined. The design of manufacturing protocols
for such oligo arrays leads to a combinatorial problem, requiring certain binary codes which have
an additional balance property. Constructions using block designs and packings for these codes,
within a range of interest in a practical manufacturing application, are developed. The focus is on
equireplicate codes, constant weight codes in which every bit position is a one equally often.
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1. Introduction. Let X be a set of v elements or points. Let B be a collection
of b subsets of X, called blocks. Then (X,B) is a (v, b)-set system. The block sizes of
(X,B) are the cardinalities of the b blocks in B; when all blocks have cardinality k,
the set system is k-uniform. We often write (v, b, k)-set system to denote a k-uniform
(v, b)-set system.

In an application to quality control in the manufacture of oligo arrays described in
the next section, certain (v, b, k)-set systems are of particular interest. For each point
x ∈ X, we define the replication number of x to be the number of blocks containing
x. The set system is r-equireplicate if every point has replication number r. We call a
(v, b, k)-set system d-discriminated if, for every point x ∈ X, the replication number
rx satisfies d ≤ rx ≤ b− d; and, for every two distinct points x, y ∈ X, the number of
blocks containing exactly one of x and y is at least d. In other words, if λxy represents
the number of blocks containing both x and y, we require that rx + ry − 2λxy ≥ d. A
d-discriminated (v, b, k)-set system is henceforth denoted by (v, b, k, d)-balanced binary
code, or (v, b, k, d)-bbc for short.

Table 1 gives an example of a (28, 14, 10, 5)-bbc, which is 5-equireplicate. This
was constructed using the method described in [3].

The connection to codes arises as follows. If we form the b×v incidence matrix of
the set system, then each row has weight k and each column has weight at least d and
at most b−d. Hence each column differs from the all-zero vector and from the all-one
vector in at least d positions. Moreover, since two points satisfy rx+ry−2λxy ≥ d, we
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Table 1
A 5-equireplicate (28, 14, 10, 5)-bbc set system.

0 4 7 9 13 14 18 20 23 27
2 3 4 9 15 16 18 23 25 26
4 6 8 13 15 19 20 21 24 25
0 3 4 5 12 16 19 21 22 27
1 2 6 9 10 13 16 17 21 27
1 5 10 11 13 14 16 19 23 25
3 7 8 9 10 11 12 20 21 25
0 1 2 7 11 15 21 22 23 24
0 2 3 5 8 11 13 17 18 24
0 1 8 9 12 14 15 17 19 26
1 5 6 7 12 18 24 25 26 27
6 11 12 14 15 16 17 18 20 22
3 10 17 19 20 22 23 24 26 27
2 4 5 6 7 8 10 14 22 26

Table 2
A 5-equireplicate (28, 14, 10, 5)-bbc incidence matrix.

1000100101000110001010010001
0011100001000001101000010110
0000101010000101000111001100
1001110000001000100101100001
0110001001100100110001000001
0100010000110110100100010100
0001000111111000000011000100
1110000100010001000001111000
1011010010010100011000001000
1100000011001011010100000010
0100011100001000001000001111
0000001000011011111010100000
0001000000100000010110111011
0010111110100010000000100010

have that every two columns have Hamming distance at least d. Hence the code whose
words are the columns together with the all-zero and all-one vectors has minimum
distance (at least) d. For the example in Table 1, the matrix is given in Table 2.

The fundamental existence question for balanced binary codes is to determine, for
a given v and k, a code with a “small” number b of rows having “large” discrimination
d. (See section 2 for the motivation.) To make this precise, given v, k, and d, we seek
the smallest value of b for which a (v, b, k, d)-bbc exists. We begin by establishing a
lower bound on b.

Proposition 1.1. If a (v, b, k, d)-bbc exists, then b ≥ max
(⌈

vd
k

⌉
,
⌈

vd
v−k

⌉)
.

Proof. The incidence matrix of a (v, b, k, d)-bbc contains bk one entries, since each
of the b rows contains k ones. Since each of the v columns contains at least d and at
most b− d ones, we have

vd ≤ bk ≤ vb− vd.

The bounds follow.
We call a (v, b, k, d)-bbc optimal when b realizes the bound in Proposition 1.1.

When a (v, b, k, d)-bbc exists, an additional row can easily be appended to form a
(v, b+ 1, k, d)-bbc; in fact, simply duplicating any of the rows produces the extended
bbc. It is therefore natural to study the optimal balanced binary codes.
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Let (V,B) be a set system. The complement of (V,B), denoted by (V,B), has the
same set V of elements, and the collection of blocks B = {V \D : D ∈ B}.

Lemma 1.2. The complement of a (v, b, k, d)-bbc is a (v, b, v − k, d)-bbc. The
complement of an equireplicate bbc is also equireplicate. The complement of an optimal
bbc is also optimal.

The following lemma gives a simple characterization of optimal equireplicate
bbc’s.

Lemma 1.3. Suppose B is an equireplicate (v, b, k, d)-bbc with replication number
r.

1. If v ≥ 2k, B is optimal if and only if r = d.
2. If v < 2k, B is optimal if and only if r = b− d.

Proof. By Lemma 1.2, assume without loss of generality that v ≥ 2k. Suppose
r = d. Since bk = vr, both being the number of ones in the incidence matrix of B,
we have b = vd

k = max(
 vd
k �, 
 vd

v−k �), making B optimal. Conversely, suppose B is

optimal. Then b =
⌈
vd
k

⌉ ≤ vd+k−1
k . By the definition of discrimination, all replication

numbers of B are at least d, so d ≤ r = bk
v ≤ d + k−1

v < d + 1. Since r is integral,
r = d.

Sengupta and Tompa [9] observed that if B1 is a (v, b1, k, d1)-bbc and B2 is a

(v, b2, k, d2)-bbc, then
[
B1

B2

]
, the union of the blocks ofB1 and B2, is a (v, b1+b2, k, d1+

d2)-bbc; we call this operation addition. Unfortunately, the addition of two optimal
bbc’s need not be optimal. The reason is simple. Since the bound in Proposition 1.1
is the next larger integer, it is possible for the addition of B1 and B2 to contain one
more row than does an optimal bbc, despite the optimality of B1 and B2 individu-
ally. Nevertheless, the addition proves to be very useful in limiting the ranges of the
discrimination to be examined.

Proposition 1.4. If B1 is an optimal equireplicate (v, b1, k, d1)-bbc and B2 is

an optimal (v, b2, k, d2)-bbc, then
[
B1

B2

]
is an optimal (v, b1 + b2, k, d1 + d2)-bbc.

Proof. By Lemma 1.2, assume without loss of generality that v ≥ 2k. By Lemma
1.3, then, all replication numbers of B1 are d1, so b1k = vd1. It follows that b1 + b2 =
vd1

k + 
 vd2

k �. However, since vd1

k is an integer, we have b1 + b2 = 
 v(d1+d2)
k �, so that

the addition is optimal.

For this reason, the critical ingredients in producing optimal balanced binary
codes are those that are equireplicate. In this paper, we provide a number of com-
binatorial constructions for equireplicate optimal bbc’s, primarily within a range of
practical interest in the study of the manufacture of oligo arrays. In a companion
paper [3], we examine heuristic techniques which we have used for the production
of optimal bbc’s in the case when replication numbers are not all equal. Combining
these techniques yields a powerful existence result for balanced binary codes in the
intended application.

An understanding of the application is critical to motivating both the definitions
given and to describing the specific bbc’s sought. We provide a brief overview of the
biotechnology application before pursuing the construction of optimal bbc’s. For full
details on the application, see Sengupta and Tompa [9].

2. The quality control problem. For this discussion, a DNA molecule can
be abstracted as a string over the alphabet {A,C,G, T}. An oligo array is a small
chip containing approximately 100,000 spots, to each of which is attached its own
synthesized DNA molecule. Oligo arrays are used to measure how much of each gene
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product is produced by a given cell type under given conditions. For more information
on oligo arrays, see, for example, Lipshutz et al. [5].

Our application is in the manufacture of oligo arrays rather than their
subsequent use. An array is manufactured in a series of steps “labeled”
A,C,G, T,A,C,G, T,A, . . . . Initially, every spot’s DNA molecule is empty. In prepa-
ration for any given step, an arbitrary subset of the spots can be masked. If the step
is labeled σ, only a spot that is unmasked will have σ appended to the end of its DNA
molecule. By appropriate construction of the masks, each spot can be designed to
contain an arbitrary DNA sequence.

The manufacturing process is subject to two different sorts of faults: (1) several
individual spots may fail, and (2) an entire manufacturing step may fail, affecting all
spots unmasked during that step. The goal of quality control is to identify any single
failed step, even if e individual spots fail, where e is a parameter of the manufacturing
process. A small number of spots on the chip can be used for this quality control
purpose.

Hubbell and Pevzner [4] first investigated this problem. The clever idea underlying
their approach is to manufacture identical DNA molecules at multiple spots, using
different schedules of steps. If no step fails, all such spots should behave identically.
If some step fails, the spots behaving incorrectly hopefully provide a “signature” that
identifies the failed step.

The problem Hubbell and Pevzner left open was how to design the quality con-
trol molecules and schedules to guarantee such signatures, even in the presence of e
faulty spots. Sengupta and Tompa [9] reduced this problem to the design of well-
discriminated balanced binary codes as described below and supplied an initial col-
lection of good balanced codes.

First they abstracted the quality control problem as that of designing a QC matrix
Q, which is a 0-1 matrix with a row for each quality control spot, a column for each
manufacturing step, and Qij = 1 if and only if spot i is unmasked during step j. Given
the spots that subsequently behave incorrectly as a column vector I, identifying the
failed step corresponds roughly to finding the column of Q that resembles I with up
to e exceptions. Although this resembles the familiar error-correcting code problem,
what makes it more complicated is that (1) one cannot compare the behaviors of spots
with different DNA sequences, and (2) even for the spots with identical sequences, it
may not be possible to distinguish between all such spots behaving correctly and all
such spots behaving incorrectly.

In terms that are beyond our scope, but are detailed by Sengupta and Tompa [9],
the properties of a good QC matrix Q are as follows:

1. The set of DNA molecules manufactured at the quality control spots “hy-
bridize poorly” to themselves and each other.

2. Q has high “separation” sep(Q), which ensures sufficient coverage of each step,
and sufficient difference between steps to identify the failed step. Sengupta
and Tompa proved that sep(Q) ≥ 2e + 1 is sufficient to identify any single
failed step, even in the presence of e arbitrarily faulty spots.

Sengupta and Tompa [9] designed QC matrices with these properties using a
product construction. First they handcrafted some QC blocks, which are small QC
matrices. An example of a pair of 4× 4 QC blocks from their paper is given in Figure
1. They then showed that a certain cross product of any well-discriminated balanced
binary code and any QC block yields a QC matrix with the desired properties above.
More specifically, if B is a (v, b, k, d)-bbc, then alternately replacing the ones in each
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A C
G T

A T
C G

A T
C G

A C
G T

Fig. 1. A pair of 4 × 4 QC blocks. For ease of visualization, the figure shows blanks instead of
zeros and the manufacturing step’s label instead of a one.

row of B by the two 4×4 QC blocks of Figure 1, and replacing the zeros in B by 4×4
matrices of zeros, produces a 4b× 4v QC matrix Q for which each DNA molecule has
length 2k, the set of DNA molecules hybridizes poorly, and sep(Q) = 2d. An example
of this product construction is shown in Figure 2.

This then explains the design problem of section 1. Since the array manufacturer
specifies the number of steps (4v) and the molecule lengths (2k), and the goal is
to minimize the number of quality control spots (4b) and maximize separation (2d),
the resulting balanced binary code design problem is to minimize b and maximize
discrimination d for a given v and k. For the current photolithographic process,
reasonable ranges for the parameters are 16 ≤ 2k ≤ 20, 60 ≤ 4v ≤ 136, and 4b up to
a few hundred.

Although Sengupta and Tompa [9] supplied an initial collection of balanced binary
codes, they left open the construction of optimal balanced binary codes for arbitrary
choices of v, k, and d. The current paper addresses exactly this problem for the
relevant parameter ranges given above. The resulting constructions are summarized
in Tables 7 and 8.

3. Primal constructions. In this section, we examine constructions for the
bbc set system; to distinguish from later constructions, we call this the primal set
system. Our constructions begin with a useful connection to balanced incomplete
block designs. A t-(v, b, r, k, λ) design is a pair (V,B) where V is a set of v elements,
and B is a collection of k-element subsets of V called blocks. Every t-subset of V
appears as a subset of exactly λ of the b blocks in B. It follows that every s-subset
for 0 ≤ s ≤ t appears in the same number λs of blocks (since the block sizes all
equal k). In this notation, b = λ0, r = λ1, and λ = λt. When t = 2, a t-design is a
balanced incomplete block design, or simply a block design. The connection to bbc’s is
immediate.

Theorem 3.1. When v > k > 2, every 2-(v, b, r, k, λ) design is an optimal
equireplicate (v, b, k,min(r, b− r))-bbc.

Proof. The design is a (v, b, k)-set system by construction. To verify that it is
min(r, b− r)-discriminated, we observe that the number of blocks containing exactly
one of (any) two distinct elements is 2(r−λ). By Lemma 1.2, we can assume without

loss of generality that v ≥ 2k. Then 2(r−λ) ≥ r since r = λ(v−1)
k−1 . Optimality follows

from Lemma 1.3 and the observation that d = min(r, b − r) = r, since r = bk/v ≤
b/2.

Corollary 3.2. There are equireplicate (16, 30, 8, 15)-, (18, 34, 9, 17)-, and
(20, 38, 10, 19)-bbc’s.

Proof. There exist 2-(16, 30, 15, 8, 7), 2-(18, 34, 17, 9, 8), and 2-(20, 38, 19, 10, 9) de-
signs. (See, e.g., [7].) The first and last are Hadamard designs arising from Hadamard
matrices; see [1].

Block designs have been very extensively studied, and much is known about their
existence; see [7] for a table giving known existence results for “small” values of r. For
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Fig. 2. The product of a (19, 19, 9, 9, 4)2-design and the pair of 4 × 4 QC blocks of Figure 1,
resulting in a 76 × 76 QC matrix Q with minimum separation sep(Q) = 18.



EQUIREPLICATE CODES FOR OLIGO ARRAYS 487

our application, the conditions on block designs are too stringent. Indeed, in a block
design, every two elements have the property that there are exactly 2(r − λ) blocks
containing precisely one of them, and the application does not require this type of
uniformity. Consequently, block designs provide only a small fraction of the bbc’s
needed, even among the optimal equireplicate cases. A more serious drawback arises
since b is constrained to be at least v by Fisher’s inequality. (See, for example, [1].)
Using addition, however, we are most interested in bbc’s with b very small.

We therefore relax the requirements by allowing, for each pair of elements, the
number of blocks containing exactly one of them to vary, provided that it remains at
least d. Translating to the design vernacular, when the bbc is equireplicate, we are
specifying that every pair of elements occur together in at most some number λ of
blocks.

A t-(v, k, λ) packing (V,B) is a (v, b, k)-set system in which every t-subset of
elements occurs together in at most λ of the blocks in B. A 2-(v, k, λ) packing in
which v ≥ 2k and every element has replication number at least r yields a bbc which
is min(r, 2(r − λ))-discriminated. See [8] for a survey of packings.

Our first construction produces 2-(v, k, λ) packings with b = v. We take, as the
set of elements, the integers modulo v, Zv. We choose a single block, B, containing
k elements and form B = {B + 0, . . . , B + (v − 1)}, where the translate B + i =
{x + i mod v : x ∈ B}. To determine the index λ of the packing (Zv,B), proceed as
follows. Each pair {i, j} of elements has an associated difference modulo v, namely,
min(i− j mod v, j− i mod v). If this difference appears as the difference between two
elements of B, then the pair occurs in exactly one translate of these two elements
unless the difference is precisely half of v, in which case the pair appears in two
translates. Hence, to determine the maximum number of times that a pair occurs in
the packing, we need only determine how many pairs of elements in B have a specified
difference. To handle the case when v is even and the difference examined is d/2, we
must double the number of occurrences of the difference.

In the construction of bbc’s, we may not require the minimum possible value of
λ. Indeed, if v ≥ 2k and we are to produce a (v, v, k, k)-bbc, we require only that
every difference appear at most �k/2
 times. A single block of k elements from Zv in
which every difference is represented at most �k/2
 times (except when v is even, we
require that v/2 be represented at most �v/4
 times) is a near difference set. When
v is odd and every difference is represented the same number of times, the block is a
cyclic difference set, and these have been studied extensively [1].

In Table 3, we present near difference sets for a number of parameters of interest.
These solutions were found using a simple backtracking method.

Such bbc’s arising from near difference sets can exist only for some of the param-
eter sets of interest, namely, those when b = v. We therefore examine a more general
method. Again we take Zv as the set of elements. We form a number of base blocks
B1, B2, . . . , B
. We can again develop each base block modulo v to form v blocks.
For certain base blocks, the v blocks in the development are not all distinct. In these
cases, we can choose to include only a subset of the blocks. Suppose, for example,
that v and k are both even, and that Bi = {b1, . . . , bk/2, b1 + (v/2), . . . , bk/2 + (v/2)},
with 0 ≤ bi < v/2 when 1 ≤ i ≤ k/2. Then Bi + (v/2) = Bi. In this case, we can
produce only v/2 blocks, a half orbit, by including Bi + j for j = 0, . . . , (v/2)− 1. In
Table 4, we present solutions containing one half orbit and one starter block gener-
ating v blocks. To prescribe the block for the half orbit, we give only the elements
b1, . . . , bk/2.
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Table 3
Near difference sets.

v k d Block v k d Block
9 8 1 0 1 2 3 4 5 6 7 10 8 2 0 1 2 3 4 5 6 7

10 9 1 0 1 2 3 4 5 6 7 8 11 8 3 0 1 2 3 4 5 6 8
11 9 2 0 1 2 3 4 5 6 7 8 11 10 1 0 1 2 3 4 5 6 7 8 9
12 9 3 0 1 2 3 4 5 6 7 9 12 10 2 0 1 2 3 4 5 6 7 8 9
13 8 5 0 1 2 3 4 5 8 10 13 9 4 0 1 2 3 4 5 7 9 10
13 10 3 0 1 2 3 4 5 6 7 8 10 14 8 6 0 1 2 3 4 5 7 10
14 9 5 0 1 2 3 4 5 6 9 11 15 8 7 0 1 2 3 5 7 8 11
15 9 6 0 1 2 3 4 5 6 8 11 15 10 5 0 1 2 3 4 5 6 7 10 12
16 8 8 0 1 2 3 4 7 9 12 16 9 7 0 1 2 3 4 6 7 11 13
16 10 6 0 1 2 3 4 5 6 7 9 12 17 8 8 0 1 2 3 4 6 9 13
17 9 8 0 1 2 3 4 5 8 10 13 17 10 7 0 1 2 3 4 5 7 8 11 13
19 8 8 0 1 2 3 4 6 9 13 19 9 9 0 1 2 3 5 7 12 13 16
19 10 9 0 1 2 3 5 7 12 13 15 16 20 9 9 0 1 2 3 4 7 9 12 16
20 10 10 0 1 2 3 4 6 8 11 14 15 21 8 8 0 1 2 3 5 8 12 16
21 9 9 0 1 2 3 4 7 9 13 18 21 10 10 0 1 2 3 4 5 8 10 13 17
22 9 9 0 1 2 3 4 6 9 13 17 22 10 10 0 1 2 3 4 5 8 10 13 17
23 8 8 0 1 2 3 5 8 12 16 23 9 9 0 1 2 3 4 6 9 13 17
23 10 10 0 1 2 3 4 5 7 10 14 18 24 9 9 0 1 2 3 4 6 9 13 17
24 10 10 0 1 2 3 5 6 11 13 17 20 25 8 8 0 1 2 3 5 8 12 16
25 9 9 0 1 2 3 4 6 9 13 17 26 9 9 0 1 2 4 6 11 12 20 23
26 10 10 0 1 2 3 4 7 9 12 16 20 27 8 8 0 1 2 3 5 8 12 16
27 10 10 0 1 2 3 4 6 9 13 17 22 28 9 9 0 1 2 3 5 8 12 16 21
29 8 8 0 1 2 3 5 8 12 16 29 9 9 0 1 2 3 5 8 12 16 22
29 10 10 0 1 2 3 4 6 9 13 17 23 30 9 9 0 1 2 3 5 8 12 16 21
31 8 8 0 1 2 4 7 12 16 25 31 9 9 0 1 2 3 5 8 12 16 21
31 10 10 0 1 2 3 4 6 9 13 17 22 32 9 9 0 1 2 3 5 8 12 16 22
33 8 8 0 1 2 4 7 11 19 24 33 9 9 0 1 2 3 5 8 12 16 21
33 10 10 0 1 2 3 5 8 12 18 22 27 34 9 9 0 1 2 3 5 8 12 16 21

Table 4
One and a half orbits.

v k d Half orbit Full orbit
10 8 3 0 1 2 3 0 1 2 3 4 5 6 7
12 10 3 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
14 8 9 0 1 2 4 0 1 2 3 4 6 7 12
16 10 9 0 1 2 3 4 0 1 2 3 4 5 7 8 10 14
22 10 15 0 1 2 3 5 0 1 2 3 5 7 10 15 18 19
24 10 15 0 1 2 4 9 0 1 2 3 6 7 9 11 17 20
26 10 15 0 1 2 4 7 0 1 2 3 4 7 10 12 18 22

Other relaxations of the stringent block design conditions can be exploited. A
(g, k;λ)-difference matrix over Zg is a k × λg array A with entries from Zg with the
property that for any 1 ≤ i < j ≤ k, the collection of differences {Ai,
 −Aj,
 mod g :
1 ≤ � ≤ λg} contains the g numbers in Zg λ times each.

Proposition 3.3. There is an equireplicate (27, 21, 9, 7)-bbc and an equireplicate
(30, 21, 10, 7)-bbc.

Proof. There is a (3, 9; 3)-difference matrix; see for example, [2]. Choose any
seven of its columns and append the 14 further columns obtained by developing the
columns under addition modulo 3. Treat the resulting set of 21 columns as blocks of
a packing on the 27 points (i, σ), where i indicates the row and σ the symbol from
Z3. The resulting packing has λ = 3, and hence is a 2-(27, 9, 3) packing on 21 blocks
which is equireplicate. Hence, an equireplicate (27, 21, 9, 7)-bbc exists. Now this 2-
(27, 9, 3) packing can, by construction, be partitioned into seven sets of three blocks
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each, so that each set contains three mutually disjoint blocks. Let P1, . . . , P7 be such
a partition of the blocks. Add three new elements a, b, c to the packing. Add a to
each block in P1 and P2 and to the first block in P7; add b to each block in P3 and
P4 and to the second block in P7; add c to the remaining seven blocks. The result is
a 2-(30, 10, 3) packing; it is equireplicate with replication number 7, and hence yields
an equireplicate (30, 21, 10, 7)-bbc.

4. Dual constructions. Since we are primarily interested in cases in which
b < v, it is natural to consider the dual set system. The dual set system of a set
system (V,B) is a set system (X,D) in which X = {xB : B ∈ B} and D = {Dy :
y ∈ V }, where Dy = {xB : y ∈ B ∈ B}. The dual of a (v, b, k)-set system with
replication numbers r1, . . . , rv is a (b, v)-set system with v blocks of sizes r1, . . . , rv
and having constant replication number k. Indeed, when the (v, b, k)-set system is
equireplicate with replication number r, its dual is a (b, v, r)-set system which has
constant replication number k. The dual of the set system in Table 1 is given in Table
5.

Table 5
Dual set system of (28, 14, 10, 5)-bbc.

0 3 7 8 9 4 5 7 9 10 1 4 7 8 13
1 3 6 8 12 0 1 2 3 13 3 5 8 10 13
2 4 10 11 13 0 6 7 10 13 2 6 8 9 13
0 1 4 6 9 4 5 6 12 13 5 6 7 8 11
3 6 9 10 11 0 2 4 5 8 0 5 9 11 13
1 2 7 9 11 1 3 4 5 11 4 8 9 11 12
0 1 8 10 11 2 3 5 9 12 0 2 6 11 12
2 3 4 6 7 3 7 11 12 13 0 1 5 7 12
2 7 8 10 12 1 2 5 6 10 1 9 10 12 13
0 3 4 10 12

The discrimination of the primal is reflected in the dual in a somewhat different
manner than in the primal. Two blocks of the dual sharing µ elements result in a
discrimination d of the primal satisfying d ≤ 2r − 2µ; hence maximizing d amounts
to minimizing µ, the intersection size of two blocks, since r is fixed. Translating this
into design vernacular, we establish the following.

Theorem 4.1. A t-(b, r, 1) packing on v blocks with replication number k yields
an equireplicate (v, b, k,min(r, b− r, 2(r − t+ 1)))-bbc with replication number r.

Proof. The dual of a t-(b, r, 1) packing on v blocks with replication number k is a
(v, b, k)-set system with replication number r in which every pair of elements occurs
in at most t− 1 blocks together.

Hence, our goal is to produce t-(b, r, 1) packings with t ≤ r/2 + 1. One potential
benefit of this dual approach when b < v is that we can examine constructions over Zb

rather than the larger Zv. We illustrate this by producing a number of 4-equireplicate
(2m,m, 8, 4)-bbc’s.

Theorem 4.2. A 4-equireplicate (2m,m, 8, 4)-bbc exists for all m ≥ 10.

Proof. The dual set system is constructed with elements in Zm and has two base
blocks which are developed modulo m. We need only ensure that the result is a 3-
(m, 4, 1) packing. When m = 10, use the base blocks {0, 1, 2, 6} and {0, 2, 4, 7}; when
m ≥ 11, use the base blocks {0, 1, 2, 7} and {0, 1, 3, 5}. The proof is completed by
verifying that no translate of a triple in either base block appears as a translate of a
different triple or as a different translate of this triple.
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In a similar vein, other bbc’s are easily produced from 3-(b, 5, 1) packings:

v b k d Dual base blocks in Zb

30 15 10 5 {0, 1, 4, 11, 14}, {0, 2, 7, 8, 13}
32 16 10 5 {0, 2, 8, 14, 15}, {0, 3, 7, 11, 14}
34 17 10 5 {0, 3, 10, 12, 14}, {0, 4, 12, 15, 16}

The dual solutions thus far presented all have the property that v is an integral
multiple of b. We can vary the construction to admit other solutions. Suppose, for
example, that we are to produce a (25, 10, 10, 4)-bbc. Its dual is a (10, 25, 4)-set system
which is 10-equireplicate and forms a 3-(10, 4, 1) packing. Two base blocks, {0, 1, 2, 6}
and {0, 2, 4, 7}, generate 20 blocks in Z10. A third base block {0, 1, 3, 4} is used, but
in its development, we include only translates obtained by adding the even integers.
Since this last base block contains two even and two odd numbers, this development
ensures that the resulting packing is 10-equireplicate.

In general, by selecting certain translates out of one orbit of a base block, we can
vary k and b in the construction. We give some further examples of constructions of
this type next, subscripting one block with the integers to be added in forming its
translates. The first three employ packings with t = 3, while the last five employ
packings with t = 4.

v b k d Dual base blocks in Zb

27 12 9 4 {0, 1, 3, 5}, {0, 1, 2, 7}, {0, 3, 6, 9}0,1,2
30 12 10 4 {0, 1, 3, 5}, {0, 1, 2, 7}, {0, 2, 6, 8}0,1,2,3,4,5
32 20 8 5 {0, 1, 8, 14, 17}, {0, 2, 11, 18, 19}0,1,2,5,6,7,10,11,12,15,16,17
15 10 9 4 {2, 3, 5, 6, 7, 9}, {3, 4, 5, 6, 8, 9}0,2,4,6,8
28 21 8 6 {0, 1, 4, 9, 18, 20}, {0, 1, 7, 8, 14, 15}0,1,2,3,4,5,6
33 22 9 6 {0, 1, 6, 7, 10, 15}, {0, 1, 3, 11, 12, 14}0,1,2,3,4,5,6,7,8,9,10
24 21 8 7 {0, 1, 2, 4, 6, 7, 14}, {0, 3, 6, 9, 12, 15, 18}0,1,2
32 28 8 7 {0, 1, 2, 4, 7, 11, 17}, {0, 4, 8, 12, 16, 20, 24}0,1,2,3

In a number of cases, we have not been able to find (dual) solutions which are
cyclic modulo b. In some of these situations, we have resorted to using a smaller
group.

Theorem 4.3. There is a (3m, 2m, 9, 6)-bbc for all m ≥ 7.
Proof. We form the dual of the required bbc on the element set Zm ×

{0, 1}. We begin with three base blocks {(0, 0), (1, 0), (3, 0), (0, 1), (1, 1), (3, 1)}, {(2, 0),
(4, 0), (5, 0), (6, 0), (0, 1), (3, 1)}, and {(0, 0), (3, 0), (2, 1), (4, 1), (5, 1), (6, 1)}. Each
gives m blocks of the dual by adding the nonzero elements of Zm in turn to the
first coordinates of each element. It is easily verified that the result is a 3-(2m, 6, 1)
packing which is 9-equireplicate.

Theorem 4.4. There is a (4m, 3m, 8, 6)-bbc and a (5m, 3m, 10, 6)-bbc for all
m ≥ 5.

Proof. We form the dual of the required bbc on the element set Zm × {0, 1, 2}.
We begin with five base blocks:

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 1), (4, 2)},
{(0, 1), (1, 1), (2, 1), (3, 1), (4, 0), (4, 2)},
{(0, 2), (1, 2), (2, 2), (3, 2), (4, 1), (4, 0)},
{(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)},
{(0, 0), (2, 0), (0, 1), (2, 1), (0, 2), (2, 2)}.

Each gives m blocks of the dual by adding the nonzero elements of Zm in turn to
the first coordinates of each element. It is easily verified that the result is a 4-
(3m, 6, 1) packing and yields a (5m, 3m, 10, 6)-bbc. Deleting the last base block and
its translates yields a (4m, 3m, 8, 6)-bbc.
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Proposition 4.5. There exists a (24, 15, 8, 5)-bbc and a (27, 15, 9, 5)-bbc.
Proof. The point set for the dual in each case is the 15 points Z12 ∪ {a, b, c}.

Start with the blocks obtained by developing {0, 1, 2, 4, 9} and {0, 1, 5} modulo 12.
Then the translates of {0, 1, 5} can be partitioned into three parallel classes of four
blocks each. For the three parallel classes in turn, add the points {a, b}, {a, c}, and
{b, c}, respectively, to each block of the parallel class. The result is the dual of the
(24, 15, 8, 5)-bbc.

To this dual, add the three distinct translates of {0, 3, 6, 9} modulo 12, placing
a, b, and c, respectively, in one of the three translates. This is the dual of the
(27, 15, 9, 5)-bbc.

For small values of d, a direct construction can be quite simple.
Proposition 4.6. There are (12, 6, 8, 2)-, (12, 8, 9, 2)-, (14, 7, 10, 2)-, and (15, 6,

10, 2)-bbc’s.
Proof. Start with a k-regular graph on n vertices for (k, n) = (4, 6), (3, 8), (4, 7), or

(5, 6), respectively. The complement of this set system forms the dual of the required
bbc.

Similarly, the complement of the blocks of a 2-(9, 12, 4, 3, 1) design forms the dual
of a (12, 9, 8, 3)-bbc.

We employ some constructions from Hadamard designs. A Hadamard 3-design
is a 3-(4n, 2n, n − 1) design [1]. Such a design has 8n − 2 blocks, and they occur in
4n−1 complementary pairs. Deleting one point of a 3-(4n, 2n, n−1) design produces
a 2-(4n − 1, 2n − 1, n − 1) design which has 4n − 1 blocks and replication number
2n − 1. Hence, the 2-design is symmetric, and consequently every two blocks of the
2-design intersect in n− 1 elements. The 3-design can be recovered from the 2-design
by including the complements of the blocks of the 2-design and including the blocks
with a single new element which is adjoined to each. From this construction, the 3-
design is an (n+1)-(4n, 2n, 1) packing. Deleting blocks retains this packing property,
but, more importantly, deleting complementary pairs of blocks retains the property
that the packing is equireplicate. Indeed, if we select j complementary pairs of blocks,
the replication number is j; when j ≥ 2n, the packing leads to a (2j, 4n, j, 2n)-bbc.
Using Hadamard designs for n ∈ {3, 4, 5}, we obtain the following.

Proposition 4.7. There exist (16, 12, 8, 6)-, (16, 20, 8, 10)-, (18, 12, 9, 6)-, (18,
16, 9, 8)-, (18, 20, 9, 10)-, (20, 12, 10, 6)-, and (20, 16, 10, 8)-bbc’s.

We also need one specific construction.
Proposition 4.8. There exist (18, 9, 8, 4)- and (18, 9, 10, 4)-bbc’s.
Proof. The second is the complement of the first. To construct the dual of the

first, we begin with nine points {(i, j) : i, j ∈ Z3}. We include all nine blocks of the
form {(i, k), (i, �), (j, k), (j, �)} with i, j, k, � ∈ Z3, i �= j, and k �= �. We then add all
nine blocks of the form {(i, j), (i, k), (a, �), (b, �)} when {i, a, b} = {j, k, �} = Z3. This
is a 3-(9, 4, 1) packing with 18 blocks, having constant replication number eight.

In Table 6, the dual of a (16, 38, 8, 19)-bbc is presented. The method used to
obtain this solution is of independent interest and is described in [3].

5. Nonexistence results. We have presented a large collection of constructions
for optimal equireplicate bbc’s, focusing on those with smaller discriminations in order
to use addition to produce those with larger discrimination. However, not all bbc’s
exist; in fact, those with low discrimination appear to be the least likely to exist. We
do not restrict to equireplicate bbc’s in this section. We establish a preliminary result
for small discrimination.

Theorem 5.1. An optimal (v, b, k, 1)-bbc exists only when v = k + 1 or k = 1.
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Table 6
Dual of a (16, 38, 8, 19)-bbc.

0 4 6 7 8 9 10 11 13 14 17 19 21 27 28 29 32 35 37
0 2 4 5 8 9 15 16 17 18 19 20 22 25 27 29 31 32 34
0 1 5 6 14 16 18 19 20 23 24 26 27 28 30 31 34 35 37
0 3 7 8 12 13 16 18 20 21 26 28 29 30 31 32 33 35 36
1 2 5 6 7 9 11 13 20 21 22 24 25 30 31 32 34 35 36
1 2 3 4 5 10 13 14 15 16 20 21 24 27 29 30 32 33 37
0 1 3 4 5 7 11 12 14 17 19 20 22 23 32 33 34 36 37
2 5 6 7 8 9 12 14 15 16 19 23 25 29 30 33 35 36 37
1 2 3 4 6 12 13 15 17 23 25 26 28 29 31 32 34 35 37
2 3 6 7 10 11 15 16 17 18 20 21 22 23 27 28 31 36 37
3 4 5 6 9 10 11 12 18 19 22 24 26 27 29 31 33 35 36
0 1 2 8 10 11 12 13 15 17 19 24 27 28 30 31 33 34 36
9 10 11 13 14 15 18 19 20 21 22 23 25 26 28 29 30 33 34
1 3 5 7 8 9 10 11 12 14 15 16 17 18 24 25 26 28 32
0 2 3 4 7 8 10 12 14 21 22 23 24 25 26 27 30 34 35
0 1 4 6 8 9 13 16 17 18 21 22 23 24 25 26 33 36 37

Proof. If v ≥ 2k, the dual set system has b = 
v/k� points and has at least
v − k + 1 blocks of size 1. When k > 1, some block is repeated, and hence the
discrimination is 0. If v < 2k, the dual set system has 
v/(v − k)� points and has at
least k + 1 blocks of size v − 1. Its complement therefore has k + 1 blocks of size 1,
and hence contains a repeated block unless v − k = 1.

When the discrimination is two, the analysis is slightly more complex. We de-
scribe one concrete example and then give much briefer arguments thereafter. Let us
establish that a (31, 8, 8, 2)-bbc does not exist. If one were to exist, its dual has eight
points. It has 31 blocks, and each must have size at least two (and at most six). There
are 64 = 8 · 8 occurrences of points in blocks. Hence, there are either 30 blocks of size
two and one of size four, or there are 29 blocks of size two and two of size three. In
this case, since

(
8
2

)
= 28, there must be a repeated block of size two. However, then

the bbc has two identical columns, and its discrimination is zero, a contradiction. In
general, the nonexistence results all arise from an analysis of the cases that can arise,
showing that each cannot have the required discrimination.

Theorem 5.2. An optimal (v, b, k, 2)-bbc exists only if
1. v ≤ 13, v ∈ {29, 30}, or v ≥ 33 when k = 8;
2. v ≤ 14, v ∈ {32, 37, 38}, or v ≥ 41 when k = 9;
3. v ≤ 16, v ∈ {46, 47}, or v ≥ 51 when k = 10.
Proof. First we suppose that v ≥ 2k. Then b = 
 2v

k �. The dual of the required
bbc therefore has bk occurrences of elements distributed across v blocks, each having
size at least two. It follows that “most” blocks have size equal to two. If the dual has
a block of size three, then no block of size two can share both elements with the block
of size three. To maximize the number of blocks in the dual, we therefore construct
the dual with the largest possible number of blocks of size four and the remaining
blocks of size two.

Consider the case when k = 8. Write v = 4s + α with α ∈ {1, 2, 3, 4}. Then
b = 2s+ 1, and bk = 16s+ 8. It follows that the number of blocks of size two in the
dual, when no blocks of size three are chosen, is at least 4s− 4 + 2α. Now requiring
that 4s−4+2α ≤ (

b
2

)
, we obtain that s(s−7) ≥ 4α−8. Hence, s ≥ 7 when α ∈ {1, 2}

and s ≥ 8 when α ∈ {3, 4}. When k = 9 or k = 10, the analysis is similar and is
omitted.

When v < 2k, we use the fact that a (v, b, k, 2)-bbc is equivalent to a (v, b, v−k, 2)-
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bbc. The remaining cases have b = 5 but require more than 10 blocks of size two in
the dual of the complementary bbc.

The restrictions when the discrimination is three are more severe. In this case, the
dual has 
 3v

k � points, and its v blocks are almost all of size three. However, two blocks
of size three are permitted to intersect in only one element. This easily establishes
that when k ∈ {8, 9, 10} and 2k ≤ v ≤ 34, no optimal (v, b, k, 3)-bbc exists. When
v < 2k, a similar argument excludes v ∈ {13, 14, 15} when k = 8; v ∈ {15, 16, 17}
when k = 9; and v ∈ {15, 16, 17, 18, 19} when k = 10.

Turning to discrimination four, the blocks of size four in the dual form a pack-
ing in which every 3-subset appears in at most one block. Using this fact, we can
conclude that no optimal (v, b, k, 4)-bbc exists when v ∈ {15, 16, 17} and k = 8;
v ∈ {17, 18, 19, 20} and k = 9; or v ∈ {19, 20, 21, 22} and k = 10. For example, when
(v, k) ∈ {(16, 8), (18, 9), (20, 10)}, the dual is a 3-(8, 4, 1) packing with 16, 18, or 20
blocks; but the maximum packing has only 14 blocks.

For discrimination five, the blocks of size five again form a packing in which
every 3-subset appears in at most one block. When (v, k) ∈ {(17, 8), (19, 9), (21, 10),
(22, 10)}, the dual has 11 points and has at least 14 blocks of size five. Then consider
the derived design obtained by choosing a point containing the maximum number
of blocks of size five, selecting all blocks of size five containing this point, and then
deleting the point from each. This is a 2-(10, 4, 1) packing, which must have at
least seven blocks by construction. But no 2-(10, 4, 1) packing with seven blocks
exists. By complementation, we also eliminate the cases when (v, k) = (17, 9) or
(19, 10). A similar argument shows that no (24, 12, 10, 5)-bbc or (26, 13, 10, 5)-bbc
exists. A complete exhaustive search by backtracking established the nonexistence of
a (19, 12, 8, 5)-bbc.

The astute reader will have observed that fewer negative results arise for even
discrimination than for odd, and that as the discrimination increases, the negative
results are sparser. Indeed, in Tables 7 and 8 there are very few negative results for
d > 5. It is, however, possible to prove such results. We give examples in the following
two theorems.

Theorem 5.3. A (2k, 2d, k, d)-bbc does not exist when d is odd and d < 2k− 1.
Proof. Such a bbc is a 2-(2k, 2d, �d/2
) packing. Hence, we require that �d/2
 ·(

2k
2

) ≥ 2d · (k2). Letting d = 2s + 1, we require that s(2k − 1) ≥ (2s + 1)(k − 1).
Simplifying, 2ks− s ≥ 2ks+ k − 2s− 1, i.e., s ≥ k − 1, or d ≥ 2k − 1.

For even values of d, there is also a nonexistence result.
Theorem 5.4. A (2k, 2d, k, d)-bbc does not exist when d < k/2.
Proof. The columns of such a bbc are 2k binary vectors of length 2d so that the

Hamming distance between any pair is at least d. By the pigeonhole principle, k of
them share the same first coordinate, giving a set of k vectors of length 2d−1 so that
the Hamming distance between every pair is at least d. Since in each coordinate there
are at most �k2/4
 pairs of these vectors that differ in this coordinate, and the sum
of distances between all pairs of these vectors is at least

(
k
2

)
d, it follows that

(2d− 1)k2/4 ≥ (2d− 1)�k2/4
 ≥
(
k

2

)
d,

implying that d ≥ k/2, as needed.
Similar nonexistence results can be derived for other values of v and k, provided

v ≥ 2k and v−2k is small, using the Plotkin bound. (See, for example, [6, pp. 41–43].)
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Table 7
Existence of optimal bbc’s I.

v k Existence for discrimination d, 1 ≤ d ≤ 40
0000000001 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890

9 8 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

10 8 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

10 9 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

11 8 .Y+YIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

11 9 .+YIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

11 10 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

12 8 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

12 9 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

12 10 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

13 8 .Y.Y+YIYII IIIIIIIIII IIIIIIIIII IIIIIIIIII

13 9 .YY+IIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

13 10 .Y+IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

14 8 ...YY+YY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

14 9 .YYI+YIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

14 10 .+YIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

15 8 ....oY+YYY YIIIIIIIII IIIIIIIIII IIIIIIIIII

15 9 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

15 10 .+.I+IIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

16 8 .....+.+.+ .I.I+I?I+I IIIIIIIIII IIIIIIIIII

16 9 ...YYY+YYY IIIIIIIIII IIIIIIIIII IIIIIIIIII

16 10 .Y.YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

17 8 .....Yo+YY YIYIYIIIII IIIIIIIIII IIIIIIIIII

17 9 .....Yo+YY YIYIYIIIII IIIIIIIIII IIIIIIIIII

17 10 ...YYY+IYI IIIIIIIIII IIIIIIIIII IIIIIIIIII

18 8 ...+YYoIII YIIIIIIIII IIIIIIIIII IIIIIIIIII

18 9 .....+.+.+ .I.I.I+I?I ?IIIIIIIII IIIIIIIIII

18 10 ...+YYoIII YIIIIIIIII IIIIIIIIII IIIIIIIIII

19 8 ...Y.YY+YY IIYIIIIIII IIIIIIIIII IIIIIIIIII

19 9 .....ooY+Y YYYYYIIIII IIIIIIIIII IIIIIIIIII

19 10 .....ooY+Y YYYYYIIIII IIIIIIIIII IIIIIIIIII

20 8 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

20 9 ....oYoY+Y YYYIIIIIII IIIIIIIIII IIIIIIIIII

20 10 .....+.+.+ .I.I.I.I+I ?I?IIIIIII IIIIIIIIII

21 8 ...YYYY+YI YIIIIIIIII IIIIIIIIII IIIIIIIIII

21 9 ...Yo+YY+I YIIIIIIIII IIIIIIIIII IIIIIIIIII

21 10 .....oooo+ YYYYYYYYYI IIIIIIIIII IIIIIIIIII

22 8 ...+YYYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

22 9 ...YYYYI+I YIIIIIIIII IIIIIIIIII IIIIIIIIII

22 10 .....YoYo+ YYYY+IYIYI IIIIIIIIII IIIIIIIIII
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Table 8
Existence of optimal bbc’s II.

v k Existence for discrimination d, 1 ≤ d ≤ 40
0000000001 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890

23 8 ...YYYY+YY YIIIIIIIII IIIIIIIIII IIIIIIIIII

23 9 ...YoYYY+Y IYIIIIIIII IIIIIIIIII IIIIIIIIII

23 10 ...YoYYYY+ YIYIIIIIII IIIIIIIIII IIIIIIIIII

24 8 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

24 9 ...YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

24 10 ...Y.YoIY+ YYII+IYIII IIIIIIIIII IIIIIIIIII

25 8 ...YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII

25 9 ...YoYYY+Y YIIYIIIIII IIIIIIIIII IIIIIIIIII

25 10 ...+o+YIYI IIIIIIIIII IIIIIIIIII IIIIIIIIII

26 8 ...+YYYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

26 9 ...YYYYI+Y YYIIIIIIII IIIIIIIIII IIIIIIIIII

26 10 ...Y.YYYY+ YIYI+IIIII IIIIIIIIII IIIIIIIIII

27 8 ...YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII

27 9 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

27 10 ...YYYYII+ IIIIIIIIII IIIIIIIIII IIIIIIIIII

28 8 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

28 9 ...YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

28 10 ...Y+YYYII IIIIIIIIII IIIIIIIIII IIIIIIIIII

29 8 .Y.YYYY+YI YIIIIIIIII IIIIIIIIII IIIIIIIIII

29 9 ...YYYYI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

29 10 ...YYYYII+ YYYIIIIIII IIIIIIIIII IIIIIIIIII

30 8 .Y.+YIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

30 9 ...YY+YY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

30 10 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

31 8 ...YYYY+YY YIIIIIIIII IIIIIIIIII IIIIIIIIII

31 9 ...YYYYI+I YIIIIIIIII IIIIIIIIII IIIIIIIIII

31 10 ...YYYYYY+ IIIIIIIIII IIIIIIIIII IIIIIIIIII

32 8 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

32 9 .Y.YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

32 10 ...Y+YYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

33 8 .Y.YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII

33 9 ...YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

33 10 ...YYYYYY+ IIYIIIIIII IIIIIIIIII IIIIIIIIII

34 8 .Y.+YIYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

34 9 ...YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

34 10 ...Y+YYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
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Since our focus here is on cases in the range of practical interest, we do not include a
detailed study of these results.

6. Existence of optimal bbc’s. We summarize the existence results for
equireplicate optimal bbc’s in the range of primary interest for the oligo array appli-
cation. We can assume that addition is applied to all of the basic designs produced.
Then it is an easy matter to verify that all but a handful of parameter sets are settled.
When k ∈ {8, 9, 10} and k < v ≤ 34, we have established existence or nonexistence
in all but five cases, namely, when (v, k, d) is one of (16, 8, 17), (18, 9, 19), (18, 9, 21),
(20, 10, 21), or (20, 10, 23).

In [3], we develop a hillclimbing method which is remarkably successful at produc-
ing bbc’s, even optimal ones. Indeed, when the bbc is not equireplicate, we succeeded
in producing a large number of base designs. In Tables 7 and 8, we give a statement
of the current result for all parameter sets with k ∈ {8, 9, 10} and k < v ≤ 34. The
encoding is as follows: + denotes the existence of an optimal equireplicate bbc, which
is described in this paper; ? denotes an unsettled equireplicate case; . denotes a pa-
rameter set for which nonexistence of any optimal bbc has been established; Y denotes
a nonequireplicate optimal bbc, found using the algorithm from [3]; and o denotes
an unsettled nonequireplicate case. The majority of entries are obtained by addition
of bbc’s with smaller discrimination; a construction of this type is denoted by I, for
“implied.” Note that sometimes an optimal bbc can be implied by the addition of two
nonequireplicate optimal bbc’s.

We present the status only for 1 ≤ d ≤ 40, but it can easily be established that
existence is implied for all d ≥ 40 for all parameter sets in our range, using addition.

The practical consequence of this is that for large discrimination, the problem
appears to become easier. However, only through the direct and computational con-
structions for small discrimination have we been able to establish such a strong exis-
tence result.

7. Concluding remarks. Optimal balanced binary codes appear, at first
glance, to require strong balance conditions leading to designs. Indeed, when v = 2k,
the conditions are quite severe and do require the pair-balance condition of balanced
incomplete block designs. However, when v is not near 2k, the packing conditions
that are required appear to be much less restrictive than do the conditions on block
sizes and replication numbers. This is the primary reason that the approach here of
constructing the required packings directly appears more fruitful than the approach
of starting with block designs and applying simple transformations.

One might expect that the nonequireplicate cases would be easier in view of the
increased flexibility in choosing replication numbers. In [3], we exploit this flexibility
to develop an heuristic search technique that is very successful.

While we have focused in this paper on cases in the range of practical interest, we
expect that similar conclusions and techniques arise more generally in the existence
of bbc’s.

Acknowledgments. Thanks to Jeff Dinitz, Vic Klee, Don Kreher, Esther
Lamken, and Rimli Sengupta for helpful suggestions.
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