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Abstract. We study interval-valued constraint satisfaction problems (CSPs), in which the
aim is to find an assignment of intervals to a given set of variables subject to constraints on the
relative positions of intervals. Many well-known problems such as Interval Graph Recognition
and Interval Satisfiability can be considered as examples of such CSPs. One interesting question
concerning such problems is to determine exactly how the complexity of an interval-valued CSP
depends on the set of constraints allowed in instances. For the framework known as Allen’s interval
algebra this question was completely answered earlier by the authors, by giving a complete description
of the tractable cases and showing that all remaining cases are NP-complete.

Here we extend the qualitative framework of Allen’s algebra with additional constraints on the
lengths of intervals. We allow these length constraints to be expressed as Horn disjunctive linear
relations, a well-known tractable and sufficiently expressive form of constraints. The class of problems
we consider contains, in particular, problems that are very closely related to the previously studied
Unit Interval Graph Sandwich problem. We completely characterize sets of qualitative relations
for which the CSP augmented with arbitrary length constraints of the above form is tractable. We
also show that, again, all the remaining cases are NP-complete.
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1. Introduction and summary of results. A wide range of combinatorial
search problems encountered in computer science and artificial intelligence can be
naturally expressed as “constraint satisfaction problems” [29], in which the aim is to
find an assignment of values to a given set of variables subject to specified constraints.
For example, the standard propositional Satisfiability problem [11] may be viewed
as a constraint satisfaction problem (CSP) where the variables must be assigned
Boolean values, and the constraints are specified by clauses. Further examples include
Graph Colorability, Clique, and Bandwidth problems, scheduling problems,
and many others (see [2, 19]).

Constraints are usually specified by means of relations. Hence the general CSP
can be parameterized according to the relations allowed in an instance. For any set of
relations F , the class of CSP instances where the constraint relations are all members
of F is denoted CSP (F). The most well-known examples of such parameterized
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problems are Generalized Satisfiability [34], where the parameter is the set of
allowed logical relations, and Graph H-coloring [17], where the parameter is the
single graph H.

In studying CSPs over infinite sets of values, arguably the most important type of
problem is when the constraints are specified by binary relations and the set of possible
values for the variables is the set of intervals on the real line. Such problems arise,
for example, in many forms of temporal reasoning [1, 16, 25, 30], where an event is
identified with the interval during which it occurs. They also arise in computational
biology, where various problems connected with physical mapping of DNA lead to
interval-valued constraints [4, 12, 13, 21]. Interval-valued CSPs can be naturally
augmented with constraints on the lengths of the intervals, and the complexity of
such extended problems will be our main interest in this paper.

Before we describe our new results, we first discuss four closely related families
of problems involving intervals which have previously been studied.

The prototypical problem from the first family is the Interval Graph Recog-
nition problem [18]. An interval graph is an undirected graph such that there is
an assignment of intervals to the nodes with two nodes adjacent if and only if the
two corresponding intervals intersect. Given an arbitrary graph G, the question of
deciding whether G is an interval graph is rarely viewed as a CSP, but in fact it is
easily formulated as such a problem in the following way: every pair of adjacent nodes
is constrained by the relation r =“intersect” over pairs of intervals, and every pair
of nonadjacent nodes is constrained by the complementary relation r̄ =“disjoint.”
This fundamental Interval Graph Recognition problem is tractable, and it also
remains tractable if we impose additional constraints on the lengths of the intervals
which require all intervals to be of the same length (the Unit Interval Graph
Recognition problem [5]). In contrast, it was shown in [32] that if we allow bound-
aries to be specified for the lengths of intervals, or even exact lengths (which are
not necessarily all equal), then the corresponding problems (called Bounded In-
terval Graph Recognition and Measured Interval Graph Recognition,
respectively) are NP-complete.

A number of other problems are closely related to the Interval Graph Recog-
nition problem, including the Circle Graph Recognition problem and the Con-
tainment Graph Recognition problem [10, 15]. These problems can also be for-
mulated as CSPs in a similar way by simply using a different constraint relation.

A typical problem from the second family is the Interval Graph Sandwich
problem [13, 16]. Given two graphs G1 = (V,E1) and G2 = (V,E2) such that E1 ⊆ E2,
the question is whether there is an interval graph G = (V,E) with E1 ⊆ E ⊆ E2.
Clearly, this is a generalization of the corresponding recognition problem (the case
when E1 = E2). The Interval Graph Sandwich problem can be represented as
a CSP as follows: to any e ∈ E1 assign the constraint r =“intersect,” to any e �∈ E2

assign the constraint r̄ =“disjoint,” and leave all pairs of variables corresponding to
edges from E2 \E1 unrelated. This problem was shown to be NP-complete along with
the Unit Interval Graph Sandwich problem, where all intervals are required to
be of the same length [13].

Graph Sandwich problems for a variety of other graph properties have also
been considered [14]. For example, the Circle Graph Sandwich problem is ob-
tained from the Interval Graph Sandwich problem by changing “interval graph
G” to “circle graph G.” This problem was shown to be NP-complete in [14]; it
can be formulated as a CSP in the same way as above using the constraint relation
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r =“overlap.”

The third family of problems we mention is the so-called Interval Satisfiabil-
ity problems [16, 33, 35]. In these problems every pair of interval variables is again
constrained in some way, but the constraints this time are chosen from a given set F
of relations. In [16, 33, 35] only a small number of possibilities for F are considered.
It is shown there that for some choices of F the resulting problem is tractable, while
for others it is NP-complete. The complexity of Interval Satisfiability with all
intervals of the same length is also studied in [33].

The fourth type of problem we mention is the satisfiability problem for Allen’s
interval algebra [1], denoted A-sat. Allen’s algebra contains 13 basic relations (corre-
sponding to the 13 ways two given intervals can be related from a “qualitative” point
of view). The set A contains not just these basic relations but all 213 = 8192 possible
unions of them. The problems A-sat(F) are similar to problems of the third type
above, except that not every pair of pair of variables has to be constrained. They can
also be represented as Interval Satisfiability with F being an arbitrary subset of
A containing the total relation. The complexity of problems of the form A-sat(F) has
been intensively studied in the artificial intelligence community (see, e.g., [7, 8, 30]),
and a complete classification of the complexity of such problems was obtained in [25].
In that paper it is shown that there are exactly 18 maximal tractable fragments of A,
and for any subset F not entirely contained in one of those the problem A-sat(F) is
NP-complete.

Many variants of A-sat(F) where additional constraints are allowed have been
considered in the literature; cf. [3, 22, 28]. For instance, certain scheduling problems
can conveniently be expressed as A-sat(F) with additional constraints on the lengths
of the intervals. Moreover, in [2] it was suggested that many important forms of
constraints on lengths can be expressed in the form of Horn disjunctive linear relations.
This class of relations is known to be tractable [20] and at the same time allows us
to express all elementary constraints, such as fixing the length, bounding the length
of an interval by a given number, or comparing the lengths of two intervals. It
was proved in [2] that only three out of the 18 maximal tractable fragments for A-
sat(F) preserve tractability when extended with Horn disjunctive linear constraints
on lengths; the other 15 become NP-complete. In this paper we study how we need
to further restrict those 15 fragments to obtain tractable cases. The main result is
a complete classification of complexity for A-sat(F) with additional constraints on
lengths. We show that such problems are either tractable or strongly NP-complete.
Moreover, we give a complete description of the tractable cases, which allows one to
easily determine whether a given set F falls into one of the tractable cases.

As well as giving a complete classification, our result also establishes a new di-
chotomy theorem for complexity. Dichotomy theorems are results concerning a class
of related problems (with some parameter) which assert that, for some values of the
parameter, the problems in the class are tractable while for all other values they are
NP-complete. Such theorems are of interest because it is well known [26] that if
P�=NP, then, within NP, there are infinitely many pairwise inequivalent problems of
intermediate complexity. Dichotomy results rule out such a possibility within certain
classes of problems.

Dichotomy theorems have previously been established for theGeneralized Sat-
isfiability [34] and Graph H-coloring [17] problems mentioned above as well as
the Directed Subgraph Homeomorphism problem [9].

CSPs have been a fruitful source of dichotomy results (see, e.g., [6, 23]). For
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Table 1
The 13 basic relations of Allen’s interval algebra. (The endpoint relations x− < x+ and

y− < y+ that are valid for all relations have been omitted.)

Basic relation Example Endpoints

x precedes y p xxx x+ < y−
y preceded by x p−1 yyy
x meets y m xxxx x+ = y−
y met by x m−1 yyyy
x overlaps y o xxxx x− < y− < x+,
y overlapped by x o−1 yyyy x+ < y+

x during y d xxx x− > y−,
y includes x d−1 yyyyyyy x+ < y+

x starts y s xxx x− = y−,
y started by x s−1 yyyyyyy x+ < y+

x finishes y f xxx x+ = y+,
y finished by x f−1 yyyyyyy x− > y−
x equals y ≡ xxxx x− = y−,

yyyy x+ = y+

CSPs, the relevant parameter is usually the set of relations, F , specifying the allowed
constraints. This parameter usually runs over an infinite set of values. In the case of
Allen’s algebra, even though the number of different values for F is finite, it is astro-
nomical (28192 ≈ 102466), which excludes the possibility of computer-aided exhaustive
case analysis.

The usual tool for proving dichotomy theorems is reducibility via expressibility.
This is done by showing that one set of relations expresses another so that one problem
can be reduced to the other. This is the method used in [6, 25, 34], and a similar
method is used here. After identifying certain tractable fragments, we find some NP-
complete fragments and then show how any subset not entirely contained in one of
the tractable sets can express some already known NP-complete fragment.

2. Preliminaries and background. Allen’s interval algebra [1], denoted A, is
a formalism for expressing qualitative binary relations between intervals on the real
line. By “qualitative” we mean “invariant under all continuous injective monotone
transformations of the real line.” An interval x is represented as a pair [x−, x+] of
real numbers with x− < x+, denoting the left and right endpoints of the interval,
respectively. The qualitative relations between intervals are the 213 = 8192 possible
unions of the 13 basic interval relations, which are shown in Table 1. It is easy to
see that the basic relations are jointly exhaustive and pairwise disjoint in the sense
that any two given intervals are related by exactly one basic relation. For the sake
of brevity, relations between intervals will be written as collections of basic relations,
omitting the sign of union. So, for instance, we write (pmf−1) instead of p ∪ m ∪ f−1.

The problem of satisfiability (A-sat) in Allen’s algebra is defined as follows.
Definition 2.1. Let F ⊆ A be a set of interval relations. An instance I of

A-sat(F) over a set, V , of variables is a set of constraints of the form xry, where
x, y ∈ V and r ∈ F . The question is whether I is satisfiable, i.e., whether there exists
a function, f , from V to the set of all intervals such that f(x) r f(y) holds for every
constraint xry in I. Any such function f is called a model of I.

Example 2.1. The instance {x(m)y, y(m)z, x(m)z} is not satisfiable because the
first two constraints imply that interval x must precede interval z, which contradicts
the third constraint.

Example 2.2. The instance I = {x(mo)y, y(df−1)z, z(≡ pmod−1ss−1f−1)x} is
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Table 2
Composition table for the basic relations in Allen’s algebra.

◦ ≡ p p−1 m m−1 o o−1 d d−1 s s−1 f f−1

≡ ≡ p p−1 m m−1 o o−1 d d−1 s s−1 f f−1

p p p � p ρ p ρ ρ p p p ρ p

p−1 p−1 � p−1 λ−1 p−1 λ−1 p−1 λ−1 p−1 λ−1 p−1 p−1 p−1

m m p ρ−1 p θ p β β p m m β p

m−1 m−1 λ p−1 σ p−1 γ−1 p−1 γ−1 p−1 γ−1 p−1 m−1 m−1

o o p ρ−1 p β−1 α ν β λ o γ β α

o−1 o−1 λ p−1 γ p−1 ν α−1 γ−1 ρ−1 γ−1 α−1 o−1 β−1

d d p p−1 p p−1 ρ λ−1 d � d λ−1 d ρ

d−1 d−1 λ ρ−1 γ β−1 γ β−1 ν d−1 γ d−1 β−1 d−1

s s p p−1 p m−1 α γ−1 d λ s σ d α

s−1 s−1 λ p−1 γ m−1 γ o−1 γ−1 d−1 σ s−1 o−1 d−1

f f p p−1 m p−1 β α−1 d ρ−1 d α−1 f θ

f−1 f−1 p ρ−1 m β−1 o β−1 β d−1 o d−1 θ f−1

α = (pmo) β = (ods) γ = (od−1f−1) σ = (≡ ss−1) θ = (≡ ff−1)
ρ = (pmods) λ = (pmod−1f−1) ν = (≡ oo−1dd−1ss−1ff−1)

� = (≡ pp−1mm−1oo−1dd−1ss−1ff−1)

satisfiable. The function f given by f(x) = [0, 2], f(y) = [1, 3], and f(z) = [0, 4] is a
model of I.

An instance of A-sat(F) can also be represented, in an obvious way, as a labelled
digraph, where the nodes are the variables from V , and the labelled arcs correspond
to the constraints. This way of representing instances is sometimes more transparent.

Allen’s interval algebra A consists of the 8192 possible relations between intervals
together with three standard operations on binary relations: converse ·−1, intersection
∩, and composition ◦. It is easy to see that the converse of r = (b1 · · · bn) is equal to
(b−1

1 · · · b−1
n ). Using the definition of composition, it can be shown that

(b1 · · · bn) ◦ (b′1 · · · b′m) =
⋃

{bi ◦ b′j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Hence the composition of two relations r1, r2 ∈ A is determined by the compositions
of the basic relations they contain. The compositions of all possible pairs of basic
relations are given in Table 2.

Subsets of A that are closed under the operations of converse, intersection, and
composition are said to be subalgebras. For a given subset F of A, the smallest
subalgebra containing F is called the subalgebra generated by F and is denoted by
〈F〉. It is easy to see that 〈F〉 is obtained from F by adding all relations that can be
obtained from the relations in F by using the three operations of the algebra A.

It is known [30] and easy to prove that, for every F ⊆ A, the problem A-sat(〈F〉)
is polynomially equivalent to A-sat(F). Therefore, to classify the complexity of A-
sat(F) it is sufficient to consider subalgebras of A. Throughout the paper, S denotes
a subalgebra of A.

In the following we shall use the symbol ±, which should be interpreted as follows.
A condition involving ± means the conjunction of two conditions: one corresponding
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Table 3
The 18 maximal tractable subalgebras of Allen’s algebra.

Sp = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (p)±1 ⊆ r}
Sd = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (d−1)±1 ⊆ r}
So = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (o)±1 ⊆ r}
A1 = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (s−1)±1 ⊆ r}
A2 = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (s)±1 ⊆ r}
A3 = {r | r ∩ (pmodf)±1 �= ∅ ⇒ (s)±1 ⊆ r}
A4 = {r | r ∩ (pmodf−1)±1 �= ∅ ⇒ (s)±1 ⊆ r}

Ep = {r | r ∩ (pmods)±1 �= ∅ ⇒ (p)±1 ⊆ r}
Ed = {r | r ∩ (pmods)±1 �= ∅ ⇒ (d)±1 ⊆ r}
Eo = {r | r ∩ (pmods)±1 �= ∅ ⇒ (o)±1 ⊆ r}
B1 = {r | r ∩ (pmods)±1 �= ∅ ⇒ (f−1)±1 ⊆ r}
B2 = {r | r ∩ (pmods)±1 �= ∅ ⇒ (f)±1 ⊆ r}
B3 = {r | r ∩ (pmod−1s−1)±1 �= ∅ ⇒ (f−1)±1 ⊆ r}
B4 = {r | r ∩ (pmod−1s)±1 �= ∅ ⇒ (f−1)±1 ⊆ r}

E∗ =

{
r

∣∣∣∣ 1) r ∩ (pmods)±1 �= ∅ ⇒ (s)±1 ⊆ r, and

2) r ∩ (ff−1) �= ∅ ⇒ (≡) ⊆ r

}

S∗ =

{
r

∣∣∣∣ 1) r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (f−1)±1 ⊆ r, and

2) r ∩ (ss−1) �= ∅ ⇒ (≡) ⊆ r

}

H =


r

∣∣∣∣∣∣
1) r ∩ (os)±1 �= ∅ & r ∩ (o−1f)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (ds)±1 �= ∅ & r ∩ (d−1f−1)±1 �= ∅ ⇒ (o)±1 ⊆ r, and

3) r ∩ (pm)±1 �= ∅ & r �⊆ (pm)±1 ⇒ (o)±1 ⊆ r




A≡ = {r | r �= ∅ ⇒ (≡) ⊆ r}

to + and one corresponding to −. For example, the condition

r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r

means that both of the following conditions hold:

r ∩ (dsf) �= ∅ ⇒ (d) ⊆ r,

r ∩ (d−1s−1f−1) �= ∅ ⇒ (d−1) ⊆ r.

The main advantage of using the ± symbol is conciseness: in any subalgebra of A,
the “+” and the “−” conditions are satisfied (or not satisfied) simultaneously, and
therefore only one of them needs to be verified.

A complete classification of the complexity of problems of the form A-sat(F) was
obtained in [25].

Theorem 2.2 (see [25]). For any subset F of A, either A-sat(F) is NP-complete
or F is included in S, where S is one of the 18 subalgebras listed in Table 3, for which
A-sat(S) is tractable.

In this paper we present a complete complexity classification for a more general
problem, namely, for A-sat(F) extended with constraints on the lengths of intervals.
Now we define the exact form of constraints on lengths we shall allow.
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Definition 2.3. Let V be a set of real-valued variables and α, β linear polyno-
mials over V with rational coefficients. A linear relation over V is an expression of
the form αRβ, where R ∈ {<,≤,=, �=,≥, >}.

A disjunctive linear relation (DLR) over V is a disjunction of a nonempty finite
set of linear relations. A DLR is said to be Horn if and only if at most one of its
disjuncts is not of the form α �= β.

Example 2.3. The expression

x + 2y ≤ 3z + 42.3

is a linear relation,

(x + 2y ≤ 3z + 42.3) ∨ (x + z < 4y − 8) ∨
(
x >

3

12

)

is a disjunctive linear relation, and

(x + 2y ≤ 3z + 42.3) ∨ (x + z �= 4y − 8) ∨
(
x �= 3

12

)

is a Horn disjunctive linear relation.
Definition 2.4. The problem of satisfiability for finite sets, D, of DLRs, denoted

DLRsat, is that of checking whether there exists an assignment f from variables in
V to real numbers such that all DLRs in D are satisfied. Such an f is said to be
a model of D. The satisfiability problem for finite sets of Horn DLRs is denoted
hornDLRsat.

Theorem 2.5 (see [20, 24]). The problem DLRsat is NP-complete, but the
problem hornDLRsat is solvable in polynomial time.

We are interested in how the complexity of a problem depends on the value of
the parameter F which, in our case, is a set of qualitative relations. Therefore we
shall allow only those constraints on lengths which can be expressed by Horn DLRs
and thus are tractable. This class of constraints subsumes all forms of constraints on
lengths which have been considered in [32, 33].

We can now define the general interval satisfiability problem with constraints on
lengths.

Definition 2.6. An instance of the problem of interval satisfiability with con-
straints on lengths for a set F ⊆ A, denoted Al-sat(F), is a pair Q = (I,D), where

(i) I is an instance of A-sat(F) over a set V of variables and
(ii) D is an instance of hornDLRsat over the set of variables {l(v) | v ∈ V }.
The question is whether Q is satisfiable, i.e., whether there exists a model f of

I such that the DLRs in D are satisfied with l(v) equal to the length of f(v) for all
v ∈ V .

Example 2.4. Consider the instance Q = (I,D), where I = {x(mo)y, y(df−1)z,
z(≡ pmod−1ss−1f−1)x}, as in Example 2.2, and D = {l(x) > l(y) + l(z)}. This
instance is not satisfiable: any set of intervals satisfying the constraints in I must
have z− ≤ x− < x+ < y+ and y ∩ z nonempty and thus cannot satisfy the length
constraint in D.

Proposition 2.7. Al-sat(F) ∈ NP for every F ⊆ A.
Proof. Every instance of Al-sat(F) over a set of variables V can be translated in

a straightforward way into an instance of DLRsat over the set of variables {v−, v+ |
v ∈ V }. Now the result follows from Theorem 2.5.
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Example 2.5. The instance Q = (I,D) defined in Example 2.4 corresponds to
the instance D′ of DLRsat containing the following constraints:

(x− < x+),

(y− < y+),

(z− < z+),

(x+ = y−) ∨ (x− < y−),

(x+ = y−) ∨ (y− < x+),

(x+ = y−) ∨ (x+ < y+),


 corresponding to x(mo)y

(y− > z−) ∨ (y+ = z+),

(y− > z−) ∨ (y− < z−),

(y+ ≤ z+),

(y+ < z+) ∨ (y− < z−),




corresponding to y(df−1)z

z− ≤ x−,
}

corresponding to z(≡ pmod−1ss−1f−1)x

(x+ − x−) > (y+ − y−) + (z+ − z−).

The complexity of Al-sat(S) has already been determined for each subalgebra S
identified in Theorem 2.2.

Proposition 2.8 (see [2]). The problem Al-sat(S) is tractable for S ∈ {Sp, Ep,H}
and is NP-complete for the other 15 subalgebras listed in Table 3.

In the next section, we determine the complexity of Al-sat(F) for every possible
subset F ⊆ A.

3. Main result.
Theorem 3.1. For any subset F of A, either Al-sat(F) is strongly NP-complete

or F is included in S, where S is one of the 10 subalgebras listed in Table 4, for which
Al-sat(S) is tractable.

In section 3.1, we discuss polynomial-time algorithms for the 10 subalgebras listed
in Table 4, and in section 3.2 we give the NP-completeness results we need. (Strong
NP-completeness of the NP-complete cases follows from the fact that the biggest
number used in these NP-completeness proofs is 5.) Finally, in section 3.3, we give
the classification proof.

The following notation is used throughout the proofs: if f is a model of an instance
over a set V of variables and v ∈ V , then we denote the left and right endpoints of
f(v) by f(v−) and f(v+), respectively.

We shall say that a relation is nontrivial if it is not equal to the empty relation
or the relation (≡). Given a relation r ∈ A, we write r∗ to denote the relation
r ∩ r−1. Evidently, every subalgebra of A is closed under the operation ·∗ (of taking
the symmetric part of a relation).

Now we introduce the notion of derivation with lengths which will be used fre-
quently in the proofs below. This notion is an extension of the notion of derivation
in Allen’s algebra used in [25].

Suppose F ⊆ A and Q = (I,D) is an instance of Al-sat(F). Let variables
x, y be involved in I. Suppose a relation r ∈ A satisfies the following condition: Q
is satisfiable if and only if xry. Then we say that r is derived (with lengths) from
F . It can easily be checked that the problems Al-sat(F) and Al-sat(F ∪ {r}) are
polynomially equivalent because, in any instance of the second problem, any constraint
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Table 4
The 10 tractable cases of Al-sat.

Sp = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (p)±1 ⊆ r}

Ep = {r | r ∩ (pmods)±1 �= ∅ ⇒ (p)±1 ⊆ r}

H =


r

∣∣∣∣∣∣
1) r ∩ (os)±1 �= ∅ & r ∩ (o−1f)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (ds)±1 �= ∅ & r ∩ (d−1f−1)±1 �= ∅ ⇒ (o)±1 ⊆ r, and

3) r ∩ (pm)±1 �= ∅ & r �⊆ (pm)±1 ⇒ (o)±1 ⊆ r




Co = {r | r �= ∅ ⇒ (oo−1) ⊆ r}

Cm =

{
r

∣∣∣∣ 1) r �= ∅ ⇒ (mm−1ss−1ff−1) ⊆ r, and

2) r ∩ (pp−1oo−1) �= ∅ ⇒ (≡) ⊆ r

}

Ds =

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (s)±1 ⊆ r, and

2) r ∩ (pp−1mm−1oo−1) �= ∅ ⇒ (≡ ss−1) ⊆ r

}

Df =

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (f)±1 ⊆ r, and

2) r ∩ (pp−1mm−1oo−1) �= ∅ ⇒ (≡ ff−1) ⊆ r

}

Dd =

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (pp−1mm−1oo−1) �= ∅ ⇒ (≡ dd−1) ⊆ r

}

D′
d

=

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (pmo)±1 �= ∅ ⇒ (odd−1)±1 ⊆ r

}

D′′
d

=


r

∣∣∣∣∣∣
1) r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (pp−1oo−1) �= ∅ ⇒ (oo−1dd−1) ⊆ r, and

3) r ∩ (pp−1mm−1) �= ∅ ⇒ (≡ dd−1) ⊆ r




involving r can be replaced by the set of constraints in Q (introducing fresh variables
as needed), and this can be done in polynomial time. It follows that it is sufficient to
classify the complexity of problems Al-sat(S), where S is a subalgebra of A closed
under derivations with lengths.

Note that if we prove that the 10 sets shown in Table 4 are the only maximal sets
F for which Al-sat(F) is tractable, then it will follow that they are all subalgebras
closed under derivation with lengths; that is, we do not have to give a separate proof
of this fact.

We will also use the following principle of duality to reduce the number of cases
to be considered in the forthcoming proofs. We make use of a function reverse which
is defined on the basic relations of A by the following table:

b ≡ p p−1 m m−1 o o−1 d d−1 s s−1 f f−1

reverse(b) ≡ p−1 p m−1 m o−1 o d d−1 f f−1 s s−1

It is also defined for all other elements of A by setting reverse(r) =
⋃

b⊆r reverse(b).

Let Q = (I,D) be any instance of Al-sat with set of variables V , and let Q′ =
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(I ′, D) be the instance obtained from Q by replacing every r in I with reverse(r). It
is easy to check that Q has a model f if and only if Q′ has a model f ′ given by

f ′(v) = [−f(v+),−f(v−)] for all v ∈ V.

In other words, f ′ is obtained from f by redirecting the real line and leaving all
intervals (as geometric objects) in their places. This observation leads to the following
lemma.

Lemma 3.2. Let F = {r1, . . . , rn} ⊆ A and F ′ = {r′1, . . . , r′n} ⊆ A be such that,
for all 1 ≤ k ≤ n, r′k = reverse(rk). Then Al-sat(F) is tractable (NP-complete) if
and only if Al-sat(F ′) is tractable (NP-complete).

3.1. Tractability results.
Proposition 3.3. The problem Al-sat(S) is tractable whenever S is one of Sp,

Ep, H, Co, Cm, Ds, Df, Dd, D′
d, or D′′

d.

Polynomial-time algorithms solving Al-sat(S) for S ∈ {Sp, Ep,H} are given
in [2]. The remaining cases are dealt with below.

Lemma 3.4. Let Q = (I,D) be an instance of Al-sat(Co). Then Q is satisfiable
if and only if D is satisfiable.

Proof. Let V = {x1, . . . , xn}. If D is not satisfiable, then, obviously, the whole
instance Q is not satisfiable. Suppose D is satisfiable, and l(x1) = a1, . . . , l(xn) = an
is a solution of D. Then reorder variables in V so that a1 ≤ · · · ≤ an. Let ε = a1/n,
and let, for 1 ≤ i ≤ n, f(xi) = [ε · i, ε · i + ai]. It is easy to check that this f satisfies
all constraints in Q.

It follows that the problem Al-sat(Co) has exactly the same complexity as the
problem hornDLRsat, and hence is tractable (see Theorem 2.5).

Algorithms for the remaining 6 subalgebras are given in Figure 1, and in the
remainder of this subsection we prove that these algorithms are correct. (Checking
that they are polynomial-time is straightforward and is left to the reader.)

Algorithms Ai, 1 ≤ i ≤ 4, and Procedure P take an instance Q = (I,D) over a
set of variables V as input. We shall assume that D always contains all constraints
of the form l(v) > 0, v ∈ V . We will also assume that I does not contain a constraint
vrw, where r = ∅. This trivial necessary condition for satisfiability can obviously be
checked in polynomial time.

The following lemma from [7] is crucial in our proofs of correctness.
Lemma 3.5 (see [7]). Let D be a satisfiable set of Horn DLRs, and let x1, . . . , xn

be the variables used in D. If D̃ = {xi �= xj | D∪{xi �= xj} is satisfiable}, then D∪D̃
is satisfiable.

Using this lemma we can always divide the set of variables V into classes such
that, in every model of an instance, variables from the same class must be assigned
intervals of the same length while any variables from different classes can be assigned
intervals of different lengths all at the same time.

Lemma 3.6. Algorithm A1 correctly solves Al-sat(Cm).
Proof. Obviously, if A1 rejects in line 1, then Q is not satisfiable.
Suppose A1 rejects in line 3. Then G contains a simple cycle of odd length,

x1, . . . , x2t+1, x1. Then, in any model f of Q, all of the intervals f(x1), . . . , f(x2t+1)
must have the same length, and hence, by definition of Cm, for all 1 ≤ i ≤ 2t we
have f(xi) (mm−1) f(xi+1). These conditions imply that f(x1) (≡ pp−1) f(x2t+1).
Therefore, it is impossible that f(x1) (mm−1) f(x2t+1), so Q is not satisfiable.

Suppose now that the algorithm accepts. We will show how to construct a
model of Q. Note that in this case D is satisfiable. Let V = {x1, . . . , xn}, and let
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Input: Instance Q = (I,D) of Al-sat(S) with set of variables V

Algorithm A1 for S = Cm
(1) If D is not satisfiable, then reject;
(2) Construct a graph G = (V,E), where (v, w) ∈ E if and only if

– D ∪ {l(v) �= l(w)} is not satisfiable, and
– vrw ∈ I for some r such that (≡) �⊆ r;

(3) If G is 2-colorable, then accept; else reject.

Procedure P
(1) Let D′ = D;
(2) For each vrw ∈ I such that r ⊆ (dsf) or r ⊆ (d−1s−1f−1),

add the constraint l(v) < l(w) or l(v) > l(w), respectively, to D′;
(3) For each vrw ∈ I such that (≡) ⊆ r ⊆ (≡ dsf) or (≡) ⊆ r ⊆ (≡ d−1s−1f−1),

add the constraint l(v) ≤ l(w) or l(v) ≥ l(w), respectively, to D′;
(4) If D′ is not satisfiable, then reject.

Algorithm A2 for S ∈ {Ds,Df,Dd}
(1) Call procedure P ;
(2) Accept.

Algorithm A3 for S = D′
d

(1) Call procedure P ;
(2) Construct a graph G = (V,E), where (v, w) ∈ E if and only if

D′ ∪ {l(v) �= l(w)} is not satisfiable;
(3) Identify the connected components S1, . . . , Sk of G;
(4) For each Sj , let Ij = I|Sj = {vrw ∈ I | v, w ∈ Sj}

and I ′j = {v r ∩ (≡ oo−1) w | vrw ∈ Ij};
(5) Solve I ′j , 1 ≤ j ≤ k, as instances of A-sat(So);
(6) If every I ′j is satisfiable, then accept; else reject.

Algorithm A4 for S = D′′
d

(1) Call procedure P ;
(2) Construct a graph G = (V,E), where (v, w) ∈ E if and only if

– D′ ∪ {l(v) �= l(w)} is not satisfiable, and
– vrw ∈ I for some r such that (≡) ⊆ r ∩ (≡ pp−1oo−1mm−1) ⊆ (≡ mm−1);

(3) Identify the connected components S1, . . . , Sk of G;
(4) For each Sj , let Ij = I|Sj = {vrw ∈ I | v, w ∈ Sj}

and I ′j = {v r w | vrw ∈ Ij and (≡) �⊆ r};
(5) If every I ′j is empty, then accept; else reject.

Fig. 1. Polynomial-time algorithms for the tractable cases of Al-sat.

D̃ = {l(xi) �= l(xj) | D ∪ {l(xi) �= l(xj)} is satisfiable}. Then, by Lemma 3.5, D∪D̃ is

satisfiable. Let l(x1) = a1, . . . , l(xn) = an be a solution of D∪D̃. We know that G can
be colored with two colors, say black and white. Now if xi is black let f(xi) = [0, ai];
otherwise let f(xi) = [−ai, 0]. Obviously, this satisfies all constraints containing (≡)
because all constraints in I already allow (mm−1ss−1ff−1). Suppose that xirxj ∈ I for
some r such that (≡) �⊆ r. If (xi, xj) ∈ E then xi and xj are of different colors, and
we have f(xi) (mm−1) f(xj). Otherwise we know, by Lemma 3.5, that the lengths
of f(xi) and f(xj) are different, which means that f(xi) (mm−1ss−1ff−1) f(xj), as
required.

The next three algorithms use preprocessing Procedure P (see Figure 1). This
procedure can obviously be performed in polynomial time. It is also easy to see that
P does not change the set of solutions to an input.
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Lemma 3.7. Algorithm A2 correctly solves problems Al-sat(S), where S ∈
{Ds,Df,Dd}.

Proof. Obviously, if the algorithm rejects (in P ), then the instance is not satisfi-
able.

Suppose now the algorithm accepts. Let l(x1) = a1, . . . , l(xn) = an be a solution
of D′ and order the variables in V so that a1 ≤ · · · ≤ an.

If F = Ds, then let f(xi) = [0, ai] for all i. The constraints added to D during
preprocessing P ensure that this f is a model of Q. Similarly, if F = Df, then the
mapping given by f(xi) = [−ai, 0] for all i satisfies all constraints in Q. Finally, if
F = Dd, then the mapping f(xi) = [−ai/2, ai/2] for all i satisfies all constraints in
Q.

Lemma 3.8. Algorithm A3 correctly solves Al-sat(D′
d).

Proof. Suppose first that A3 accepts on an input Q. We construct a model
of Q as follows. Let vj,l, 1 ≤ l ≤ |Sj |, be the members of Sj , 1 ≤ j ≤ k. Let

D̃ = {l(v) �= l(w) | D′ ∪ {l(v) �= l(w)} is satisfiable}. By Lemma 3.5, D′ ∪ D̃ is
satisfiable.

Let l(vj,l) = aj,l, where 1 ≤ j ≤ k and 1 ≤ l ≤ |Sj |, be a solution of D′ ∪ D̃. Note
that, for every 1 ≤ j ≤ |Sj |, we have aj,1 = · · · = aj,|Sj |. Reorder the Sj ’s so that
a1,1 < a2,1 < · · · < ak,1 holds. Let

ε =

{
min{ai+1,1−ai,1

3 | 1 ≤ i < k} if k > 1,

1 if k = 1.

For all 1 ≤ j ≤ k, let fj be a model of I ′j (and then of Ij as well) and assume without

loss of generality that the variables in Ij are ordered so that fj(v
−
j,1) ≤ fj(v

−
j,2) ≤

· · · ≤ fj(v
−
j,|Sj |). By applying an appropriate translation and scaling, all models fj

can be chosen so that 0 < fj(v
−
j,1) ≤ · · · ≤ fj(v

−
j,|Sj |) < ε.

Now we combine the models fj of Ij into one model f of Q = (I,D): let f(v−j,l) =

−j · ε + fj(v
−
j,l) and f(v+

j,l) = f(v−j,l) + aj,l (see Figure 2).
We immediately see that f satisfies all length constraints and all constraints within

each Ij . It is also easy to check that we have f(vi,l) (d) f(vi′,l′) whenever i < i′. Due
to the check in Procedure P , this satisfies all constraints between variables from
different Ij ’s.

Assume now that algorithm A3 rejects. We will show that Q is not satisfiable.
The result holds trivially if A3 rejects on line 1 (that is, in P ). Assume to the contrary
that some I ′j is not satisfiable but Q is satisfiable. Clearly, if Q is satisfiable, then the
instance Ij has a model f with all intervals of the same length a. Then f is also a
model of I ′′j = {v r ∩ (≡ pp−1mm−1oo−1) w |vrw ∈ Ij}.

Reorder the variables in Ij so that f(v−j,1) ≤ f(v−j,2) ≤ · · · ≤ f(v−j,|Sj |), and suppose

that {f(v−j,l) | 1 ≤ l ≤ |Sj |} = {b1, . . . , bt}, where 1 ≤ t ≤ |Sj | and b1 < · · · < bt.
By definition of D′

d, every constraint allowing (pm) allows (o) as well. Therefore
the function g defined by

g(vj,l) = [a · s/|Sj |, a · s/|Sj | + a] when f(v−j,l) = bs

is a model of Ij . Moreover, it is also a model of I ′j , a contradiction.

Lemma 3.9. Algorithm A4 correctly solves Al-sat(D′′
d).

Proof. If A4 rejects in line 1 (that is, in P ), then Q is obviously not satisfiable.
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0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

f(v1,1)

f(v1,2)

f(v1,3)

f(v1,4)

f(v2,1)

f(v2,2)

f(v3,1)

f(v3,2)

f(v3,3)

0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

Fig. 2. A combined model for an instance of Al-sat(D′
d
) (Lemma 3.8).

Suppose A4 rejects in line 6. It follows that there are variables x1, . . . , xq ∈ V
such that, in any model f of Q,

(i) intervals f(x1), . . . , f(xq) have the same length, and
(ii) f(xi) (≡ mm−1) f(xi+1) for all 1 ≤ i ≤ q − 1, and
(iii) (by definition I ′j and D′′

d) the intervals f(x1) and f(xq) are related by

(oo−1dd−1ss−1ff−1).
It is clear that these three conditions cannot be satisfied simultaneously. Therefore Q
is not satisfiable.

Suppose that the algorithm accepts. We will show how to construct a model of
Q. Let vj,l, 1 ≤ l ≤ |Sj |, be the members of Sj , 1 ≤ j ≤ k. Let D̃ = {l(v) �=
l(w) | D′ ∪ {l(v) �= l(w)} is satisfiable}. By Lemma 3.5, D′ ∪ D̃ is satisfiable.

Let l(vj,l) = aj,l, where 1 ≤ j ≤ k and 1 ≤ l ≤ |Sj |, be a solution of D̃. Note
that, for every 1 ≤ j ≤ |Sj |, we have aj,1 = · · · = aj,|Sj |. Reorder the Sj ’s so that
a1,1 ≤ a2,1 ≤ · · · ≤ ak,1 holds (note that some of the aj,1’s may coincide). Let
{a1,1, . . . , ak,1} = {b1, . . . , bt}, where b1 < · · · < bt, and let

ε =

{
min{b1, bi+1−bi

3 | 1 ≤ i < t} if t > 1,

1 if t = 1.

Further, let f(v−j,l) = −s · ε + j
|V | · ε, where s is such that bs = aj,l, and let

f(v+
j,l) = f(v−j,l) + aj,l (see Figure 3). We will show that f is a model of Q. By the

choice of aj,l, f satisfies all length constraints.
Suppose vj,l r vj′,l′ ∈ I and check that f(vj,l) r f(vj′,l′).
Case 1. j = j′.
If the variables are from the same connected component of G, then we have that

(≡) ⊆ r. Indeed, we have f(vj,l) (≡) f(vj′,l′) by the definition of f .
Case 2. j �= j′, but aj,l = aj′,l′ .
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0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

f(v1,1)

f(v3,1)

f(v3,2)

f(v3,3)

0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

f(v1,2)

f(v1,3)

b1

f(v2,1)

f(v2,2)

b1

b2

Fig. 3. A combined model for an instance of Al-sat(D′′
d
) (Lemma 3.9).

By definition of G, we have either r ∩ (pp−1oo−1) �= ∅ or (≡) �⊆ r. In the former
case we immediately get (oo−1) ⊆ r by the definition of D′′

d. Suppose that (≡) �⊆ r.

Then r∩(pp−1mm−1) = ∅. Due to the check in P , the equality aj,l = aj′,l′ is necessary.
It follows from this fact and from the definition of D′′

d that we have (oo−1) ⊆ r again.

Indeed, it is easy to check that f(vj,l) (o) f(vj′,l′) if j < j′, by the definition of f .

Case 3. aj,l �= aj′,l′ .

Assume without loss of generality that aj,l < aj′,l′ . It follows from the definition
of D′′

d that either we have (dd−1) ⊆ r or (due to the check in P ) (d) ⊆ r ⊆ (dsf). It

is not hard to verify that, indeed, f(vj,l) (d) f(vj′,l′), by the definition of f .

3.2. NP-completeness results. First let us mention the obvious fact that, for
any F ⊆ A, NP-completeness of A-sat(F) implies NP-completeness of Al-sat(F).

Lemma 3.10. Suppose that r1, . . . , rn ∈ A are relations such that the problem
A-sat({r1, . . . , rn}) is NP-complete.

1. If, for every 1 ≤ i ≤ n, r′i ∈ {ri, ri ∪ (≡)}, then Al-sat({r′1, . . . , r′n}) is
NP-complete.

2. If ∅ �= r1 ⊆ (pmo) and r′1 satisfies r1 ⊆ r′1 ⊆ r1 ∪ (≡ dsf), then the problem
Al-sat({r′1, r2, . . . , rn}) is NP-complete.
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Proof.
1. The proof is by polynomial-time reduction from A-sat({r1, . . . , rn}) to Al-

sat({r′1, . . . , r′n}). Let I be an instance of A-sat({r1, . . . , rn}) over a set V of vari-
ables. Construct an instance (I ′, D′) of Al-sat({r′1, . . . , r′n}) as follows:

(i) for every constraint urv in I such that (≡) ⊆ r add urv to I ′;
(ii) for every constraint urv in I such that (≡) �⊆ r add urv to I ′ and l(u) �= l(v)

to D′.
Obviously, every solution to (I ′, D′) is also a solution to I. Let f be a model of I,
and let {x1, . . . , xm} be the set of all endpoints of intervals f(x), x ∈ V . We may
without loss of generality assume that 0 < x1 < · · · < xm. Set x′

1 = x1, x
′
2 = x2, and,

for every i > 2, set x′
i = 2x′

i−1 + 1. It is easy to check that the function f ′ such that
f ′(v) = [x′

i, x
′
j ] if f(v) = [xi, xj ] is a model of (I ′, D′).

2. Modify the previous construction as follows:
(i) for every constraint ur1v in I add constraints ur′1v to I ′ and l(u) > l(v) to

D′;
(ii) for every constraint uriv, i > 1, in I add uriv to I ′.

Every solution to (I ′, D′) is also a solution to I because ur′1v and l(u) > l(v) imply
ur1v. Let f be a model of I, and let {x1, . . . , xm} be the set of all endpoints of
intervals f(x) for some x ∈ V . We may without loss of generality assume that
x1 < · · · < xm < 0. Set x′

m = xm, x′
m−1 = xm−1, and, for every 1 ≤ i < m − 1, set

x′
i = 2x′

i+1 − 1. It is easy to check that the function f ′ such that f ′(v) = [x′
i, x

′
j ] if

f(v) = [xi, xj ] is a model of (I ′, D′).
Example 3.1. It follows from Theorem 2.2 that A-sat({(mm−1)}) is NP-complete.

Using Lemma 3.10(1) we conclude that Al-sat({(≡ mm−1)}) is also NP-complete.
Lemma 3.11. Al-sat(F) is NP-complete if F is {(oo−1), (s)}, {(oss−1ff−1)}, or

{(sf), (oo−1ss−1ff−1)}.
Proof. First let F = {(oo−1), (s)}. The constraints

{x(oo−1)y, x(oo−1)z, y(s)z; l(z) > l(x) + l(y)}
are satisfiable if and only if x(o)y. Further, the constraints {x(o)z, z(o)y; l(z) >
l(x) + l(y)} are satisfiable if and only if x(p)y. It follows from Theorem 2.2 that
A-sat({(oo−1), (p)}) is NP-complete. The above constructions show how to reduce
A-sat({(oo−1), (p)}) to Al-sat({(oo−1), (s)}) in polynomial time.

Now let F = {(oss−1ff−1)}. Note that in this case we can also make use of the
relation (ss−1ff−1), which is equal to (oss−1ff−1)∗.

We give a polynomial-time reduction from the NP-complete problemUnnegated
One-in-Three 3SAT (Problem [LO4] in [11]) to Al-sat({(oss−1ff−1)}); let (X,C) be
an arbitrary instance of Unnegated One-in-Three 3SAT. Consider the following
set of constraints over the variables a, b, c, c′:

a(oss−1ff−1)b, l(a) = l(b) = 2,

c(ss−1ff−1)a, c(ss−1ff−1)b, l(c) = 1,

c′(ss−1ff−1)a, c′(ss−1ff−1)b, l(c′) = 3.

We impose the constraints x(ss−1ff−1)a, x(ss−1ff−1)b on every x ∈ X and note that
this implies l(x) ∈ {1, 3}. To complete the reduction, we add the constraint l(x) +
l(y) + l(z) = 5 for each {x, y, z} ∈ C. It is easy to show that the resulting set of
constraints is satisfiable if and only if (X,C) has a solution.

Finally, let F = {(sf), (oo−1ss−1ff−1)}. The constraints {x(sf)z, y(sf)z; l(z) >
l(x)+ l(y)} are satisfiable if and only if x(≡ pp−1ss−1ff−1)y. Hence, we can obtain the
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relation (ss−1ff−1) = (oo−1ss−1ff−1) ∩ (≡ pp−1ss−1ff−1). To show NP-completeness,
use the same construction as above but replace (oss−1ff−1) with (oo−1ss−1ff−1).

Lemma 3.12. Al-sat({r}) is NP-complete whenever

(mm−1) ⊆ r ⊆ (mm−1dd−1ss−1) or (mm−1) ⊆ r ⊆ (mm−1dd−1ff−1).

Proof. We consider only r with (mm−1) ⊆ r ⊆ (mm−1dd−1ss−1); the other case
is dual. We may without loss of generality assume that r = r∗.

Case 1. r = (mm−1).
It follows from Theorem 2.2 that A-sat({(mm−1)}) is NP-complete.
Case 2. r = (mm−1dd−1).
The constraints

x(dd−1mm−1)y, l(x) < l(y),

a(dd−1mm−1)x, l(a) < l(x),

a(dd−1mm−1)y, l(a) < l(y),

are satisfiable if and only if x(d)y. Furthermore, the constraints

u(mm−1dd−1)v, x(d)u, y(d)v, l(u) = l(v),

are satisfiable if and only if x(pp−1)y. It follows from Theorem 2.2 that the prob-
lem A-sat({(d), (pp−1)}) is NP-complete. We have derived (d) and (pp−1) from
(mm−1dd−1), and hence Al-sat({(mm−1dd−1)}) is also NP-complete.

Case 3. r = (mm−1ss−1).
The constraints

a(mm−1ss−1)x, a(mm−1ss−1)y, l(x) > l(a),

b(mm−1ss−1)x, b(mm−1ss−1)y, l(y) > l(b),

x(mm−1ss−1)y, l(x) = l(y),

are satisfiable if and only if a(≡ ss−1)b, so we can derive the relation (≡ ss−1).
Furthermore, the constraints

a(≡ ss−1)x, b(≡ ss−1)x, l(x) > l(a),

a(≡ ss−1)y, b(≡ ss−1)y, l(y) > l(b),

x(mm−1ss−1)y, l(x) = l(y),

are satisfiable if and only if a(pp−1)b. Now NP-completeness follows from Theo-
rem 2.2.

Case 4. r = (mm−1dd−1ss−1).
Replace (mm−1ss−1) with (mm−1dd−1ss−1) in the previous case.
Lemma 3.13. Al-sat({r1, r2}) is NP-complete whenever (≡) �⊆ r2 and

r1 ∩ (≡ pp−1oo−1mm−1) = (mm−1) � r2 ∩ (≡ pp−1oo−1mm−1).

Proof. Let us assume that all intervals have length one and prove that the problem
Al-sat({r1, r2}) is NP-complete even under this assumption. This assumption reduces
the number of cases to be considered because, in this case, we have r1 = (mm−1) and
(mm−1) ⊂ r2 ⊆ (pp−1mm−1oo−1). Moreover, we may without loss of generality
assume that either r∗2 = (mm−1) or r∗2 = r2.
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Case 1. {(mm−1), (pmm−1)}.

Let G = (V,E) and H = (V ′, E′) denote two directed graphs. A homomorphism
from G to H is a function h : V → V ′ such that (v, w) ∈ E implies (f(v), f(w)) ∈ E′.

Let H be the graph (V ′, E′) = ({0, 1, 2}, {(0, 1)(0, 2), (1, 0), (1, 2), (2, 1)}). De-
ciding whether there exists a homomorphism from an arbitrary graph to H is NP-
complete, as follows from Theorem 4.4 in [27]. We denote this problem Graph
Homomorphism(H).

We prove that {(mm−1), (pmm−1)} is NP-complete by a polynomial-time reduc-
tion from Graph Homomorphism(H). Arbitrarily choose a directed graph G =
(V,E).

The relations (pm) and (m) can be derived as follows. The constraints

{x(mm−1)x′, y(pmm−1)x, y(pmm−1)x′}

are satisfiable if and only if y(pm)x, and we have (m) = (pm) ∩ (mm−1).

Introduce five fresh variables and the constraints a(m)b(m)c(m)d(m)e. For each
node v ∈ V , add the constraints a(pm)v(pm)e. For each edge (v, w) ∈ E, add the
constraint v(pmm−1)w.

We show that the resulting set I of constraints are satisfiable if and only if there
exists a homomorphism from G to H.

Only-if: Assume without loss of generality that f is a model of I such that
f(a) = [−1, 0]. Construct a function h : V → V ′ as follows: h(v) =  f(v−)!. To see
that h is a homomorphism from G to H, arbitrarily choose an edge (v, w) ∈ E. We
consider three cases:

(i) h(v) = 0. This implies that 0 ≤ f(v−) < 1. Since v(pmm−1)w ∈ I and
f(w+) ≤ 3, we know that 1 ≤ f(w−) ≤ 2 and h(w) ∈ {1, 2}. Hence, (h(v), h(w)) ∈ E′.

(ii) h(v) = 1. Either 0 ≤ f(w−) < 1 (corresponding to v(m−1)w) or f(w−) = 2
(corresponding to v(m)w), so h(w) ∈ {0, 2} and (h(v), h(w)) ∈ E′.

(iii) h(v) = 2. Then f(w−) = 1 (corresponding to v(m−1)w), h(w) = 1, and
(h(v), h(w)) ∈ E′.

If: Assume h : V → V ′ is a homomorphism from G to H. Then f (as defined
below) is a model of I:

f(a) = [−1, 0], f(b) = [0, 1], f(c) = [1, 2], f(d) = [2, 3], f(e) = [3, 4],

and for every v ∈ V let f(v) = [h(v), h(v) + 1].

Case 2. {(mm−1), (pp−1mm−1)}.

The proof is by polynomial-time reduction from the NP-complete problemGraph
3-colorability (Problem [GT4] in [11]). Let G = (V,E) be an arbitrary instance.
Fix a fresh interval variable x. Introduce two interval variables v, v′ for each v ∈
V together with the constraints v(mm−1)v′(mm−1)x. Finally, add the constraint
v(pp−1mm−1)w for every (v, w) ∈ E. It is easy to check that the resulting set of
constraints is satisfiable if and only if G is 3-colorable. For example, if f(x) = [3, 4],
then constraints of the first type imply that f(v) ∈ {[1, 2], [3, 4], [5, 6]} for any v ∈ V ,
while the constraints of the second type ensure that the values for “adjacent” variables
are distinct.

Case 3. {(mm−1), (pp−1mm−1oo−1)}.

Use (pp−1mm−1oo−1) instead of (pp−1mm−1) in Case 2.

Case 4. {(mm−1), (mm−1oo−1)}.
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The proof is by polynomial-time reduction from the NP-complete problem Be-
tweenness1 (Problem [MS1] in [11]), which is defined as follows:

Instance: A finite set A, a collection T of ordered triples (a, b, c) of distinct
elements from A.

Question: Is there a total ordering < on A such that for each (a, b, c) ∈ T we
have either a < b < c or c < b < a?

Let (A, T ) be an arbitrary instance of Betweenness and note that the con-
straints {x(mm−1)x′, y(mm−1oo−1)x, y(mm−1oo−1)x′} are satisfiable if and only if
x(oo−1)y. We construct an instance I over {(mm−1), (oo−1)} as follows:

(i) for each pair of distinct elements a, b ∈ A, add the constraint a(oo−1)b to I;
(ii) for each triple (a, b, c) ∈ T , introduce two fresh variables x, y and add the

constraints {x(mm−1)a, x(oo−1)b, x(oo−1)c, y(oo−1)a, y(oo−1)b, y(mm−1)c}.
We will henceforth refer to the variables in I that correspond to the set A as

“basic” variables and the other variables as “auxiliary” variables.
Assume that I has a model f . Then, due to the constraints added in step (i), the

intervals f(a), a ∈ A, are pairwise distinct. Moreover, the relation (o) induces a total
order on the set {f(a) | a ∈ A}. Suppose that there is a triple (a, b, c) ∈ T such that
the model f satisfies f(b) (o) f(a) (o) f(c) and consider the constraints over the auxil-
iary variables x and y introduced in step (ii) for the triple (a, b, c). The variable x has
to satisfy x(mm−1)a, which implies that either x(p)c or x(p−1)b, a contradiction. We
can analogously rule out all orderings of f(a), f(b), f(c) except f(a) (o) f(b) (o) f(c)
and f(c) (o) f(b) (o) f(a). Hence there is a solution to the instance (A, T ): for all
a, b ∈ A, set a < b if and only if f(a) (o) f(b).

Conversely, assume that there exists a total order < on A that is a solution to the
instance (A, T ). We will show how to construct a model f of I. For all a, b ∈ A, set
f(a) (o) f(b) if and only if a < b. Clearly, this satisfies all constraints added in step (i).
To show that there exists consistent values for all auxiliary variables, arbitrarily pick
one triple (a, b, c) ∈ T (corresponding to the auxiliary variables x and y) and assume
without loss of generality that a < b < c. Let a(m)x, i.e., f(x) = [f(a−), f(a−) + 1]
and y(m)c; i.e., f(y) = [f(c−) − 1, f(c−)]. It is straightforward to verify that this
construction satisfies all constraints.

Case 5. {(mm−1), (mm−1o)}.
The constraints x(mm−1)x′, y(omm−1)x, y(o−1mm−1)x′ are satisfiable if and

only if x(o−1)y. The constraints x(o)x′, y(o)x′ are satisfiable if and only if x(≡ oo−1)y.
The constraints x(≡ oo−1)y, x′(≡ oo−1)x, x′(mm−1)y are satisfiable if and only if
x(oo−1)y. Consequently, we can derive (mm−1) and (oo−1); continue as in Case 4.

Case 6. {(mm−1), (pmm−1o)}.
The constraints x(mm−1)x′, y(pmm−1o)x, y(p−1mm−1o−1)x′ are satisfiable if

and only if x(o−1)y. Continue as in Case 5.
Case 7. {(mm−1), (pmm−1o−1)}.
The constraints x(mm−1)x′, y(pmm−1o−1)x, y(pmm−1o−1)x′ are satisfiable if

and only if y(pm)x. The relation (m) = (pm) ∩ (p−1mm−1o).
The constraints a(m)b(m)c(m)d, a(pm)x, y(pm)d are satisfiable if and only if

x(≡ mm−1oo−1)y. Hence, we can derive the relation (pmm−1o−1)∩ (≡ mm−1oo−1) =
(mm−1o−1), and NP-completeness follows from Case 5.

3.3. Classification of complexity. The classification proof splits into 8 lem-
mas. In each lemma, it is proved that if a subalgebra S which is closed under deriva-

1This problem is also known as the Total ordering problem [31].
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tions with lengths satisfies a certain condition, then either S is contained in one of
the 10 tractable subalgebras, or some lemma from section 3.2 can be applied to some
subset of S, or S satisfies the conditions of one of the previous lemmas. It is easy
to verify that the assumptions of these 8 lemmas are exhaustive (note that, due to
closedness under derivations with lengths, a subalgebra containing r ∪ (≡), where
r ⊆ (dsf), also contains r itself).

We can assume without loss of generality that each subalgebra S contains the total
relation (the union of all basic relations), since we always allow pairs of variables to
be unrelated. For each basic relation b of A, we will write rb to denote the least
relation r ∈ S such that (b) ⊆ r, i.e., the intersection of all r ∈ S with this property.
(Obviously, the relations rb depend on S; however, S will always be clear from the
context.)

We use the relations of the form rb in the algebraic proofs below to show that S
is contained in one or another subalgebra. For example, suppose we know that the
relation (p) is contained in ro. Then any relation r ∈ S such that (o) ⊆ r satisfies also
(p) ⊆ r. To see this, note that if there is r1 ∈ S such that (o) ⊆ r, but (p) �⊆ r, then
(o) ⊆ r1 ∩ro and r1 ∩ro is strictly contained in ro, which contradicts the definition of
ro. By a similar argument, if we know that (p) is contained in all of rm, ro, rd, and
rs, then we can conclude that, for every r ∈ S, (p) ⊆ r whenever r ∩ (pmods) �= ∅,
which means that S ⊆ Ep.

Lemma 3.14. Suppose S contains a nontrivial relation r ⊆ (≡ pp−1mm−1oo−1).
Then either S is contained in one of Co, Sp, Ep, and H or else Al-sat(S) is NP-
complete.

Proof.

Case 1. r ⊆ (≡ pp−1mm−1).

If S is contained in one of Sp, Ep, and H, then Al-sat(S) is tractable by Propo-
sition 3.3. Otherwise let S = {r1, . . . , rn−1} and rn = r \ (≡) and apply Theorem 2.2
and Lemma 3.10(1) with r1, . . . , rn to obtain NP-completeness of Al-sat(S).

Case 2. r ∩ (oo−1) = (o).

If r∗ �⊆ (≡), then the previous case applies. Assume that r∗ ⊆ (≡). If r �⊆
(≡ pmo), then using Lemma 3.10(1) one can show that Al-sat({r}) is NP-complete.
If (o) ⊆ r ⊆ (≡ pmo), then the constraints {xrz, zry; l(x)+ l(y) < l(z)} are satisfiable
if and only if x(p)y. Therefore (p) ∈ S, and we go back to the first case.

Case 3. (oo−1) ⊆ r.

We may now assume that r is symmetric. We shall prove that either S is contained
in one of Co, Sp, and Ep or else Al-sat(S) is NP-complete. Assume that S �⊆ Co; that
is, there is r′ ∈ S such that (oo−1) �⊆ r′. If r ∩ r′ �⊆ (≡), then we obtain the required
result by Cases 1 and 2. Therefore we may assume that r ∩ r′ is either ∅ or (≡) for
every r′ ∈ S such that (oo−1) �⊆ r′.

It now follows from Theorem 2.2 and Lemma 3.10(1) that if S is not contained in
one of So, Eo, Sp, and Ep, then Al-sat(S) is NP-complete. If S is contained in Sp or
in Ep, then, by Proposition 3.3, Al-sat(S) is tractable. Suppose S is contained in So
or in Eo but neither in Sp nor in Ep. Then S contains a nontrivial symmetric relation
r′′ such that (oo−1) ⊆ r′′ ⊆ (≡ mm−1oo−1). Also, r′ must be a nontrivial subrelation
of (≡ ss−1) or of (≡ ff−1). We consider only the first case; the second is dual. Assume
without loss of generality that (s) ⊆ r′. Then the constraints {xr′y; l(x) < l(y)} are
satisfiable if and only if x(s)y. Therefore (s) ∈ S. Since (r′′ ◦ (s))∗ = (oo−1) ∈ S, the
problem Al-sat(S) is NP-complete by Lemma 3.11.

Lemma 3.15. Suppose S contains a nontrivial relation r such that r∗ ⊆ (≡) and
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neither r nor r−1 is contained in (≡ dsf). Then either S is contained in one of Co,
Sp, Ep, and H or else Al-sat(S) is NP-complete.

Proof. If neither r \ (≡) nor r−1 \ (≡) is contained in one of (pmod−1sf−1),
(pmod−1s−1f−1), (pmodsf), or (pmodsf−1), then A-sat({r \ (≡)}) is NP-complete by
Theorem 2.2, and we get the required result by Lemma 3.10(1).

Suppose now that r \ (≡) is contained in one of the four relations above. Then
(taking r ◦ r ◦ r instead of r if needed) r can be chosen so that it satisfies one of the
following conditions:

1. r ⊆ (≡ pmos);
2. r ⊆ (≡ pmof−1);
3. (pmosf−1) ⊆ r ⊆ (≡ pmosf−1);
4. (pmods) ⊆ r;
5. (pmod−1f−1) ⊆ r.

Note that conditions 1 and 2 and conditions 4 and 5 are dual. Therefore it is
sufficient to consider only conditions 1, 3, and 4.

Suppose condition 1 holds. Then, by assumption, r �⊆ (≡ s). Now it can be
checked that the constraints {xrz, zry; l(x) > l(z)} are satisfiable if and only if xr′y
for some nontrivial r′ ∈ A such that r′ ⊆ (pmo). Then we apply Lemma 3.14.

Suppose condition 3 holds. Then the constraints {xrz, zry; l(x) < l(z), l(z) >
l(y)} are satisfiable if and only if x(pmo)y. Therefore we again apply Lemma 3.14.

Suppose condition 4 holds. If (≡) ⊆ r, then the constraints {xrz, zry; l(x) > l(z)}
are satisfiable if and only if x(≡ pmods)y. Similarly, if (≡) �⊆ r, then the constraints
{xrz, zry; l(x) > l(z)} are satisfiable if and only if x(pmods)y. Therefore a relation
r1 ∈ A with (pmods) ⊆ r1 ⊆ (≡ pmods) belongs to S.

If S contains a nontrivial relation r2 ⊆ r1 such that (d) �⊆ r2, then either r2
satisfies condition 1 (and then we get the required result) or r2 is one of (s), (≡ s). In
the latter case the constraints {xr2y; l(x) < l(y)} are satisfiable if and only if x(s)y. So
we have (s) ∈ S. Then the constraints {x(s)z, zr1y; l(x) + l(y) = l(z)} are satisfiable
if and only if x(p)y. So we have (p) ∈ S, and we can apply Lemma 3.14.

From now on in this proof we assume that every nontrivial r2 ∈ S such that
r2 ⊆ r1 satisfies (d) ⊆ r2. It now follows that, for every r ∈ S, r ∩ (pmods)±1 �= ∅
implies (d)±1 ⊆ r. In other words, we have S ⊆ Ed.

If (p) ⊆ rd, then, for every r ∈ S, r ∩ (pmods)±1 �= ∅ also implies (pd)±1 ⊆ r,
which means that S ⊆ Ep, and we get the required result. If (o) ⊆ rd, then, for every
r ∈ S, r ∩ (pmods)±1 �= ∅ also implies (od)±1 ⊆ r, and then it is easy to check that
S ⊆ H.

Assume that rd ⊆ (≡ mds). If (m) ⊆ rd, then it can be checked that the
constraints {zrdx, zrdy; l(z) > l(y) > l(x)} are satisfiable if and only if x(s)y. It is
proved above that, in the presence of r1 and (s), the required result holds.

Now we may assume that (d) ⊆ rd ⊆ (≡ ds). Then rd is either (d) or (ds) because
(≡) can be removed by adding the constraint l(x) < l(y).

Assume now that S �⊆ H. It is easy to see that every relation in S satisfies
condition 1 of H. If there is r3 ∈ S failing to satisfy condition 3 of H, then r4 = r3∩r1
satisfies r4 ⊆ (pmds) and r4 ∩ (pm) �= ∅. Then the constraints {xrdz, zr4y; l(z) >
l(y)} are satisfiable if and only if x(p)y. Hence we have (p) ∈ S, and we can apply
Lemma 3.14.

Finally, assume that every r ∈ S satisfies conditions 1 and 3 of H, but some
r5 ∈ S fails to satisfy condition 2 of H. We can assume that r5 ∩ (ds) �= ∅ and
r5 ∩ (d−1f−1) �= ∅, but (o) �⊆ r5. Let ν = (≡ oo−1dd−1ss−1ff−1). Since ν = r−1

d
◦ rd
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belongs to S, we may assume that r5 ⊆ ν; otherwise replace r5 by r5 ∩ ν. Note that
(d) ⊆ r5.

If (o−1) ⊆ r5, then (d−1) ⊆ r5 because (d) ⊆ ro. Then the constraints in the set
{xr∗5y; l(x) �= l(y)} are satisfiable if and only if xr6y, where r6 ∈ A is a symmetric
relation such that (dd−1) ⊆ r6 ⊆ (dd−1ss−1ff−1). We have (pmods) = r1 ◦ rd ∈ S. It
follows from Theorem 2.2 that A-sat({r6, (pmo)}) is NP-complete. Then Al-sat(S)
is NP-complete by Lemma 3.10(2).

Let (o−1) �⊆ r5. If (d−1) ⊆ r5, then the argument is as above. Otherwise we
have (df−1) ⊆ r5 ⊆ (≡ dsff−1) (note that (s−1) �⊆ r5 because S ⊆ Ed). Then the
constraints in the set {xr5y; l(x) > l(y)} are satisfiable if and only if x(f−1)y. We
may then assume that (f) ∈ S. It follows that the relations (ods) = (f−1) ◦ rd and
(≡ dff−1) = (f) ◦ r5 both belong to S, and therefore (d) = rd ∩ (≡ dff−1) ∈ S. It
follows from Theorem 2.2 that A-sat({(o), (d), (f), (≡ dff−1)}) is NP-complete. Since
(ods) ∈ S, we conclude that Al-sat(S) is NP-complete by Lemma 3.10(2).

Lemma 3.16. If S contains two nontrivial relations r1 and r2 such that r1 ∩ r2 ⊆
(≡) and r1, r2 ⊆ (≡ dsf), then either S ⊆ H or else Al-sat(S) is NP-complete.

Proof. We may assume that (≡) �⊆ r1, r2 because it can be removed by adding the
constraint l(x) < l(y). If r1 = (d) and r2 = (sf), then A-sat({r1, r2}) is NP-complete
by Theorem 2.2.

In all other cases r1◦r−1
2 (or its converse) satisfies the assumptions of Lemma 3.15

or Lemma 3.16. It remains to notice that {r1, r2} is not contained in one of Co, Sp,
Ep.

Lemma 3.17. If S contains two nontrivial symmetric relations r1 and r2 such
that r1 ∩ r2 ⊆ (≡), then either S is contained in one of Sp, Ep, H or else Al-sat(S)
is NP-complete.

Proof. We may assume that r1 and r2 are minimal (with respect to inclusion)
among nontrivial symmetric relations.

It follows from Theorem 2.2 that if none of r1, r2 is contained in one of (≡ ss−1),
(≡ ff−1), then A-sat(S) (and, consequently, Al-sat(S)) is NP-complete.

We shall consider only the case r1 ⊆ (≡ ss−1); the case r1 ⊆ (≡ ff−1) is dual.
Then we may assume that (ss−1) ∈ S and (s) ∈ S because these constraints are
equivalent to {xr1y; l(x) �= l(y)} and {xr1y; l(x) < l(y)}, respectively. If r2 ⊆ (≡
dd−1ff−1), then, by imposing the constraint l(x) < l(y), we can obtain a nonempty
subrelation of (df), and we can apply Lemma 3.16. We therefore may assume that
r2∩(pp−1mm−1oo−1) �= ∅. Now it follows from minimality of r2 and from Theorem 2.2
that if A-sat(S) is not NP-complete, then either S ⊆ H or every relation r ∈ S such
that r∗ �⊆ (≡ ss−1) satisfies r2 ⊆ r.

It can be easily checked that if (dd−1) �⊆ r2, then either r2 ⊆ (≡ mm−1) or
r3 = ((s) ◦ r2)

∗ is nonempty and satisfies r3 ⊆ (pp−1mm−1oo−1). In the former
case Al-sat({r2}) is NP-complete by Lemma 3.10(1). In the latter case we apply
Lemma 3.14.

Further, let (dd−1) ⊆ r2. Suppose some nontrivial relation r3 ∈ S is strictly
contained in r2. Then, by the choice of r2, we have r∗3 ⊆ (≡), and, since S �⊆ Co, we
can apply Lemma 3.15 or Lemma 3.16.

Now we may assume that, for every r ∈ S such that r∩ r2 �= ∅, we have (dd−1) ⊆
r2 ⊆ r.

It can now be checked using Theorem 2.2 that if A-sat(S) is not NP-complete,
then S is contained in one of Sp, Sd, and H. Suppose that S �⊆ Sp and S �⊆ H, since
otherwise there is nothing to prove. Then S ⊆ Sd, and for every relation r ∈ S such
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that r �⊆ (≡ ss−1), we have (dd−1) ⊆ r2 ⊆ r. If r2 contains (pp−1) or (oo−1), then S
is contained in Sp or H, which contradicts the assumptions just made. Otherwise we
have (mm−1dd−1) ⊆ r2 ⊆ (≡ mm−1dd−1ff−1). Hence ((s) ◦ r2)∗ = (mm−1dd−1) ∈ S.
By minimality, it follows that r2 = (mm−1dd−1). Then Al-sat(S) is NP-complete by
Lemma 3.12.

Lemma 3.18. If (s) ∈ S or (f) ∈ S then either S is contained in one of the 10
subalgebras listed in Theorem 3.1 or else Al-sat(S) is NP-complete.

Proof. We consider only the case (s) ∈ S; the other case is dual.

By Lemmas 3.15 and 3.16, we may assume that, for every nontrivial r ∈ S such
that r∗ ⊆ (≡), we have either (s) ⊆ r ⊆ (dsf) or (s) ⊆ r−1 ⊆ (dsf). We may
also assume that (ss−1) ∈ S because the constraints {x(s)z, z(s)y; l(x) �= l(y)} are
satisfiable if and only if x(ss−1)y.

Suppose that S �⊆ Ds. Then there exists a relation r1 ∈ S such that r1 ∩
(pp−1mm−1oo−1) �= ∅, but (≡ ss−1) �⊆ r1. If (≡) ⊆ r1, then we can apply ei-
ther Lemma 3.15 with r1 or Lemma 3.17 with {r∗1 , (ss−1)}. So we may now as-
sume that (≡) �⊆ r1. It can be checked that there is a nontrivial r2 ∈ A such that
{ur1v, u(s)x, v(s)y; l(u) = l(v)} is satisfiable if and only if xr2y. Then r2 ∈ S. More-
over, we have (≡ ss−1) ∩ r2 = ∅. If r2 satisfies r∗2 ⊆ (≡), then we apply Lemma 3.15
or Lemma 3.16. Otherwise {r∗2 , (ss−1)} ⊆ S, and we get the required result by
Lemma 3.17.

Lemma 3.19. If (sf) ∈ S, then either S ⊆ Ds or S ⊆ Df or else Al-sat(S) is
NP-complete.

Proof. We have (dsf) = (sf) ◦ (sf) ∈ S. We may assume that neither (s) nor
(f) belong to S; otherwise we obtain the result by Lemma 3.18, since, out of the 10
subalgebras, (sf) is contained only in Ds and in Df. It now follows that (dsf)±1∩r �= ∅
implies (sf)±1 ⊆ r for any r ∈ S.

Suppose that S is not contained in Ds. Then there is r1 ∈ S such that (≡ ss−1) �⊆
r1 and r1 ∩ (pp−1mm−1oo−1) �= ∅. Assume that (≡) ⊆ r1. If (ss−1)∩ r1 = ∅, then, by
the previous paragraph, we have r1 ⊆ (≡ pp−1mm−1oo−1), and we apply Lemma 3.14.
Assume now that (ss−1)∩ r1 = (s). Then r1 ⊆ (≡ pp−1mm−1oo−1dsf). Now we apply
Lemma 3.14 if r∗1 �⊆ (≡) and Lemma 3.15 otherwise.

Now assume that (≡) �⊆ r1 and r1 ∩ (pp−1mm−1oo−1) �= ∅. If there is such
an r1 with the additional property that r1 ∩ (oo−1) = ∅, then the set of constraints
{x(sf)u, ur1v, y(sf)v; l(u) = l(v)} is satisfiable if and only if xr′y, where r′ ∈ A is some
nontrivial relation such that r′ ⊆ (pp−1mm−1). Then we can apply Lemma 3.14.

Suppose r1 ∩ (oo−1) �= ∅. We have (≡ oo−1ss−1ff−1) = (s−1f−1) ◦ (sf) ∈ S.
Consider r2 = r1 ∩ (≡ oo−1ss−1ff−1). If r2 ⊆ (oo−1), then A-sat({(sf), r2}) is NP-
complete by Theorem 2.2. Otherwise (ss−1ff−1) ⊆ r2, and we have either r2 =
(oss−1ff−1) or r2 = (oo−1ss−1ff−1). In both cases Al-sat({(sf), r2}) is NP-complete
by Lemma 3.11.

Lemma 3.20. If there is r ∈ S such that (d) ⊆ r ⊆ (dsf), then either S is
contained in one of the 10 subalgebras listed in Theorem 3.1 or else Al-sat(S) is
NP-complete.

Proof. Note that ν = (≡ oo−1dd−1ss−1ff−1) = r−1 ◦ r ∈ S.

We may assume that every r ∈ S such that r∗ ⊆ (≡) satisfies (d) ⊆ r ⊆ (≡ dsf)
or (d) ⊆ r−1 ⊆ (≡ dsf); otherwise we apply Lemmas 3.15, 3.18, or 3.19. It follows, in
particular, that no nontrivial subrelation of (≡ ss−1ff−1) belongs to S.

Suppose that there exists r1 ∈ S such that r1 ∩ (pp−1mm−1oo−1) �= ∅, but
(dd−1) �⊆ r1. If r∗1 ⊆ (≡), then we can apply Lemma 3.15 with r1. Otherwise r∗1 is
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a symmetric nontrivial relation satisfying (dd−1) ∩ r∗1 = ∅. If r1 ⊆ (≡ pp−1mm−1),
then we can apply Lemma 3.14. Otherwise the relation r2 = ν ∩ r∗1 ∈ S is nontrivial
and satisfies r2 ⊆ (≡ oo−1ss−1ff−1). We have (oo−1) ⊆ r2 and r2 ∩ r = ∅, since
no subrelation of (sf) belongs to S. Now it is easy to verify that A-sat({r2, r}) is
NP-complete, by Theorem 2.2.

From now on (in this proof) we may assume that, for every r ∈ S, whenever
r ∩ (pp−1mm−1oo−1) �= ∅ we have (dd−1) ⊆ r. It now follows that condition 1 of Dd
and D′

d is satisfied in S.

Suppose there is r2 ∈ S such that r2∩(pp−1mm−1) �= ∅, but r2∩(≡ oo−1) = ∅. It
is easy to check that there exists a nontrivial r3 ∈ A with r3 ⊆ (pp−1mm−1) such that
{ur2v, xru, yrv; l(u) = l(v)} is satisfiable if and only if xr3y (the relation r3 depends
on r and r2). Then r3 ∈ S, and we can apply Lemma 3.14.

From now on (in this proof) we may also assume that, for every r ∈ S, r ∩
(pp−1mm−1) �= ∅ implies r ∩ (≡ oo−1) �= ∅.

We know that ro ⊆ ν. If (≡) ⊆ ro, then it is easy to check that S ⊆ Dd.
Suppose ro ∩ (≡ oo−1) = (o) and S �⊆ D′

d. Then there is r4 ∈ S such that

r4 ∩ (pm) �= ∅, but (o) �⊆ r4. Then there exists a nontrivial r5 ∈ A with r5 ⊆ (pm)
such that the constraints

{uroz, zrov, ur4v, xru, yrv; l(u) = l(z) = l(v)}
are satisfiable if and only if xr5y. Then r5 ∈ S, and we can apply Lemma 3.14.

It remains to consider the case ro ∩ (≡ oo−1) = (oo−1). Then every r6 ∈ S such
that r6 ∩ (oo−1) = ∅, but r6 ∩ (pp−1mm−1) �= ∅ satisfies (≡) ⊆ r6.

If there is such r6 with r6 ∩ (pp−1) �= ∅, then there exists a nontrivial r7 ∈ A with
r7 ⊆ (pp−1mm−1) such that the constraints

{uroz, zr6v, ur6v, xru, yrv; l(u) = l(z) = l(v)}
are satisfiable if and only if xr7y. Then r7 ∈ S, and we can apply Lemma 3.14.

Now we may assume that every r ∈ S with r∩(pp−1) �= ∅ also satisfies (oo−1) ⊆ r.
Suppose S �⊆ D′

d. Then there is r8 ∈ S such that (m) ⊆ r8 and r8 ∩ (≡ pp−1oo−1) =

(≡). Moreover, every r ∈ S such that r∩(mm−1) �= ∅ satisfies (≡) ⊆ r, since otherwise
we can obtain a relation r9(= r ∩ r8) such that r9 ∩ (≡ pp−1mm−1oo−1) is nonempty
and is contained in (mm−1), a contradiction.

Now either S ⊆ D′′
d or else there is r10 ∈ S such that (poo−1) ⊆ r10 and (≡) �⊆ r10.

In the latter case, again, there exists a relation r11 ∈ A with r11 ⊆ (pp−1mm−1) such
that the constraints

{ur10z, zr−1
8 v, ur8v, xru, yrv; l(u) = l(z) = l(v)}

are satisfiable if and only if xr11y. Then r11 ∈ S and we can apply Lemma 3.14.
Lemma 3.21. If there is a symmetric nontrivial relation r′ ∈ S such that every

nontrivial r ∈ S satisfies r′ ⊆ r, then either S is contained in one of the 10 subalgebras
listed in Theorem 3.1 or else Al-sat(S) is NP-complete.

Proof. If r′ contains (pp−1), or (oo−1), or (≡ dd−1), or (≡ ss−1), or (≡ ff−1), then
S is contained in Sp, or Co, or Dd, or Ds, or Df, respectively. If r′ ⊆ (dd−1ss−1ff−1),
then we can obtain an asymmetric relation in S which contradicts the assumption of
this step. If r′ = (≡ mm−1), then Al-sat({r′}) is NP-complete by Example 3.1.

From now on (in this proof) we assume that all nontrivial r ∈ S satisfy the
condition that (mm−1ss−1ff−1) ⊆ r; otherwise one of the earlier cases applies. If every
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nontrivial r ∈ S satisfies (≡ mm−1ss−1ff−1) ⊆ r, then S ⊆ Ds. Suppose that there
is r1 ∈ S such that (≡) �⊆ r1. Then r1 ∩ (≡ pp−1mm−1oo−1) ⊆ (pp−1mm−1oo−1).
If, for all r ∈ S, (pp−1) ⊆ r or, for all r ∈ S, (oo−1) ⊆ r, then S ⊆ Sp or S ⊆ Co,
respectively. Else, we can choose r1 so that r1 ∩ (≡ pp−1mm−1oo−1) = (mm−1). Now
it is not hard to check that either S ⊆ Cm or else there is r2 ∈ S such that the system
{r1, r2} satisfies the conditions of Lemma 3.13.

Classification is complete. Theorem 3.1 is proved.

4. Conclusion. In this paper we have given a complete classification of the
complexity of interval satisfiability problems with very general length restrictions.
Our main result, Theorem 3.1, determines the complexity of Al-sat(F) for every
possible subset F ⊆ A.

To conclude, we note that our NP-completeness proofs use only a very restricted
subset of the allowable length constraints. In fact, we use constraints on lengths only
of the following forms:

(i) comparing l(x) + l(y) with l(z),
(ii) comparing l(x) and l(y),
(iii) comparing l(x) with a given number.

It follows that the NP-complete fragments of Al-sat remain NP-complete even if we
allow only these very limited forms of Horn DLRs to specify length constraints. This
prompts us to make the following conjecture.

Conjecture 4.1. All NP-complete cases of Al-sat remain NP-complete if we
allow fixing individual interval lengths as the only form of constraints on lengths.

In fact, we suggest that an even stronger result may be true: it may be that in
all cases where imposing restrictions on interval lengths causes intractability, simply
requiring all intervals to have the same length will already be intractable.

Problem 4.1. Do all NP-complete cases of Al-sat remain NP-complete if we
search only for models with all intervals of the same length?
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