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Abstract. For several graph theoretic parameters such as vertex cover
and dominating set, it is known that if their values are bounded by k
then the treewidth of the graph is bounded by some function of k. This
fact is used as the main tool for the design of several fixed-parameter
algorithms on minor-closed graph classes such as planar graphs, single-
crossing-minor-free graphs, and graphs of bounded genus. In this paper
we examine the question whether similar bounds can be obtained for
larger minor-closed graph classes, and for general families of parameters
including all the parameters where such a behavior has been reported so
far.
Given a graph parameter P , we say that a graph family F has the
parameter-treewidth property for P if there is a function f(p) such that
every graph G ∈ F with parameter at most p has treewidth at most
f(p). We prove as our main result that, for a large family of parame-
ters called contraction-bidimensional parameters, a minor-closed graph
family F has the parameter-treewidth property if F has bounded lo-
cal treewidth. We also show “if and only if” for some parameters, and
thus this result is in some sense tight. In addition we show that, for
a slightly smaller family of parameters called minor-bidimensional pa-
rameters, all minor-closed graph families F excluding some fixed graphs
have the parameter-treewidth property. The bidimensional parameters
include many domination and covering parameters such as vertex cover,
feedback vertex set, dominating set, edge-dominating set, q-dominating
set (for fixed q). We use these theorems to develop new fixed-parameter
algorithms in these contexts.

1 Introduction

The last ten years has witnessed the rapid development of a new branch of com-
putational complexity, called parameterized complexity; see the book of Downey
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& Fellows [14]. Roughly speaking, a parameterized problem with parameter k
is fixed-parameter tractable (FPT) if it admits an algorithm with running time
f(k)|I|O(1). (Here f is a function depending only on k and |I| is the size of the
instance.)

A celebrated example of a fixed-parameter tractable problem is Vertex

Cover, asking whether an input graph has at most k vertices that are incident
to all its edges. When parameterized by k, the k-Vertex Cover problem ad-
mits a solution as fast as O(kn+ 1.285k) [7]. Moreover, if we restrict k-Vertex

Cover to planar graphs then it is possible to design FPT-algorithms where
the contribution of k in the non-polynomial part of their complexity is subex-
ponential. The first algorithm of this type was given by Alber et al. (see [2]).
Recently, Fomin and Thilikos reported a O(k4+24.5

√
k+kn) algorithm for planar

k-Vertex Cover [19].
However, not all parameterized problems are fixed-parameter tractable. A

typical example of such a problem is Dominating Set, asking whether an in-
put graph has at most k vertices that are adjacent to the rest of the vertices.
When parameterized by k, the k-Dominating Set Problem is known to be
W [2]-complete and thus it is not expected to be fixed-parameter tractable. In-
terestingly, the fixed-parameter complexity of the same problem can be distinct
for special graph classes. During the last five years, there has been substantial
work on fixed-parameter algorithms for solving the k-dominating set on planar
graphs and different generalizations of planar graphs. For planar graphs Downey
and Fellows [14], suggested an algorithm with running time O(11dn). Later the
running time was reduced to O(8dn) [2]. An algorithm with a sublinear expo-
nent for the problem with running time O(46

√
34dn) was given by Alber et al. [1].

Recently, Kanj & Perkovuć [23] improved the running time to O(227
√
dn) and

Fomin & Thilikos to O(215.13
√
dd+n3 +d4) [18]. The fixed-parameter algorithms

for extensions of planar graphs like bounded-genus graphs and graphs excluding
single-crossing graphs as minors are introduced in [11, 9, 15].

In the majority of these results, the design of FPT algorithms for solving
problems such as k-Vertex Cover or k-Dominating Set in a sparse graph
class F is based on the following lemma: every graph G in F where the value
of the parameter is at most p has treewidth bounded by f(p), where f is a
function depending only on F . With some work (sometimes very technical),
a tree decomposition of width O(f(p)) is constructed and standard dynamic-
programming techniques on graphs of bounded treewidth are implemented. Of
course this method can not be applied for any graph class F . For instance, the
n-vertex complete graph Kn has a dominating set of size one and treewidth
equal to n − 1. So the emerging question is: For which (larger) graph classes
and for which parameters can the “bounding treewidth method” be applied? In
this paper we give a complete characterization of minor-closed graph families for
which the aforementioned “bounding treewidth method” can be applied for a
wide family of graph parameters. For a given parameter P , we say that a graph
family F has the parameter-treewidth property for P if there is a function f(p)
such for every graph G ∈ F where P (G) ≤ p implies that G has treewidth



at most f(p). Our main result is that for a large family of parameters called
contraction-bidimensional parameters, a minor-closed graph family F has the
parameter-treewidth property if F has bounded local treewidth. Moreover, we
show that the inverse is also correct if some simple condition is satisfied by P . In
addition we show that, for a slightly smaller family of parameters called minor-
bidimensional parameters, every minor-closed graph family F excluding some
fixed graph has the parameter-treewidth property. The bidimensional-parameter
family includes many domination and covering parameters such as vertex cover,
feedback vertex set, dominating set, edge-dominating set, and q-dominating set
(for fixed q) (see also [11] for more examples).

The proof of the main result uses the characterization of Eppstein for minor-
closed families of bounded local treewidth [16] and Diestel et al.’s modification
of the Robertson & Seymour excluded-grid-minor theorem [13]. In addition, the
proof is constructive and can be used for constructing fixed-parameter algorithms
to decide bidimensional parameters on minor-closed families of bounded local
treewidth. In this sense, we extend to fixed-parameter algorithms the result of
Frick & Grohe [21] that, for each property φ definable in first-order logic, and
for each class of minor-closed graphs of bounded local treewidth, there is a (non-
fixed-parameter) O(n1+ε)-time algorithm deciding whether a given graph has
property φ.

A preliminary and special case of our result, concerning only the dominating
set parameter, appeared in [20] with a different and more complicated proof.
Also, another proof of the same result appeared in [10]. In this paper we present
shorter and more elegant proofs of the combinatorial results of [20] and [10] while
we extend their applicability to general families of parameters.

2 Definitions and preliminary results

Let G be a graph with vertex set V (G) and edge set E(G). We let n denote the
number of vertices of a graph when it is clear from context. For every nonempty
W ⊆ V (G), the subgraph of G induced by W is denoted by G[W ]. We define the
q-neighborhood of a vertex v ∈ V (G), denoted by Nq

G[v], to be the set of vertices
of G at distance at most q from v. Notice that v ∈ Nq

G[v]. We put NG[v] = N1
G[v].

We also often say that a vertex v dominates subset S ⊆ V (G) if NG[v] ⊇ S.
Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by

contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and duplicate edges. A graph H obtained by a sequence of edge
contractions is said to be a contraction of G. A graph H is a minor of a graph
G if H is the subgraph of a contraction of G. We use the notation H � G [resp.
H �c G] for H a minor [a contraction] of G. A family (or class) of graphs F
is minor-closed if G ∈ F implies that every minor of G is in F . A minor-closed
graph family F is H-minor-free if H /∈ F .

The m×m grid is the graph on {1, 2, . . . ,m2} vertices {(i, j) : 1 ≤ i, j ≤ m}
with the edge set

{(i, j)(i′, j′) : |i− i′|+ |j − j′| = 1}.



For i ∈ {1, 2, . . . ,m} the vertex set (i, j), j ∈ {1, 2, . . . ,m}, is referred as the ith
row and the vertex set (j, i), j ∈ {1, 2, . . . ,m}, is referred to as the ith column
of the m × m grid. The vertices (i, j) of the m × m grid with i ∈ {1,m} or
j ∈ {1,m} are called boundary vertices and the rest of the vertices are called
non-boundary vertices.

The notion of treewidth was introduced by Robertson and Seymour [25].
A tree decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )), with
{Xi | i ∈ I} a family of subsets of V (G) and T a tree, such that

1.
⋃
i∈I Xi = V (G);

2. for all {v, w} ∈ E(G), there is an i ∈ I with v, w ∈ Xi; and
3. for all i0, i1, i2 ∈ I, if i1 is on the path from i0 to i2 in T , then Xi0∩Xi2 ⊆ Xi1 .

The width of the tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1.
The treewidth tw(G) of a graph G is the minimum width of a tree decomposition
of G.

We need the following facts about treewidth. The first fact is trivial.

– For any complete graph Kn on n vertices, tw(Kn) = n− 1.

The second fact is well known but its proof is not trivial. (See e.g., [12].)

– The treewidth of the m×m grid is m.

The next fact we need is the improved version of the Robertson & Seymour
theorem on excluded grid minors [26] due to Diestel et al. [13]. (See also the
textbook [12].)

Theorem 1 ([13]). Let r,m be integers, and let G be a graph of treewidth at
least m4r2(m+2). Then G contains either Kr or the m×m grid as a minor.

A parameter P is any function mapping graphs to nonnegative integers. The
parameterized problem associated with P asks, for a fixed k, whether P (G) ≤ k
for a given graph G.

A parameter P is g(r)-minor-bidimensional if (i) contracting an edge, delet-
ing an edge, or deleting a vertex in a graph G cannot increase P (G), and (ii)
there exists a function g such that, for the r× r grid R, P (R) ≥ g(r). Similarly,
a parameter P is g(r)-contraction-bidimensional if (i) contracting an edge in a
graph G cannot increase P (G), and (ii) there exists a function g such that, for
any r× r augmented grid R of constant span, P (R) ≥ g(r)1. Here an r× r aug-
mented grid of span s is an r×r grid with some extra edges such that each vertex
is attached to at most s non-boundary vertices of the grid. We assume that g(r)
is monotone and invertible for r ≥ 0. We note that a g(r)-minor-bidimensional
parameter is also a g(r)-contraction-bidimensional parameter. One can easily
1 Closely related notions of bidimensional parameters are introduced by the authors

in [9].



observe that many parameters such as minimum sizes of dominating set, q-
dominating set (distance q-dominating set for a fixed q), vertex cover, feedback
vertex set, and edge-dominating set (see exact definitions of the corresponding
parameters in [11]) are Θ(r2)-minor- or Θ(r2)-contraction-bidimensional param-
eters. Another example of contraction-bidimensional parameter is the minimum
length in TSP (Travelling salesman problem), i.e. the smallest number of edges
in a walk containing all vertices of a graph.

Here, we present a theorem for minor-bidimensional parameters on general
minor-closed classes of graphs excluding some fixed graphs, whose intuition plays
an important role in the main result of this paper.

Theorem 2. If a g(r)-minor-bidimensional parameter P on an H-minor-free
graph G has value at most p, then tw(G) ≤ 2O(g−1(p) log g−1(p)). (The constant
in the O notation depends on H.)

Proof. By Theorem 1, since G is H-minor-free (and thus K|V (H)|-minor-free),
we know if m is the largest integer such that tw(G) ≥ m4|V (H)|2(m+2), then G
has an m ×m grid as a minor. Since P is g(r)-minor-bidimensional, p ≥ g(m)
and thus we obtain the desired bound.

Theorem 2 can be applied for minor-bidimensional parameters such as vertex
cover or feedback vertex set.

The notion of local treewidth was introduced by Eppstein [16] (see also [22]).
The local treewidth of a graph G is

ltw(G, r) = max{tw(G[Nr
G[v]]) : v ∈ V (G)}.

For a function f : N → N we define the minor-closed class of graphs of bounded
local treewidth

L(f) = {G : ∀H � G ∀r ≥ 0, ltw(H, r) ≤ f(r)}.

Also we say that a minor-closed class of graphs C has bounded local treewidth
if C ⊆ L(f) for a function f .

Well-known examples of minor-closed classes of graphs of bounded local
treewidth are graphs of bounded treewidth, planar graphs, graphs of bounded
genus, and single-crossing-minor-free graphs.

Many difficult graph problems can be solved efficiently when the input is
restricted to graphs of bounded treewidth (see e.g., Bodlaender’s survey [5]).
Eppstein [16] made a step forward by proving that some problems like subgraph
isomorphism and induced subgraph isomorphism can be solved in linear time
on minor-closed graphs of bounded local treewidth. Also the classic Baker’s
technique [4] for obtaining approximation schemes on planar graphs for different
NP-hard problems can be generalized to minor-closed families of bounded local
treewidth. (See [16] for a generalization of these techniques.)

An apex graph is a graph G such that, for some vertex v (the apex ), G− v is
planar. The following result is due to Eppstein [16].

Theorem 3 ([16]). Let F be a minor-closed family of graphs. Then F is of
bounded local treewidth if and only if F does not contain all apex graphs.



3 Main theorem

Due to space restriction we omit the proofs of the following two combinatorial
lemmas.

Lemma 1. Suppose we have a m×m grid H and a subset S of vertices in the
central (m− 2k)× (m− 2k) subgrid H ′, where s = |S| and k = b 4

√
sc. Then H

has as a minor the k × k grid R such that each vertex in R is a contraction of
at least one vertex in S and other vertices in H.

Lemma 2. Let G ∈ L(f) be a graph containing the m×m grid H as a subgraph,
m > 2k, where k = f(2) + 1. Then the central (m− 2k)× (m− 2k) subgrid H ′

has the property that every vertex v ∈ V (G) is adjacent to less than k4 vertices
in H ′.

Now we are ready to present the main result of this paper.

Theorem 4. Let P be a g(r)-contraction-bidimensional parameter. Then for
any function f : N → N and any graph G ∈ L(f) on which parameter P has
value at most p, we have tw(G) ≤ 2O(g−1(p) log g−1(p)). (The constant in the O
notation depends on f(1) and f(2).)

Proof. Let r = f(1) + 1 and k = f(2) + 1. Let G ∈ L(f) be a graph on which
the parameter P has value p. Let m be the largest integer such that tw(G) ≥
m4r2(m+2). Without loss of generality, we assume G is connected, and m > 2k
(otherwise, tw(G) is a constant since both r and k are constants.) Then G
has no complete graph Kr as a minor. By Theorem 1, G contains an m ×
m grid H as a minor. Thus there exists a sequence of edge contractions and
edge/vertex deletions reducing G to H. We apply to G the edge contractions
from this sequence, we ignore the edge deletions, and instead of deletion of a
vertex v, we only contract v into one of its neighbors. Call the new graph G′,
which has the m×m grid H as a subgraph and in addition V (G′) = V (H). Since
parameter P is contraction-bidimensional, its value on G′ will not increase. By
Lemma 2, we know that the central (m − 2k) × (m − 2k) subgrid H ′ of H has
the property that every vertex v ∈ V (G′) is adjacent to less than k4 vertices in
H ′.

Now, suppose in graph G′, we further contract all 2k boundary rows and 2k
boundary columns into two boundary rows and two boundary columns (one on
each side) and call the new graph G′′. Note that here G′′ and H ′ have the same
set of vertices. The degree of each vertex of G′′ to the vertices that are not on the
boundary is at most (k + 1)2k4, which is a constant since k is a constant. Here
the factor (k+ 1)2 is for the boundary vertices each of which is obtained by con-
traction of at most (k+ 1)2 vertices. Again because parameter P is contraction-
bidimensional, its value on G′′ does not increase and thus it is at most p. On
the other hand, since the parameter is g(r)-contraction-bidimensional, its value
on graph G′′ is at least g(m − 2k). Thus g−1(p) ≥ m − 2k, so m = O(g−1(p)).
Therefore, the treewidth of the original graph G is at most 2O(g−1(p) log g−1(p))

as desired.



A direct corollary of Theorem 4 is the following.

Lemma 3. Let P be a contraction-bidimensional parameter. A minor-closed
graph class F has the parameter-treewidth property for P if F is of bounded
local treewidth.

The apex graphs Ai, i = 1, 2, 3, . . . , are obtained from the i× i grid by adding
a vertex v adjacent to all vertices of the grid. It is interesting to see that, for a
wide range of parameters, the inverse of Lemma 3 also holds.

Lemma 4. Let P be any contraction-bidimensional parameter where P (Ai) =
O(1) for any i ≥ 1. A minor-closed graph class F has the parameter-treewidth
property for P only if F is of bounded local treewidth.

Proof. The proof follows from Theorem 3. The apex graph Ai, has diameter
≤ 2 and treewidth ≥ i. So a minor-closed family of graphs with the parameter-
treewidth property for P cannot contain all apex graphs and hence it is of
bounded local treewidth.

Typical examples of parameters satisfying Lemmas 3 and 4 are dominating
set and its generalization q-dominating set, for a fixed constant q (in which
each vertex can dominate its q-neighborhood). These parameters are Θ(r2)-
contraction-bidimensional and their value is 1 for any apex graph Ai, i ≥ 1.

We can strengthen the “if and only if” result provided by Lemmas 3 and 4
with the following lemma. We just need to use the fact that if the value of P is
less than the value of P ′ then the parameter-treewidth property for P implies
the parameter-treewidth property for P ′ as well.

Lemma 5. Let P be a parameter whose value is lower bounded by some contraction-
bidimensional parameter and let P (Ai) = O(1) for any i ≥ 1. Then a minor-
closed graph class F has the parameter-treewidth property for P if and only if F
is of bounded local treewidth.

Lemma 5 can apply for parameters that are not necessarily contraction-
bidimensional. As an example we mention the clique-transversal number of a
graph, i.e., the minimum number of vertices meeting all the maximal cliques of
a graph.2 It is easy to see that this parameter always exceeds the domination
number (the size of a minimum dominating set) and that any graph in Ai has a
clique-transversal set of size 1.

Another application is the Π-domination number, i.e., the minimum cardi-
nality of a vertex set that is a dominating set of G and satisfies some property
Π in G. If this property is satisfied for any one-element subset of V (G) then we
call it regular. Examples of known variants of the parameterized dominating set
problem corresponding to the Π-domination number for some regular property
2 The clique-transversal number is not contraction-bidimensional because an edge con-

traction may create a new maximal clique and the value of the clique-transversal
number may increase.



Π are the following parameterized problems: the independent dominating set
problem, the total dominating set problem, the perfect dominating set problem,
and the perfect independent dominating set problem (see the exact definitions
in [1]).

We summarize the previous observations with the following:

Corollary 1. Let P be any of the following parameters: the minimum cardinal-
ity of a dominating set, the minimum cardinality of a q-dominating set (for any
fixed q), the minimum cardinality of a clique-transversal set, or the minimum
cardinality of a dominating set with some regular property Π. A minor-closed
family of graphs F has the parameter-treewidth property for P if and only if F is
of bounded local treewidth. The function f(p) in the parameter-treewidth property
is 2O(

√
p log p).

4 Algorithmic consequences and concluding remarks

Courcelle [6] proved a meta-theorem on graphs of bounded treewidth; he showed
that, if φ is a property of graphs that is definable in monadic second-order logic,
then φ can be decided in linear time on graphs of bounded treewidth. Frick
and Grohe [21] extended this result to graphs of bounded local treewidth; they
showed that, for each property φ that is definable in first-order logic and for each
minor-closed class of graphs of bounded local treewidth, there is an O(n1+ε)-
time algorithm deciding whether a given graph has property φ. However Frick &
Grohe’s proof is not constructive. It uses a transformation of a first-order logic
formula into a “local formula” according to Gaifman’s theorem and even the
complexity of this transformation is unknown.

Using Theorems 2 and 4, we can extend the result of Frick & Grohe for
fixed-parameter algorithms and show that any minor-bidimensional property
that is solvable in polynomial time on graphs of bounded treewidth is also fixed-
parameter tractable on general minor-closed graph families excluding some fixed
graphs, and similarly for any contraction-bidimensional property on minor-closed
graph families of bounded local treewidth. In contrast to the work of Frick &
Grohe, the running time of our algorithm is explicit.

Theorem 5. Let P be a parameter such that, given a tree decomposition of
width at most w for a graph G, the parameter can be decided in h(w)nO(1) time.
Now, if P is a g(r)-minor-bidimensional parameter and G belongs to a minor-
closed graph family excluding some fixed graphs, or P is a g(r)-contraction-
bidimensional parameter and G belongs to a minor-closed family of graphs of
bounded local treewidth, then we can decide P on G in h(2O(g−1(k) log g−1(k)))nO(1)+

22O(g−1(k) log g−1(k))
n3+ε time.

Proof. The algorithm is as follows. First we check whether tw(G) is in 2O(g−1(k) log g−1(k)).
By Theorems 2 and 4, if it is not, parameter P has value more than k on graph
G. This step can be performed by Amir’s algorithm [3], which for a given graph
G and integer ω, either reports that the treewidth of G is at least ω, or produces



a tree decomposition of width at most (3 + 2
3 )ω in time O(23.698ωn3ω3 log4 n).

Thus by using Amir’s algorithm we can either compute a tree decomposition of
G of size 2O(g−1(k) log g−1(k)) in time 22O(g−1(k) log g−1(k))

n3+ε, or conclude that the
treewidth of G is not in 2O(g−1(k) log g−1(k)).

Now if we find a tree decomposition of the aforementioned width, we can
decide P on G in time h(2O(g−1(k) log g−1(k)))nO(1) time. The running time of
this algorithm is the one mentioned in the statement of the theorem.

For example, let G be a graph from a minor-closed family F of bounded local
treewidth. Since the dominating set of a graph with a given tree decomposition
of width at most ω can be computed in time O(22ωn) [1], Theorem 5 gives an
algorithm which either computes a dominating set of size at most p, or concludes
that there is no such a dominating set in 22O(

√
p log p)

nO(1) time. The same re-
sult holds also for computing the minimum size of a q-dominating set. Indeed,
Theorem 5 can be applied because the q-dominating set of a graph with a given
tree decomposition of width at most ω can be computed in time O(qO(ω)n) [8].
Also, algorithms on graphs of bounded treewidth for clique-transversal set, and
Π-domination set appeared in [24] and [1] respectively. Using these algorithms,
and the fact that all these parameters are lower bounded by the domination
number, the methodology of the proof of Theorem 5 can give algorithmic results
for clique-transversal set and Π-domination set with the same running times as
in the case of dominating set (i.e., 22O(

√
p log p)

nO(1)).

Finally, we mention some open problems. For planar graphs and for some
of their extensions, it is known that for any graph G from these classes with
dominating set of size at most p, we have tw(G) = O(

√
p). It is tempting to

ask if such a much smaller bound holds for all minor-closed families of bounded
local treewidth. This will provide subexponential fixed-parameter algorithms on
graphs of bounded local treewidth for the dominating set problem.
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