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Abstract
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1 Introduction

Let G = (V (G), E(G)) denote a graph with vertex set V (G) and edge set E(G). We
use the notation xy (or yx) to represent an edge with ends x and y. For any S ⊆ V (G),
let G[S] denote the subgraph of G with V (G[S]) = S and E(G[S]) consisting of the edges
of G with both ends in S; we say that G[S] is the subgraph of G induced by S. Let G−S

denote G[V (G) − S]. A subgraph H of G is an induced subgraph of G if G[V (H)] = H.
We also say that H is induced in G. A graph G is k-connected, where k is a positive
integer, if |V (G)| ≥ k + 1 at least k + 1 and, for any S ⊂ V (G) with |S| ≤ k − 1, G− S

is connected. A subgraph H of G is non-separating if G− V (H) is connected.
In 1984, Itai and Rodeh [9] proposed a multi-tree approach to reliability in distributed

networks. Let G be a graph and r ∈ V (G). We may view G as a distributed network with
a root r, and the vertices of G as processors. A fault-tolerant communication scheme
can be designed for this network if we are able to find spanning trees of G which are
“independent” [5, 9]. For a tree T and x, y ∈ V (T ), let T [x, y] denote the unique path
from x to y in T . A rooted tree T is a tree with a specified vertex called the root of T .
Let T and T ′ be trees in a graph rooted at r. We say that T and T ′ are independent if for
each vertex x ∈ V (T ) ∩ V (T ′), the paths T [r, x] and T ′[r, x] have no vertex in common
except for r and x.

Itai and Rodeh [9] developed a linear time algorithm that given any vertex r in a
2-connected graph G, finds two independent spanning trees of G rooted at r. Later,
Cheryian and Maheshwari [2] proved that for any vertex r in a 3-connected graph G,
there exist three independent spanning trees of G rooted at r. Furthermore, they gave an
O(|V (G)|2) algorithm for finding these trees. Itai and Zehavi [10] proved independently
that every 3-connected graph contains three independent spanning trees (rooted at any
vertex), and they conjectured the following.

(1.1) Conjecture. Let G be a k-connected graph and let r ∈ V (G). Then there exist

k independent spanning trees of G rooted at r.

A contractible edge in a k-connected graph is an edge whose contraction results in a
new k-connected graph. Itai and Zehavi’s proof for the 3-connected case relies on the
existence of a contractible edge. On the other hand, for every k ≥ 4 there exist infinitely
many k-connected graphs with no contractible edges. In view of this fact, it would be
interesting to know if (1.1) holds for k = 4. The 4-connected case of (1.1) is also important
in terms of applications, since four independent spanning trees ensure at a reasonable
cost a higher degree of reliability in distributed networks. Huck [7] proved (1.1) for
planar 4-connected graphs. Miura, Nakano, Nishizeki and Takahashi [13] gave a linear
algorithm for finding four independent rooted spanning trees in a planar 4-connected
graph.
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Itai and Rodeh’s algorithm [9] for constructing two independent spanning trees relies
on “ear decompositions” of graphs. Cheriyan and Maheshwari [2] used the concept of
“non-separating ear decomposition” to construct three independent spanning trees in
3-connected graphs. The first step in their approach is to find a non-separating cycle
which “avoids” a given vertex. A cycle C avoids a vertex v if v 6∈ V (C).

(1.2) Theorem. Let G be a 3-connected graph, let e ∈ E(G), and let u ∈ V (G) be non-

incident to e. Then G has a non-separating cycle through e and avoiding u. Moreover,

such a cycle can be found in O(|V (G)| + |E(G)|) time.

The existence of a non-separating cycle in (1.2) was proved by Tutte [20], and the algo-
rithmic part was done by Cheryian and Maheshwari ([2], Theorem 5). In general, it is
not true that given an edge e in a 4-connected graph G, there exists an induced cycle C

through e such that G− V (C) is 2-connected. However, we will see that this is possible
when C is a “chain”. (It seems to me that this is not exactly true, because we cannot
remove the vertex r)

In this paper we are concerned with the problem of finding a “non-separating planar
chain” in a 4-connected graph. A “non-separating planar chain” can be viewed as a
generalization of the concept of a non-separating path. We give an efficient algorithm
for solving this problem. Our result has some interesting consequences (Section 4) and
will be used in a forthcoming paper to decompose an arbitrary 4-connected graph into
“planar chains”. In order to describe precusely our result, we need to introduce the
concept of “chain” and “planar chain”.

A block of a graph G is either a maximal 2-connected subgraph of G, or a subgraph of
G induced by a cut edge. A block is nontrivial if it is 2-connected, and trivial otherwise.

(1.3) Definition. A connected graph H is a chain if its blocks can be labeled as
B1, . . . , Bk, where k ≥ 1 is an integer, and its cut vertices can be labeled as v1, . . . , vk−1

such that

(i) V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k − 1, and

(ii) V (Bi) ∩ V (Bj) = ∅ if |i− j| ≥ 2 and 1 ≤ i, j ≤ k.

We let H := B1v1B2v2 . . . vk−1Bk denote this situation. If k ≥ 2, v0 ∈ V (B1)−{v1} and
vk ∈ V (Bk)− {vk−1}, then we say that H connects v0 and vk. If k = 1, v0, vk ∈ V (B1)
and v0 6= vk, then we also say that H connects v0 and vk. In both cases, we say that H

is a v0-vk chain, and we denote this by H := v0B1v1 . . . vk−1Bkvk. We usually fix v0 and
vk, and we refer to them as the ends of Hi. See Figure 1 for an example.

A plane graph is a graph which is drawn in the plane with no pair of edges cross-
ing. Let G be a graph with distinct vertices a, b, c and d. We say that the quintuple
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Figure 1: Example of a chain.
.

(G, a, b, c, d) is planar if G can be drawn in a closed disc in the plane with no pair of
edges crossing such that a, b, c, d occur on the boundary of the disc in this cyclic order.

For a graph G and x, y ∈ V (G) let G − xy denote the graph with vertex set V (G)
and edge set E(G) − {xy} (note that xy may not be an edge of G).

(1.4) Definition. Let G be a graph and let H := v0B1v1 . . . vk−1Bkvk be a chain.
If H is an induced subgraph of G, then we say that H is a chain in G. We say
that H is a planar chain in G if, for each 1 ≤ i ≤ k with |V (Bi)| ≥ 3 (or equiva-
lently, Bi is 2-connected), there exist distinct vertices xi, yi ∈ V (G) − V (H) such that
(G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is planar, and Bi − {vi−1, vi} is a component
of G− {xi, yi, vi−1, vi}. We also say that H is a planar v0-vk chain. See Figure 2 for an
illustration.

(1.5) Definition. Let G be a graph, S ⊆ V (G) and k be a positive integer. We say
that G is (k, S)-connected if |V (G)| ≥ |S| + 1, G is connected, and for any T ⊂ V (G)
with |T | ≤ k − 1, every component of G− T contains an element of S.

This definition is partially motivated by the following observation. Let G be a k-
connected graph, let S ⊆ V (G) and let K be a component of G− S. Then G[V (K)∪ S]
is (k, S)-connected.

Now we are ready to describe the main result of this paper. It is stated in a form
which can be conveniently used in a forthcoming paper. See Figure 5 for an illustration
of the hypothesis of the theorem.

(1.6) Theorem. Let G be a graph, let a, b be distinct vertices of G, let P be a non-

separating induced a-b path in G avoiding r, let BP be a nontrivial block of G− V (P ),
and let XP be the set consisting of the cut vertices of G−V (P ) contained in V (BP ) and

the neighbors of V (P ) contained in V (BP ). Suppose G−(V (BP )−XP ) is (4, XP ∪{a, b})-
connected. Then there exists a planar a-b chain H in G such that BP ⊆ G− V (H) and

G − V (H) is 2-connected. Moreover, such a chain can be found in in O(|V (G)||E(G)|)
time.
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Figure 2: Two drawings of a planar chain H := v0B1v1B2v2B3v3B4v4B5v5 in a graph G.
The dashed edges may exist or not, but they are not part of H.

An interesting consequence of (1.6) (Corollary (4.9)) says that if G is a 4-connected
graph and r ∈ V (G), then there exists a cycle C in G through r such that G−(V (C)−{r})
is 2-connected. This is related to an open problem posed by Lovász [12]. See Section 4.

The rest of this paper is organized as follows. In the remainder of this section we
establish the notation we use throughout the paper. In Section 2 we give several auxiliary
lemmas. These lemmas concern the existence of certain non-separating paths in graphs
with some connectivity constraints. In Section 3 we prove (1.6). In Section 4 we prove
several consequences of (1.6).

We use A := B to rename B as A, or to define A as B.
Let G be a graph. For S ⊆ V (G), let NG(S) := {x ∈ V (G) − S : xy ∈

E(G), for some y ∈ S}. For a subgraph H of G, we write NG(H) := NG(V (H)). When
S = {x}, we let NG(x) := NG({x}). When there exists no ambiguity, we may simply
use N(S), N(H) and N(x), instead of NG(S), NG(H) and NG(x), respectively. For a set
F of 2-element subsets of V (G), let G + F denote the graph with vertex set V (G) and
edge set E(G) ∪ F . If F := {xy}, let G + xy := G + F .

We describe a path in G as a sequence P = (v1, v2, . . . , vk) of distinct vertices of
G such that vivi+1 ∈ E(G), 1 ≤ i ≤ k − 1. The vertices v1 and vk are called the
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ends of the path P . The vertices in V (P ) − {v1, vk} are called the internal vertices
of P . For 1 ≤ i ≤ j ≤ k, let P [vi, vj ] := (vi, . . . , vj), and for 1 ≤ i < j ≤ k, let
P (vi, vj) := P [vi+1, vj−1]. For A,B ⊆ V (G), we say that a path P is an A-B path if one
end of P is in A, the other end is in B, and no internal vertex of P is in A ∪ B. If P

is a path with ends a and b, we say that P is a path from a to b, or P is an a-b path.
Two paths P and Q are disjoint if V (P ) ∩ V (Q) = ∅. Two paths are internally disjoint
if no internal vertex of one is contained in the other. Given a path P in G and a set
S ⊂ V (G) (respectively, a subgraph S of G), we say that P is internally disjoint from S

if no internal vertex of P is contained in S (respectively, V (S)). We also describe a cycle
in G as a sequence C = (v1, v2, . . . , vk, v1) such that the vertices v1, . . . , vk are distinct,
vivi+1 ∈ E(G), for 1 ≤ i ≤ k − 1, and vkv1 ∈ E(G).

2 Non-Separating paths

In trying to find a non-separating planar chain, we need to be able to find efficiently
disjoint paths and non-separating paths in graphs which satisfy certain connectivity
conditions. The purpose of this section is to provide auxiliary lemmas (and algorithms)
to deal with these problems.

The two disjoint paths problem can be defined as follows: given a graph G and distinct
vertices a, b, c, d of G, find disjoint paths from a to b, and from c to d, respectively, or
certify that they do not exist.

Seymour [15], Thomassen [18] and Shiloach [16] solved independently the two disjoint
paths problem. We state Seymour’s version ([15], Theorem 4.1).

(2.1) Theorem. Let a, b, c, d be distinct vertices of a graph G. Then exactly one of the

following holds:

(1) G contains disjoint paths from a to b, and from c to d, respectively, or

(2) for some integer k ≥ 0, there exist pairwise disjoint sets A1, . . . , Ak ⊆ V (G) −
{a, b, c, d} such that

• for 1 ≤ i 6= j ≤ k, NG(Ai) ∩Aj = ∅,

• for 1 ≤ i ≤ k, |NG(Ai)| ≤ 3, and

• if G′ is the graph obtained from G by, for each i, deleting Ai and adding new

edges joining every pair of distinct vertices in NG(Ai), and also, adding the

edges ab and cd, then G′ can be drawn in the plane with no pairs of edges

crossing except ab and cd, which cross once.

Let G be a graph and S := {a, b, c, d} ⊆ V (G). Shiloach [16] gave an O(|V (G)||E(G)|)
algorithm for the two disjoint paths problem. We need to solve a special case of the two
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disjoint paths problem, namely, when G is (4, S)-connected. We show in the appendix
that Shiloach’s algorithm can solve the two disjoint paths problem in O(|V (G)|+ |E(G)|)
time for (4, S)-connected graphs.

(2.2) Lemma. Let G be a graph and let S := {a, b, c, d} ⊂ V (G). Suppose that G is

(4, S)-connected. Then exactly one of the following holds:

(1) there exist disjoint paths from a to b and from c to d, respectively, or

(2) (G, a, c, b, d) is planar.

Moreover, one can in O(|V (G)| + |E(G)|) time find paths as in (1) or certify that (2)
holds.

Next, we prove Lemmas (2.3) and (2.4) concerning non-separating induced paths
in graphs with certain connectivity properties . We also show how to find these paths
efficiently. These lemmas will be used extensively.

(2.3) Lemma. Let G be a connected graph, S ⊆ V (G), {a, a′} ⊆ S, and let P be an

a-a′ path in G. Suppose

(i) G is (3, S)-connected, and

(ii) S − {a, a′} is contained in a component U of G− V (P ).

Then there exists a non-separating induced a-a′ path P ′ in G such that V (P ′)∩V (U) = ∅.
Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Proof. We may assume that P is induced, otherwise, we can find in O(|V (G)|+ |E(G)|)
time an induced a-a′ path satisfying (ii). If P is non-separating, then P ′ := P is the
required path. If |V (P )| = 2 then by (i) every component of G−V (P ) contains a vertex
of S, and so by (ii) G − V (P ) = U , which implies that P is non-separating. So we may
assume that |V (P )| ≥ 3 and G− V (P ) is not connected.

Let G′ be the graph obtained from G by contracting U to a single vertex u, by adding
the edges aa′, ua and ua′, and by removing multiple edges. See Figure 3. Note that a, a′

belong to the cycle P + aa′. We claim that H := G′ − u is 2-connected. Suppose for a
contradiction that there exists v ∈ V (H) such that H− v is disconnected. Since a, a ′ are
vertices of P + aa′ which is a cycle in H, there exists a component K in H − v which
does not contain any vertex of P . But then K is a component of G− v which does not
contain any vertex in S. This contradicts (i). Thus, G′ − u is 2-connected.

In fact, G′ must be 3-connected. Suppose for a contradiction that G′ is not 3-
connected. Then there is a vertex cut T in G′ with |T | ≤ 2. Since G′− u is 2-connected,
u 6∈ T . Moreover, since {u, a, a′} induces a triangle, there exists a component K of G′−T
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Figure 3: Graphs G and G′ in the proof of (2.3).

which does not contain any of u, a, a′. But then K is also a component of G− T which
does not contain any element of S, which contradicts (i). Hence, G′ is 3-connected.

By Theorem (1.2) (with G′, aa′, u as G, e, u respectively), there exists a non-separating
induced cycle C in G′ containing aa′ and avoiding u. Moreover, such a cycle can be found
in O(|V (G′)|+|E(G′)|) time (and hence, in O(|V (G)|+|E(G)|) time). Thus, P ′ := C−aa′

is a non-separating induced path in G such that V (P ′) ∩ V (U) = ∅. 2

The next result is a strengthening of Lemma (2.2).

(2.4) Lemma. Let G be a graph and S := {a, a′, b, b′} ⊆ V (G). Suppose that G is

(4, S)-connected. Then exactly one of the following holds:

(1) there exists a non-separating induced a-a′ path P ′ in G such that V (P ′)∩{b, b′} = ∅,
or

(2) (G, a, b, a′, b′) is planar.

Moreover, one can in O(|V (G)| + |E(G)|) time find a path as in (1) or certify that (2)
holds.

Proof. By Lemma (2.2), either (a) there exist disjoint paths P and Q in G from a to
a′ and from b to b′, respectively, or (b) (G, a, b, a′, b′) is planar. Moreover, one can in
O(|V (G)|+|E(G)|) time find paths as in (a) or certify that (b) holds. If (b) holds, then (2)
holds. So assume (a) holds. Let U be the component of G−V (P ) containing S−{a, a ′} =
{b, b′}. Since G is (4, S)-connected (and hence, (3, S)-connected), G,P, S, U and {a, a ′}
satisfy the hypothesis of (2.3). Thus, by (2.3) there exists a non-separating a-a ′ path P ′

such that V (P ′)∩ V (U) = ∅, and such a path can be found in O(|V (G)|+ |E(G)|) time.
Hence, V (P ′) ∩ {b, b′} = ∅, and P ′ satisfies (1) of (2.4). 2
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To prove the final lemma of this section, we need the following result of Cheriyan
and Maheshwari ([2], p. 516), which is in fact, the core of the linear algorithm in [2] for
finding a non-separating induced cycle as described in Theorem (1.2).

(2.5) Theorem. Let G be a 3-connected graph, let aa′ ∈ E(G), and let C be a non-

separating induced cycle in G containing aa′. Then there exists another non-separating

induced cycle C ′ in G such that V (C ′) ∩ V (C) = {a, a′} and E(C ′) ∩ E(C) = {aa′}.
Moreover, such a cycle can be found in O(|V (G)|+ |E(G)|) time.

The next result is in the same spirit as of (2.5), but we relax the 3-connectivity
condition. This result is more convenient to use.

(2.6) Lemma. Let G be a connected graph, let a, a′ be distinct vertices of G with degree

at least two, and let P be a non-separating induced a-a′ path in G. Suppose that G is

(3, V (P ))-connected. Then there exists another non-separating induced a-a ′ path P ′ in

G such that V (P ′) ∩ V (P ) = {a, a′} and E(P ′) ∩E(P ) = ∅. Moreover, such a path can

be found in O(|V (G)| + |E(G)|) time.

Proof. For convenience, let H := G − V (P ). Since P is a non-separating path in G, H

is connected. Morever, a and a′ have a neighbor in V (H) because both have degree at
least two in G and P is induced. Let v1 = a, v2, . . . , vk = a′ be the neighbors of H on P

in this order from a to a′ (see Figure 4 for an illustration). Note that k ≥ 3 because G is
(3, V (P ))-connected. Let G′ be the graph obtained from G by adding the edge aa′, and

PSfrag replacements
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Figure 4: G and G′ as in the proof of Lemma (2.6).

by replacing, for each 1 ≤ i ≤ k − 1, the path P [vi, vi+1] by an edge vivi+1. Note that
C := G′ − V (H) is a cycle in G′.

We claim that G′ is 3-connected. Suppose for a contradiction that G′ is not 3-
connected. Then there is a vertex cut T in G′ with |T | ≤ 2. Note that T 6⊆ V (C),
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since P is non-separating and every vertex of C has a neighbor in H. But then G ′ − T

has a component K such that V (K) ∩ V (C) = V (K) ∩ V (P ) = ∅. Hence, K is also a
component of G − T with V (K) ∩ V (P ) = ∅, which contradicts the assumption that G

is (3, V (P ))-connected. Hence, G′ is 3-connected.
By (2.5) (with G′, C, a, a′ as G,C, a, a′ respectively), there exists a non-separating

cycle C ′ in G′ such that V (C ′) ∩ V (C) = {a, a′} and E(C ′) ∩E(C) = {aa′}. Moreover,
such a cycle can be found in O(|V (G′)|+ |E(G′)|) time (and hence, in O(|V (G)|+ |E(G)|)
time). Thus, P ′ := C ′ − aa′ is a non-separating induced a-a′ path in G such that
V (P ′) ∩ V (P ) = {a, a′} and E(P ′) ∩E(P ) = ∅. 2

3 Non-separating chains

Our goal is to design an algorithm that solves the following problem: given
G, a, b, P,BP as in (1.6), find a planar a-b chain H in G such that G − V (H) is 2-
connected and V (BP ) ⊆ V (G) − V (H). For convenience, we fix the following notation
throughout this section.

(3.1) Notation and assumptions. Let G be a graph, let r, a, b be distinct vertices of
G, let P be a non-separating induced a-b path in G, let BP be a nontrivial block of
G − V (P ), and let XP be the set consisting of cut vertices of G − V (P ) contained in
V (BP ) and the neighbors of V (P ) contained in V (BP ). Suppose that G− (V (BP )−XP )
is (4, XP ∪ {a, b})-connected. See Figure 5.

Let PP be the set of non-separating induced a-b paths P ′ in G such that BP ⊆
G − V (P ′). Note that P ∈ PP . For each P ′ ∈ PP let BP ′ denote the nontrivial block
of G − V (P ′) which contains BP . We say that P ′ ∈ PP is a BP -augmenting path if
|V (BP )| < |V (BP ′)|.

The next lemma shows that the paths in PP are well-behaved.

(3.2) Lemma. Let P ′ ∈ PP . Let XP ′ be the set consisting of the cut vertices of

G−V (P ′) contained in BP ′ and the neighbors of V (P ′) in BP ′ . Then G−(V (BP ′)−XP ′)
is (4, XP ′ ∪ {a, b})-connected.

Proof. For convenience, let G′ := G− (V (BP ′)−XP ′). Suppose there exists T ⊂ V (G′)
with |T | ≤ 3 and there exists some component K of G′ − T such that V (K) ∩ (XP ′ ∪
{a, b}) = ∅. Since V (BP ) ⊆ V (BP ′), for every x ∈ XP , either x ∈ XP ′ or x 6∈ V (G′).
Thus, V (K) ∩ XP = ∅. But then, K is a component of (G − (V (BP ) − XP )) − T

which does not contain any vertex in XP ∪ {a, b}. This contradicts the assumption
that G− (V (BP )−XP ) is (4, XP ∪ {a, b})-connected. Therefore, G′ is (4, XP ′ ∪ {a, b})-
connected. 2
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Let us describe the basic idea of the algorithm which we want to design. At the
beginning of each iteration we have a non-separating a-b path P and a nontrivial block
BP of G−V (P ). The algorithm then tries to find a BP -augmenting path P ′ ∈ PP . If the
algorithm finds such a path P ′, then it starts a new iteration with P ′ as P (note that, by
Lemma (3.2), G− (V (BP ′)−XP ′) is (4, XP ′ ∪ {a, b})-connected). If the algorithm does
not find a BP -augmenting path, then it finds a planar a-b chain as required in (1.6).

In order to describe this algorithm more precisely, we need more concepts and nota-
tion.

(3.3) Definition. Let F be a subgraph of a graph K. An F -bridge of K is a subgraph
of K which is induced by either (1) an edge in E(K)−E(F ) with both ends on F , or (2)
edges of a component of K − V (F ) together with the edges of K from this component
to F . For an F -bridge B of K, the set V (B)∩V (F ) is the set of attachments of B on F .

(3.4) Notation. Let B denote the set of BP -bridges of G − V (P ). For each B ∈ B,
V (BP ) ∩ V (B) contains exactly one vertex (which is contained in XP ), and we let rB

denote this vertex. For any x, y ∈ V (P ), we denote x ≤ y if x ∈ V (P [a, y]). If x ≤ y and
x 6= y, then we write x < y. In this case, we say that x is lower than y, or y is higher
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than x. Since G is (4, XP ∪ {a, b})-connected, for each B ∈ B, B − rB has at least three
neighbors on P . Let lB and hB denote the lowest and the highest neighbor of B− rB on
P , respectively. See Figure 6 for an example.

(3.5) Lemma. The following holds:

(1) V (P (lB , hB)) 6= ∅ and NG(P (lB , hB)) ∩ (V (B)− {rB}) 6= ∅, and

(2) NG(P (lB , hB)) 6⊂ V (B) ∪ V (P ).

Proof. It is easy to see that (1) holds because B − rB has at least three neighbors on P ,
and (2) holds because P is an induced path in G and {rB , lB , hB} is not a 3-vertex cut
of G. 2

Next, we describe members of B which we can use to produce a BP -augmenting path.

(3.6) Definition. For each vertex x of G− V (P ), we define x∗ as follows. If x ∈ V (B)
for some B ∈ B, then let x∗ := rB . If x ∈ V (BP ), then x∗ := x. We say that a BP -bridge
B ∈ B is a nice bridge if there exist x, y ∈ NG(P (lB , hB))− ((V (B)−{rB})∪V (P )) such
that x∗ 6= y∗. See Figure 6 for an example.

The next lemma shows that any nice bridge can be used to find a BP -augmenting path.

(3.7) Lemma. Let B ∈ B be a nice bridge. Then there exists an induced lB-hB path

Q in G[V (B) ∪ {lB , hB}] such that P ′ := (P − V (P (lB , hB))) ∪ Q is a BP -augmenting

path in G. Moreover, such a path Q can be found in O(|V (G)|+ |E(G)|) time.

Proof. Since B is a nice bridge, there exist x, y ∈ NG(P (lB , hB))−((V (B)−{rB})∪V (P ))
such that x∗ 6= y∗. See Figure 6. Let GB be the subgraph of G induced by (V (B) −
{rB})∪ V (P [lB , hB ]). Since B is a BP -bridge, B− rB is connected. Thus, P [lB , hB ] is a
non-separating induced path in GB . Furthermore, since G is (4, XP ∪ {a, b})-connected,
for any T ⊂ V (GB) with |T | ≤ 2, every component of GB − T contains a vertex of
V (P [lB , hB ]) (otherwise, T ∪ {rB} is a 3-cut of G, and G− (T ∪ {rB}) has a component
which contains no vertex in XP ∪ {a, b}). Thus, GB is (3, V (P [lB , hB ]))-connected.
By Lemma (2.6) (with GB , lB , hB , P [lB , hB ] as G, a, a′, P respectively), there exists a
non-separating induced lB-hB path Q in GB disjoint from P (lB , hB). Moreover, such
a path Q can be found in O(|V (GB)| + |E(GB)|) time. Since |V (GB)| + |E(GB)| =
O(|V (G)| + |E(G)|), such a path Q can be found in O(|V (G)|+ |E(G)|) time.

Clearly, the path P ′ = (P − V (P (lB , hB))) ∪Q is an induced a-b path in G.
Let us prove that P ′ is non-separating in G. It suffices to prove that for every v ∈

V (G)− V (P ′), there exists a v-V (BP ) path in G− V (P ′). This is obvious if v ∈ V (BP ).
So assume v 6∈ V (BP ). First, suppose v ∈ V (B ′) for some B ′ ∈ B with B′ 6= B. Since

11
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Figure 6: A nice bridge B and the graph GB as defined in the proof of Lemma (3.7)
shown in boldface.

V (B′)∩V (P ′) = ∅, there exists a v-rB′ path in B′ (and hence in G−V (P ′)). So we may
assume v ∈ (V (B)−{rB})∪V (P (lB , hB)). Since NG(P (lB , hB)) 6⊂ V (B)∪V (P ) (by (2)
of (3.5)) and V (Q(lB , hB)) ∩ V (P (lB , hB)) = ∅, and because Q is a non-separating path
in GB , there exists a v-V (BP ) path in G− V (P ′). Hence, P ′ is non-separating in G.

Thus, P ′ ∈ PP . It remains to show that |V (BP )| < |V (BP ′)|. Note that G contains
disjoint paths Px and Py from x to x∗ and from y to y∗, respectively, and Px and Py

are disjoint from P ∪ (B − rB) ∪ (BP − {x
∗, y∗}). Let x′, y′ ∈ V (P (lB , hB)) such that

xx′, yy′ ∈ E(G). Then both BP and the path (Px ∪ P [x′, y′] ∪ Py) + {xx′, yy′} are
contained in BP ′ . Hence, |V (BP )| < |V (BP ′)|, and so, P ′ is a BP -augmenting path. 2

(3.8) Definition. We say that two BP -bridges B and B ′ in B are overlapping if the
paths P [lB , hB ] and P [lB′ , hB′ ] have an edge in common. Define an auxiliary graph K
such that V (K) = B, and B and B ′ are adjacent in K if B and B ′ are overlapping. See
Figure 7 for an example.

In what follows we prove several lemmas which will help us find nice bridges (and
hence, BP -augmenting paths by (3.7)). The following two lemmas appear in [4]. Since
their proofs are short, we include them here.

12
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Figure 7: An example of an auxiliary graph K.

(3.9) Lemma. Let (B1, B2, B3) be an induced path in K such that rB1
6= rB3

. Then

B2 is a nice bridge.

Proof. By the definition of K and by the assumption that (B1, B2, B3) is induced in K,
B1 and B3 are not overlapping. So we may assume lB1

< hB1
≤ lB3

< hB3
. Moreover,

lB2
< hB1

and lB3
< hB2

. Let x ∈ V (B1) − {rB1
} such that xhB1

∈ E(G) and let y ∈
V (B3)−{rB3

} such that ylB3
∈ E(G). Clearly, x, y 6∈ V (B2)−{rB2

}, y ∈ V (P (lB , hB)),
and x∗ = rB1

6= rB3
= y∗. Hence, B2 is a nice bridge. 2

(3.10) Lemma. Let (B1, B2, B3) be a path in K such that rB1
6= rB2

6= rB3
6= rB1

.

Then one can find in constant time some i ∈ {1, 2, 3} such that Bi is a nice bridge.

Proof. If the path (B1, B2, B3) is induced in K then the result follows from the previous
lemma. So suppose that B1, B2, B3 induces a triangle in K. By symmetry, assume that
P [lB1

, hB1
] is not properly contained in P [lBi

, hBi
] for i = 2, 3 (this can be checked

in constant time). Thus, for each i ∈ {2, 3}, either lBi
∈ V (P (lB1

, hB1
)), or hBi

∈
V (P (lB1

, hB1
)), or P [lB1

, hB1
] = P [lBi

, hBi
]. Since NG(P (lBi

, hBi
))∩(V (Bi)−{rBi

}) 6= ∅
(by (1) of (3.5)), it follows that there exist x ∈ NG(P (lB1

, hB1
)) ∩ (V (B2) − {rB2

})
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and y ∈ NG(P (lB1
, hB1

)) ∩ (V (B3) − {rB3
}). Note that x, y 6∈ V (B1) − {rB1

}, and
x∗ = rB2

6= rB3
= y∗. Hence, B1 is a nice bridge. 2

In order to find BP -augmenting paths, we need to search the components of K. For
convenience, we introduce the following notation.

(3.11) Notation. Let A1,A2, . . . ,At be the components of the auxiliary graph K. For
j = 1, . . . , t let Vj :=

⋃
B∈V (Aj)

V (B), let Qj :=
⋃

B∈V (Aj)
P [lB , hB ], and let RAj

:=

{rB : B ∈ V (Aj)}. Note that Vj is a subset of V (G) − (V (BP ) −XP ), Qj is a subpath
of P , and R(Aj) ⊆ XP .

The number of edges in a component of K can be O(|V (K)|2), but for our purpose, we
need to compute only a spanning tree of each component.

(3.12) Lemma. Algorithm 1 constructs rooted spanning trees Tj of Aj for all j =
1, . . . , t, and finds the ends aj , bj of Qj with aj < bj , for all j = 1, . . . , t. Furthermore,

for any j ∈ {1, . . . , t} and any element B of V (Tj), the path from the root of Tj to B in

Tj is induced in K. Moreover, all Tj, aj , bj can be found in O(|V (G)| + |E(G)|) time.

Proof. The set Q is implemented as a queue and for each vertex x of the path P we
keep a list of BP -bridges B such that lB = x. The index k is used to avoid re-scanning a
vertex more than once. The algorithm is basically a variation of the breadth-first search
method and can be implemented to run in O(|V (G)|) time. It is easy to see that each
Tj is a spanning tree of a component of K. The first vertex inserted in Tj becomes its
root. Furthermore, it is not hard to see that Tj satisfies the following property: for any
element B of V (Tj), the path in Tj from B to the root of Tj is induced in K. 2

Next, for a component Aj of K (or more precisely, the spanning tree Tj computed
by Algorithm 1) we derive necessary and sufficient conditions for the existence of a nice
bridge in V (Aj), and hence, for the existence of a BP -augmenting path by Lemma (3.7).
We do this by considering the size of RAj

.

(3.13) Lemma. Let Aj be a component of K such that |RAj
| ≥ 3. Then there exists

a member of V (Aj) which is a nice bridge. Moreover, such a member can be found in

O(|V (G)|) time.

Proof. We want to show that Tj contains a path (B1, B2, B3) such that either
(i) (B1, B2, B3) is an induced path in K and rB1

6= rB3
, or (ii) rB1

6= rB2
6= rB3

6= rB1
.

For convenience, let T := Tj. Since |RAj
| ≥ 3, there exist members W,Y and Z of V (Aj)

such rW 6= rY 6= rZ 6= rW . Moreover, W,Y and Z can be found in O(|V (T )|) time, and
hence, in O(|V (G)|) time. We may assume that W is the root of T . By Lemma (3.12)
T [W,Y ] and T [W,Z] are induced paths in Aj.

14



Algorithm 1 Construct forest.

Require: The set B of BP -bridges in G− V (P ).
Return: An integer t ≥ 0, spanning trees T1, T2, . . . , Tt of the components of the auxil-

iary graph K, and the ends aj, bj of Qj with aj < bj for j = 1, . . . , t.
Let P = (a = x1, x2, . . .);
j ← 1;
k ← 1;
while k ≤ |V (P )| do

Let B ∈ B such that lB = xk;
Tj ← B;
aj ← lB ;
bj ← hB ;
Q ← {B};
while Q 6= ∅ do

Let B′ ∈ Q;
Q ← Q− {B′};
Let xk′ = hB′ ;
for i← k to k′ − 1 do

for each B such that lB = xi do
if B 6∈ V (Tj) then
Q ← Q ∪ {B};
Tj ← Tj ∪BB′;

if k′ > k then
k ← k′;

bj ← xk;
while k ≤ |V (P )| and there exists no B ∈ B such that lB = xk do

k ← k + 1;
j ← j + 1;

Suppose neither T [W,Y ] nor T [W,Z] contains a path (B1, B2, B3) satisfying (i) or (ii)
above. Because rW 6= rY , rB ∈ {rW , rY } for every member B of V (T [W,Y ]) and rB1

6=
rB2

for every member B1B2 of E(T [W,Y ]). Similarly, because rW 6= rZ , rB ∈ {rW , rZ}
for any member of V (T [W,Z]) and rB1

6= rB2
for any member B1B2 of E(T [W,Z]). But

since rZ is distinct from rW and rY , it follows that T [W,Y ] ∪ T [W,Z] must contain a
path (B1, B2, B3) which satisfies (i) or (ii). Clearly, this path can be found in O(|V (G)|)
time.

By Lemmas (3.9) and (3.10), one of B1, B2, B3 is nice bridge, and such a bridge can
be found in O(|V (G)|) time. 2
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If |RAj
| ≤ 2 for every j ∈ {1, . . . , t}, then the existence of a nice bridge is not

guaranteed. In this case, we will find certain 4-cuts of G which play a fundamental role
in the construction of the desired planar a-b chain.

(3.14) Lemma. Let Aj be a component of K such that |RAj
| = 1. Then one of the

following holds:

(1) |V (Aj)| = 1 and |(NG(Qj(aj , bj)) ∩XP )−RAj
| = 1, or

(2) a member of V (Aj) is a nice bridge, and it can be found in O(|V (G)|) time.

Proof. We claim that (NG(Qj(aj , bj)) ∩ XP ) − RAj
6= ∅. Otherwise, there exists a

component of G− (RAj
∪{aj , bj}) not containing any vertex in XP ∪{a, b} (because P is

induced), which is a contradiction to the assumption that G is (4, XP ∪{a, b})-connected.
Thus, let x ∈ (NG(Qj(aj, bj)) ∩XP )−RAj

.
First, suppose |V (Aj)| ≥ 2. Let B ∈ V (Aj) such that x ∈ NG(P (lB , hB)). Since

|V (Aj)| ≥ 2, there exists B ′ ∈ V (Aj) such that B ′ 6= B, and B and B ′ overlap. By
renaming B and B ′ if necessary, we may assume that P [lB , hB ] is not a proper subpath
of P [lB′ , hB′ ]. Then, either lB′ ∈ V (P (lB , hB)), or hB′ ∈ V (P (lB , hB)), or both lB = lB′

and hB = hB′ . By (1) of (3.5), NG(P (lB′ , hB′))∩ (V (B′)−{rB′}) 6= ∅. Hence, P (lB , hB)
has a neighbor y such that y ∈ V (B ′)−{rB′}. Note that x, y 6∈ V (B)−{rB}, x∗ = x 6∈ Vj

and y∗ = rB′ ∈ Vj . Thus, B is a nice bridge. Clearly, B can be found in O(|V (G)|) time,
and hence, (2) holds.

Now, assume that |V (Aj)| = 1 and B is the only member of V (Aj). Suppose (1)
does not hold. Then |(NG(Qj(aj , bj)) ∩ XP ) − RAj

| > 1. Hence, there exists some
y ∈ (NG(Qj(aj, bj))∩XP )−RAj

with y 6= x. Then x, y 6∈ V (B)−{rB}, x
∗ = x 6= y = y∗,

and hence, B is a nice bridge. Again, (2) holds. 2

(3.15) Lemma. Let Aj be a component of K such that |RAj
| = 2. Then, one of the

following holds:

(1) NG(Qj(aj , bj)) ∩XP ⊆ RAj
, or

(2) a member of V (Aj) is a nice bridge, and it can be found in in O(|V (G)|) time.

Proof. Suppose that (1) does not hold. Then there exists some x ∈ (NG(Qj(aj , bj)) ∩
XP ) − RAj

. Note that x∗ = x. Let B ∈ V (Aj) such that x ∈ NG(P (lB , hB)). Since
|RAj

| = 2, we have |V (Aj)| ≥ 2, and hence, there exists B ′ ∈ V (Aj) such that B ′ 6= B,
and B and B ′ overlap. We can rename B and B ′ if necessary so that P [lB , hB ] is not
a proper subpath of P [lB′ , hB′ ]. We can show that B is a nice bridge as in the second
paragraph in the proof of Lemma (3.14). 2
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Before we can fully describe the main algorithm, we need to deal with the situation
where (1) of (3.14) or (1) of (3.15) occurs.

(3.16) Definition. Let Aj be a component of K such that either (i) |RAj
| = 1 and

|(NG(Qj(aj , bj)) ∩ XP ) − RAj
| = 1, or (ii) |RAj

| = 2 and NG(Qj(aj , bj)) ∩XP ⊆ RAj
.

If (i) holds, then let RAj
:= {cj}, let (N(Qj(aj , bj)) ∩ XP ) − R(Aj) := {dj}, and let

Gj := G[Vj ∪ {dj} ∪ V (P [aj , bj ])] − cjdj . If (ii) holds, then let RAj
:= {cj , dj}, and let

Gj := G[Vj ∪ V (P [aj , bj ])] − cjdj . In any case, the set Sj := {aj , bj , cj , dj} is a 4-cut in
G, and Gj−Sj is a component of G−Sj. We say that Aj determines the 4-cut Sj. Since
Aj is a component of K Gj − {cj , dj} is 2-connected. See Figure 8.

(2)
(1)

PSfrag replacements
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aj

bj bj

cj

cj

dj dj

Figure 8: 4-cuts determined by a component Aj of K.

(3.17) Lemma. Let Aj be a component of K which determines a 4-cut {aj , bj , cj , dj}.
Then one of the following holds:

(1) there exists an induced aj-bj path Q in Gj−{cj , dj} such that (P −V (P (aj , bj)))∪Q

is a BP -augmenting path; or

(2) (Gj , aj , cj , bj, dj) is planar.
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Moreover, one can in O(|V (Gj)|+ |E(Gj)|) time find a path as in (1) or certify that (2)
holds.

Proof. Since G is (4, XP ∪ {a, b})-connected, if T ⊂ V (Gj) with |T | ≤ 3, then any
component of Gj − T contains a vertex in {aj , bj , cj , dj}. Hence, Gj is (4, {aj , bjcj , dj})-
connected. Apply (2.4) with Gj , aj , bj , cj , dj as G, a, a′, b, b′ respectively. Then one of the
following holds:

(a) there exists a non-separating induced aj-bj path Q in Gj such that V (Q)∩{cj , dj} =
∅; or

(b) (Gj , aj , cj , bj, dj) is planar.

Moreover, one can in O(|V (Gj)|+ |E(Gj)|) time find a path as in (a) or certify that (b)
holds.

If (b) occurs, then we have (2). So we may assume that (a) occurs. Let P ′ :=
(P −V (P (aj , bj)))∪Q. Then P ′ is a non-separating induced path in G. Moreover, since
{cj , dj} is contained in the connected subgraph Gj − V (Q), |V (BP )| < |V (BP ′)|. Thus,
P ′ is a BP -augmenting path. 2

We are now ready to prove the main result of this paper: with input G, a, b, P,BP , XP ,
Algorithm 2 returns a planar a-b chain H in G such that G− V (H) is 2-connected and
V (BP ) ⊆ V (G) − V (H).

(3.18) Theorem. Algorithm 2 is correct and runs in O(|V (G)||E(G)|) time.

Proof. Let us first prove the correctness of the algorithm.
At the start of each iteration of the main loop, P is a non-separating induced a-

b path, and BP is a nontrivial block of G − V (P ). Moreover, G − (V (BP ) − XP ) is
(4, XP ∪{a, b})-connected, where XP is the set consisting of the cut vertices of G−V (P )
contained in V (BP ) and the neighbors of V (P ) contained in V (BP ). As the algorithm
progresses, |V (BP )| increases.

If the algorithm stops at line 3, then clearly G − V (P ) is 2-connected. Moreover,
since P is an induced a-b path, H := P is also a planar a-b chain whose blocks are all
trivial.

If the algorithm stops at line 7, it returns a subgraph H. First, note that BP =
G − V (H) is 2-connected. Let us prove that H is a planar a-b chain in G. Note that
t ≥ 1. For each j, 1 ≤ j ≤ t, we have that |R(Aj)| ≤ 2 and Aj determines a 4-vertex
cut Sj := {aj , bj , cj , dj} where cj , dj ∈ XP ⊆ V (BP ). Moreover, (Gj , aj , cj , bj , dj) is
planar. Since Aj is a component of K Gj − {cj , dj} is 2-connected. Therefore, H :=
(P −

⋃t
j=1 V (P (aj , bj))) ∪ (

⋃t
j=1 Hj) is a planar a-b chain in G.
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Algorithm 2 Non-separating Planar Chain.

Require: G, a, b, P,BP , XP satisfying hypotheses of Theorem (1.6).
Return: A planar a-b chain H in G such that G− V (H) is 2-connected and V (BP ) ⊆

V (G)− V (H).
1: loop
2: if G− V (P ) = BP then
3: Return H ← P and stop;
4: Compute the set B of BP -bridges in G− V (P );
5: Apply Algorithm 1 to B to compute spanning trees T1, T2, . . . , Tt of the components

A1, A2 . . . ,At of the auxiliary graph K, the subpaths Q1, Q2 . . . , Qt of P and their
respective ends a1, b1, a2, b2, . . . , at, bt;

6: if every Aj determines a 4-cut {aj , bj , cj , dj} and (Gj , aj , cj , bj , dj) is planar then
7: Return H := (P −

⋃t
j=1 V (P (aj , bj))) ∪ (

⋃t
j=1(Gj − {cj , dj})) and stop;

8: if there exists j such that |RAj
| ≥ 3 or Aj does not determine a 4-cut then

9: Find a nice bridge B ∈ V (Aj);
10: Find an induced lB-hB path Q in G[(V (B) ∪ {lB , hB}] such that (P −

V (P (lB , hB))) ∪Q is a BP -augmenting path;
11: Set P ← (P −V (P (lB , hB)))∪Q, update BP and XP , and start a new iteration;
12: if there exists Aj which determines a 4-cut and (Gj , aj , cj , bj , dj) is nonplanar

then
13: Find an induced aj-bj path Q in Gj − {cj , dj} such that (P − V (P (aj , bj))) ∪Q

is a BP -augmenting path.
14: Set P ← (P − V (P (aj , bj)))∪Q, update BP and XP , and start a new iteration;

If B is a nice bridge, then by Lemma (3.7) the path Q in line 10 exists and (P −
V (P (lB , hB)))∪Q is a BP -augmenting path. So, every time the algorithm executes lines
8-11, it increases |V (BP )|. Moreover, The existence of the nice bridge B on line 9 is
guaranteed by (3.13), (2) of (3.14) and (2) of (3.15).

If Aj is a component of K that determines a 4-vertex cut {aj , bj , cj , dj} and
(Gj , aj , cj , bj , dj) is nonplanar, then by (1) of Lemma (3.17) the path Q in line 13 exists
and (P − V (P (aj , bj))) ∪Q is a BP -augmenting path. So when the algorithm executes
lines 12-14, it also increases |V (BP )|.

Finally, Lemma (3.2) guarantees that after the update of BP and XP either in line 11
or in line 14, the hypotheses of Theorem (1.6) still hold in the next iteration. Since
|V (BP )| increases at each iteration, the loop eventually stops, and hence, Algorithm 2 is
correct.

Now, let us verify the complexity of the algorithm.
The loop on line 1 is executed at most |V (G)| times since |V (BP )| increases at each

iteration.
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The steps in lines 2 and 4 can be performed in O(|V (G)|+ |E(G)|) time by standard
graph search techniques (for example, see [17]). By Lemma (3.12), the spanning trees
T1, . . . , Tt (line 5), the paths Q1, . . . , Qt and their respective ends a1, b1, . . . , at, bt can be
computed in O(|V (G)| + |E(G)|) time by Algorithm 1.

The steps in line 6 and line 12 test whether (Gj , aj , bj , cj , dj) is planar. By (2.4) this
is equivalent to deciding whether there exists a non-separating induced aj − bj path in
Gj containing neither cj nor dj , and can be done in O(|V (Gj)| + |E(Gj)|) (and hence,
O(|V (G)| + |E(G)|)) time.

Finding a nice bridge B in line 9 can be done in O(|V (G)|) time by (3.13), (2) of
(3.14) and (2) of (3.15). The path Q in line 10 can be found in O(|V (G)| + |E(G)|)
time by Lemma (3.7). The path Q in line 13 can be found in O(|V (Gj)|+ |E(Gj)|) (and
hence, O(|V (G)|+ |E(G)|) time by Lemma (3.17).

Therefore, the running time of Algorithm 2 is O(|V (G)||E(G)|). 2

4 Related results

In this section we present some results related to Theorem (1.6). First, the asymptotic
performance of Algorithm 2 can be improved to O(|V (G)|2) if we add a pre-processing
step. Instead of applying the algorithm to G, we apply it to a sparse spanning 4-connected
subgraph of G with the help from a result of Ibaraki and Nagamochi [8].

(4.1) Theorem. Given a k-connected graph G, one can find in O(|V (G)|+|E(G)|) time

a spanning k-connected subgraph of G with at most k|V (G)| edges.

We will use this result and Theorem (1.6) to show how to find in O(|V (G)|2) time a
non-separating “planar cyclic chain” of a 4-connected graph.

The graph obtained from a chain with at least two blocks by identifying its ends is
called a “cyclic chain”. More precisely, we have the following.

(4.2) Definition. A connected graph H is a cyclic chain if for some integer k ≥ 2, there
exist subgraphs B1, . . . , Bk of H and vertices v1, . . . , vk of H such that

(i) for 1 ≤ i ≤ k, Bi is 2-connected or Bi is induced by an edge of H,

(ii) V (H) =
⋃k

i=1 V (Bi) and E(H) =
⋃k

i=1 E(Bi),

(iii) if k = 2, then V (B1) ∩ V (B2) = {v1, v2} and E(B1) ∩E(B2) = ∅, and

(iv) if k ≥ 3, then V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k where Bk+1 := B1, and
V (Bi) ∩ V (Bj) = ∅ for 1 ≤ i < i + 2 ≤ j ≤ k and (i, j) 6= (1, k).

20



We usually fix one of the vertices v1, . . . , vk as the root of H, say vk, and we use the
notation H := v0B1v1 . . . vk−1Bkvk to indicate that H is a cyclic chain rooted at v0

(= vk). Each subgraph Bi is called a piece of H. See Figure 9 for an example.
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Figure 9: Example of a cyclic chain.

(4.3) Definition. Let G be a graph and let H := v0B1v1 . . . vk−1Bkvk be a cyclic chain
rooted at v0 = vk. If H is an induced subgraph of G, then we say that H is a cyclic chain
in G. We say that H is a planar cyclic chain in G, if for each 1 ≤ i ≤ k with |V (Bi)| ≥ 3
(or equivalently, Bi is 2-connected), there exist distinct vertices xi, yi ∈ V (G) − V (H)
such that (G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is planar, and Bi − {vi−1, vi} is a
component of G− {xi, yi, vi−1, vi}. See Figure 10 for an example.

Our eventual goal is to construct a decomposition of any 4-connected graph into
certain chains and find four independent spanning trees. This will be done in forthcoming
papers. The next result provides the first chain of such a decomposition. See again
Figure 10 for an example.

(4.4) Theorem. Let G be a 4-connected graph and let ra ∈ E(G). Then there exists a

planar cyclic chain H in G rooted at r such that ra is a piece of H and G− (V (H)−{r})
is 2-connected. Moreover, such a chain can be found in in O(|V (G)|2) time.

Proof. Let G be a 4-connected graph and let ra ∈ E(G). By Lemma (4.1), we may
assume that |E(G)| = O(|V (G)|). By (1.2), one can find a non-separating induced cycle
C in G through ra in O(|V (G)| + |E(G)|) time. Let P denote the path C − r and let
b be the end of P other than a. Since C is induced, exactly two neighbors of r lie on
P , namely a and b. Thus, G− V (P ) is connected and since C is non-separating in G, r

is not a cut vertex of G − V (P ). Let BP be the block of G − V (P ) containing r. Note
that NG(r) ⊆ V (BP )∪ {a, b}. Hence, BP contains more than two vertices because r has
degree at least four, and therefore, BP is 2-connected. If G− V (P ) = BP , then H := C

is a planar cyclic chain rooted at r such that ra is a piece of H and G − (V (H) − {r})
is 2-connected. So assume that G− V (P ) is not 2-connected, that is, G− V (P ) 6= BP .
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Figure 10: A planar cyclic chain H := v0B1v1B2v2B3v3B4v4B5v5 rooted at r in a graph
G. The dashed edges may exist or not but they are not part of H.

Let XP be the set consisting of the cut vertices of G − V (P ) contained in V (BP )
and the neighbors of V (P ) contained in V (BP ). Then G, a, b, P,BP , XP satisfy the
hypotheses of (1.6). By (1.6) one can find in O(|V (G)||E(G)|) time a planar a-b chain
H ′ in G such that BP ⊆ G− V (H ′) and G− V (H ′) is 2-connected. By our assumption
that |E(G)| = O(|V (G)|), such a chain can actually be found in O(|V (G)|2) time. Since
NG(r) ⊆ V (BP ) ∪ {a, b}, we have r 6∈ NG(H ′ − {a, b}). Therefore, H := H ′ + {ra, rb} is
a planar cyclic chain rooted at r such that ra is a piece of H and G − (V (H) − {r}) is
2-connected. 2

Remark. The property that ra is a piece in the planar cyclic chain in (4.4) is not
necessary for constructing a chain decomposition of a 4-connected graph, but it has an
interesting consequence (see Corollary (4.9)). To derive this result from (4.4), we need to
introduce some results on Hamilton paths and cycles in planar graphs. Thomassen [19]
proved the existence of a special path in a 2-connected planar graph, and later on, Chiba
and Nishizeki [3] developed a O(|V (G)| + |E(G)|) algorithm for finding such a path.

(4.5) Theorem. Let G be a 2-connected plane graph with a facial cycle F . Let x ∈
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V (F ), e ∈ E(F ) and y ∈ V (G) − {x}. Then G contains an x-y path P through e such

that

(i) every P -bridge of G has at most three attachments on P , and

(ii) every P -bridge of G containing an edge of F has at most two attachments on P .

Moreover, such a path P can be found in O(|V (G)|+ |E(G)|) time.

For our purpose, we need the following consequence of (4.5). This was proved by
Curran and Yu [4]. The proof here is essentially the same, but we include it for the sake
of completeness.

(4.6) Corollary. Let (G, a, c, b, d) be a planar graph and suppose that G is

(4, {a, b, c, d})-connected. Then there exists a Hamilton a-b path in G−{c, d}. Moreover,

such a path can be found in O(|V (G)| + |E(G)|) time.

Proof. Let G′ := (G−d)∪{bc, ac}. We first show that G′ is 2-connected. Suppose on the
contrary that G′ is not 2-connected. Let x be a cut vertex of G′. Since G is (4, {a, b, c, d})-
connected, G−{c, d} contains an a-b path, and hence, {a, b, c} is contained in a cycle in
G′. Therefore, {a, b, c} is contained in an x-bridge of G′, and G′ has another x-bridge B

such that (V (B) − {x}) ∩ {a, b, c} = ∅. Hence, B − x is a component of G − T , where
T := {x, d}, and (V (B)− {x}) ∩ {a, b, c} = ∅, a contradiction.

Note that G′ is planar, and can be drawn in the plane so that ac, bc and NG(d) are
on a facial cycle F . Applying (4.5) (with G′, a, c, bc as G, x, y, e respectively), G′ has an
a-c path P through bc satisfying (i) and (ii) of (4.5). Moreover, such a path can be found
in O(|V (G)| + |E(G)|) time. Note that ac 6∈ E(P ) because bc ∈ E(P ).

We proceed to show that every P -bridge of G′ is induced by a single edge, and so P

must be a Hamilton path in G′. Let B be a P -bridge of G′ such that V (B)− V (P ) 6= ∅,
and let T := V (B) ∩ V (P ). Since a, b and c are all on P , then {a, b, c} ∩ V (B) ⊆ T .
Thus, B − T is a component of G − (T ∪ {d}) containing no element of {a, b, c, d}. If
|T | ≤ 2, then |T ∪ {d}| ≤ 3, contradicting our assumption that G is (4, {a, b, c, d})-
connected. Since P satisfies (i) of (4.5), we may assume |T | = 3. Then by (ii) of (4.5),
E(B)∩E(F ) = ∅, and hence (V (B)−T )∩NG(d) = ∅. Therefore, B−T is a component
of G− T such that (V (B)− T ) ∩ {a, b, c, d} = ∅, a contradiction to the assumption that
G is (4, {a, b, c, d})-connected.

Thus, P − c is a Hamilton a-b path in G−{c, d}. Moreover, by (4.5) such a path can
be found in O(|V (G)| + |E(G)|) time. 2

(4.7) Corollary. Let G be a 4-connected graph and let H be a planar x-y chain in G.

Then there exists a Hamilton x-y path in H. Moreover, such a path can be found in

O(|V (H)|+ |E(H)|) time.
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Proof. Let H := v0B1v1 . . . vk−1Bkvk where v0 = x and vk = y. Since H is a planar cyclic
chain, for each nontrivial block Bi of H there exists ui, wi ∈ V (G) − V (H) such that
(G[V (Bi)∪{ui, wi}]−uiwi, vi−1, ui, vi, wi) is planar and Bi−{vi−1, vi} is a component of
G−{vi−1, vi, ui, wi}. Moreover, Gi := G[V (Bi)∪ {ui, wi}]− uiwi is (4, {vi−1, vi, ui, wi})-
connected. Applying (4.6) to (Gi, vi−1, ui, vi, wi) as (G, a, c, b, d), one can find a Hamilton
vi−1-vi path in Bi = Gi − {ui, wi} in O(|V (Gi)|+ |E(Gi)|) time. Therefore, a Hamilton
x-y path in H can be found in O(|V (H)|+ |E(H)|) time. 2

By similar argument as in (4.7) we can prove the following.

(4.8) Corollary. Let G be a 4-connected graph and let H be a planar cyclic chain in

G. Then there exists a Hamilton cycle in H. Moreover, such a cycle can be found in

O(|V (H)|+ |E(H)|) time.

Theorem (4.4), the remark following (4.4) and Corollary (4.8) imply the following
interesting result.

(4.9) Corollary. Let G be a 4-connected graph, and ra ∈ E(G). Then there exists a

cycle C in G through ra such that G − (V (C) − {r}) is 2-connected. Moreover, such a

cycle can be found in O(|V (G)|2) time.

Corollary (4.9) is similar in spirit to (1.2) which was proved by Tutte. Unlike Tutte’s
result, however, we cannot ask the cycle C in (4.9) to be induced, and, we do not remove
the vertex r from the graph. Curran and Yu ([4], Theorem 1.3) showed that if G is
5-connected and e ∈ E(G), then G contains an induced cycle C through e such that
G − V (C) is 2-connected. All these results are related to the following important open
problem. In 1975, Lovász [12] conjectured the following: given any positive integer k,
there exists some positive integer f(k) with the property that for any given vertices x

and y of an f(k)-connected graph G, there exists an induced x-y path P in G such that
G − V (P ) is k-connected. Thus, Tutte’s result solves the case k = 1, and Curran and
Yu’s result implies the case k = 2 which was proved independently by Chen, Gould and
Yu [1] and Kriesell [11]. The conjecture is still open for higher values of k.

5 Appendix

Proof of Lemma (2.2). First, we prove that exactly one of (1) and (2) holds. Clearly, (1)
and (2) are mutually exclusive because of planarity. We know that either (1) or (2) of (2.1)
holds. If (1) of (2.1) holds, then (1) of Lemma (2.2) holds. So assume (2) of (2.1) holds.
Let A1, . . . , Ak be as described in (2) of (2.1). Then S∩Ai = ∅ for 1 ≤ i ≤ k. Hence, G[Ai]
consists of those components of G − NG(Ai) containing no element of S, contradicting
our assumption that G is (4, S)-connected because |NG(Ai)| ≤ 3. So no Ai can exist.
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Let G′ be described as in (2) of Theorem (2.1). Observe that (G′ − {ab, cd}, a, c, b, d) is
planar. Since G′ − {ab, cd} = G, (2) of Lemma (2.2) holds. Therefore, either (1) or (2)
holds.

Let us prove the algorithmic part of Lemma (2.2). First, we give a sketch of Shiloach’s
algorithm. It has as input a graph G and vertices a, b, c, d of G (with no connectivity
hypothesis on G). The algorithm consists of reductions R1,. . . ,R6 which reduces the
general problem to a restricted one.

R1: The algorithm initially reduces the problem to 3-connected graphs, in O(|V (G)|+
|E(G)|) time.

R2: If the graph is planar, then a specialized O(|V (G)| + |E(G)|) algorithm for
3-connected planar graphs [14] is used to solve the problem.

R3: Assume that G is nonplanar. This is the most time-consuming step of the
algorithm. It reduces the problem using network flow techniques to graphs satisfying
some connectivity constraints involving S := {a, b, c, d}. Namely, the resulting graph G

satisfies the following property: for any subset S ′ of vertices of G with |S ′| ≤ 4, there exist
four disjoint paths connecting S to S ′ (these paths can share ends in S ′ though). In fact,
this step is not executed at once, but it is interspersed with reductions R4, R5 and R6
in the algorithm. Whenever the algorithm finds a set S ′ which is not connected to S by
four disjoint paths, a reduction is performed. The total time spent with these reductions
during the whole algorithm is O(|V (G)||E(G)|). For simplicity, suppose that no such set
S′ exists. By Menger’s theorem, this is equivalent to saying that G is (4, S)-connected.
Note that the graph G in the statement of Lemma (2.2) is (4, S)-connected.

Thus, so far G is 3-connected, nonplanar, and (4, S)-connected. The algorithm then
finds a subdivision of a Kuratowski graph (K5 or K3,3). Shiloach gave an O(|V (G)|2)
algorithm to find such a subdivision, but this can be improved as we show below using
an algorithm of Hsu and Shih [6].

R4: If a subdivision of K5 is found, Shiloach claims that the required two disjoint
paths can be found in O(|V (G)|+ |E(G)|) time, using a result of Watkins [21].

R5 and R6: If a subdivision of K3,3 is found, then Shiloach’s algorithm finds the
required two disjoint paths in O(|V (G)| + |E(G)|) time.

Let us show how to improve the running time of the algorithm for (4, S)-connected
graphs. Let G be a graph, let S := {a, b, c, d} ⊂ V (G) and suppose that G is (4, S)-
connected. Let G+ := G + {ac, cb, bd, da}. Since G is (4, S)-connected, G+ is (4, S)-
connected. Because each of a, b, c, d has degree at least three in G+, it follows that G+

is 3-connected. Moreover, if there exist disjoint paths P and Q in G+ from a to b, and
from c to d, respectively, then P and Q are both paths in G, and vice-versa.

We describe now how to solve the two disjoint paths problem for G+ in O(|V (G)| +
|E(G)|) time. Hsu and Shih [6] developed a O(|V (H)|+ |E(H)|) algorithm that given a
graph H, either finds an embedding of H, or finds a subdivision of a Kuratowski graph in
H. Applying this algorithm to G+, either we find an embedding of G+, or, a subdivision
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of K5 or K3,3. If the former occurs, then G+ is planar, and we can use step R2 to solve
the two disjoint paths problem in O(|V (G)| + |E(G)|) time. Otherwise, there exists a
subdivision of K5 (or K3,3), and we can use steps R4 (or, R5 and R6, respectively) of
Shiloach’s algorithm to find the required two disjoint paths. Thus, we can find the two
disjoint paths P and Q, if they exist, in O(|V (G)|+ |E(G)|) time. 2
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