
SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 26–41

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY∗

VOLKAN ISLER† , SAMPATH KANNAN‡ , AND SANJEEV KHANNA‡

Abstract. We study the following pursuit-evasion game: One or more hunters are seeking to
capture an evading rabbit on a graph. At each round, the rabbit tries to gather information about
the location of the hunters but it can see them only if they are located on adjacent nodes. We
show that two hunters suffice for catching rabbits with such local visibility with high probability.
We distinguish between reactive rabbits who move only when a hunter is visible and general rabbits
who can employ more sophisticated strategies. We present polynomial time algorithms that decide
whether a graph G is hunter-win, that is, if a single hunter can capture a rabbit of either kind on G.

Key words. pursuit-evasion games, local information, path planning, visibility

AMS subject classifications. 49N75, 91A43

DOI. 10.1137/S0895480104442169

1. Introduction. Pursuit-evasion games are problems of fundamental interest
in many diverse fields such as computer science, operations research, game theory, and
control theory. The goal of a pursuit-evasion game is to find a strategy for a pursuer
trying to catch an evader who, in turn, tries to avoid capture indefinitely. There are
many different variations of pursuit evasion games based on the following:

• Environment where the game is played : Examples include plane, grid, and
graph.

• Information available to the players: Do they know each others’ positions all
the time? Does the pursuer know the evader’s strategy?

• Controllability of the players’ motion: Is there a bound on their speed? Can
they turn with arbitrary angles?

• Meaning of capture: In some games, the pursuer captures the evader if the
distance between them is less than a threshold. In other games, the pursuers
must see or surround the evader in order to capture it.

Earlier studies of pursuit-evasion were motivated by control tasks such as in-
tercepting missiles [4]. The problem is addressed in the robotics community for its
applications in collision avoidance, search and rescue, and air-traffic control [10, 9].
In these models typically the motion of the evader is modeled by a stochastic process.
However, recently there has been increasing interest in modeling games where the
evader is more “intelligent” and has certain sensing capabilities [19]. Pursuit-evasion
games on graphs [18, 16, 13, 12, 6, 1] have been studied not only for their applica-
tions in network security and protocol design (e.g., [3, 11]) but also for their relations
to fundamental properties of graphs such as vertex separation [7]. A remark about

∗Received by the editors March 17, 2004; accepted for publication (in revised form) August 5,
2005; published electronically February 15, 2006. A preliminary version of this paper appeared in
Proceedings of the ACM–SIAM Symposium on Discrete Algorithms (SODA04).

http://www.siam.org/journals/sidma/20-1/44216.html
†Corresponding author. Department of Computer Science, Rensselaer Polytechnic Institute, 110

Eighth Street, Lally 205, Troy, NY 12180-3590 (isler@cs.rpi.edu). The work of this author was
supported in part by NSF-IIS-0083209, NSF-IIS-0121293, MURI DAAH-19-02-1-03-83, and a grant
from Rensselaer Polytechnic Institute.

‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
PA 19104 (kannan@cis.upenn.edu, sanjeev@cis.upenn.edu). The work of the second author was
supported in part by NSF grant CCR0105337. The work of the third author was supported by an
Alfred P. Sloan Research Fellowship and by an NSF Career Award CCR-0093117.

26

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 27

the terminology is in order. In the literature, the names pursuer-evader, cop-robber,
monster-princess, hunter-rabbit, and sheriff-thief have been used somewhat synony-
mously. We adopt the hunter-rabbit term for it emphasizes the discrete nature of the
game [5, 1].

In this paper, we address a different aspect of the problem that has not received
much attention so far. We study the relationship between the information available to
the rabbit and the conditions to capture it. The basic model of our game is as follows:
The players are located on the nodes of a graph. At every time step, they move to
nodes in their neighborhoods (which include the current node) simultaneously. We
say a rabbit is caught or captured if at the beginning of a time step it occupies the
same node as a hunter. We associate the information available to the rabbit with its
visibility. If the rabbit has complete information about the location of the hunter(s)
during the entire game, we say the rabbit has full visibility. On the contrary, if the
rabbit has no information about the hunters, then we say it has no visibility.

In our present work, we study the game when the rabbit has local visibility. That
is, it can only see the nodes that are adjacent to its current location. When the
hunter is located at an adjacent node, the rabbit has complete information about his
location. However, if the hunter is not visible, then the rabbit must infer the hunter’s
location based on the time and location of their last encounter. Note that this model
is different from the “visibility-based pursuit-evasion” work [9, 17], where the goal is
to eventually “see” an evader which has complete visibility and unbounded speed.

Recently, Adler et al. studied the game when the rabbit has no visibility [1]. They
showed that a single hunter can catch the rabbit on any (connected) graph. The full
visibility version has also been studied [16, 6]. It is known that under the full visibility
model, the class of graphs on which a single hunter suffices is the class of dismantlable
graphs. The number of hunters necessary to capture the rabbit on a graph G is known
as the cop (hunter) number of G. It is known that [2] the cop number of planar graphs
is at most 3 but the cop number of general graphs is still an open question [15, 8].

a b c

R
H

Fig. 1. On this graph, the hunter cannot capture the rabbit using a deterministic strategy.

An interesting aspect of our game is that on most graphs the rabbit cannot be
captured using a deterministic strategy. A simple example is illustrated in Figure 1.
Suppose that, on this graph, the hunter has a deterministic strategy of visiting the
labeled vertices in the order a, b, c. Then, we can design a rabbit strategy that waits
until the hunter arrives at b and escapes to a. Afterward, while the hunter is visiting c,
the rabbit escapes to b and it is easy to see that by repeating similar moves, the rabbit
can always avoid the hunter. However, on this graph there is a simple randomized
strategy for the hunter: Pick one of the leaves at random and visit that leaf!

Therefore, we will focus on randomized strategies. The previous body of work for
the full visibility case [16, 6, 15, 8, 2] derandomized the game by forcing the players to
take turns moving, rabbit followed by hunter at each step. However, when the players

28 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

move simultaneously, the game is not well defined for deterministic strategies even if
the players have full visibility: Suppose the game is played on a complete graph. In
this case it is easy to see that a single hunter can catch the rabbit simply by guessing its
location in the next turn. However, if the hunter’s strategy is deterministic, knowing
it, the rabbit would never get caught. Similarly, the hunter could always catch the
rabbit in a single move if he knew its strategy.

Our results and techniques. Our main result is an algorithmic characteriza-
tion for the local visibility case. We show that two hunters always suffice on general
graphs and present a polynomial time procedure that decides whether a single hunter
is sufficient to capture the rabbit on an input graph G. In order to obtain an efficient
decision procedure, we establish that the uncertainty in the rabbit’s knowledge of the
hunter’s location satisfies an interesting monotonicity property. This monotonicity
property turns out to be crucial for obtaining a polynomial time characterization.

In the winning strategy for two hunters, a central component is to have one hunter
mainly focus on keeping the rabbit on the move. This motivated us to study a natural
class of reactive rabbit strategies, where the rabbit moves only when the hunter is in
its sight. We show that the class of hunter-win graphs (i.e., graphs on which a single
hunter suffices) against general rabbits is strictly smaller than the class of hunter-win
graphs against reactive rabbits. We present a characterization algorithm for reactive
rabbits as well.

The characterization algorithms mark pairs of vertices according to certain rules,
where the pairs correspond to players’ positions. To understand the corresponding
hunter strategies on hunter-win graphs, we first present a hunter strategy for the full
visibility case. Next, we show that omitting one of the rules from the characterization
algorithms yields an algorithm that recognizes graphs that are hunter-win against
rabbits with full visibility. Using these two results, we show how the hunter exploits
the local visibility if the game is played on a graph G such that on G, the hunter can
win against a rabbit with local visibility but not against a rabbit with full visibility.

We note that when the rabbit’s visibility is extended to distance 2, there exist
graphs for which Ω̃(

√
n) hunters are necessary.

Organization of the paper. The paper is organized as follows: In section 2,
we review necessary concepts that will be used throughout the paper. In section 3,
we present a winning strategy for two hunters on general graphs. Next, we study the
graphs on which a single hunter suffices, both for reactive (section 4.1) and general
(section 4.2) rabbits. Section 5 is dedicated to the study of hunter strategies on
hunter-win graphs. A gap example distinguishing the power of the two types of rabbit
strategies is also presented in section 5. We conclude the paper with a discussion on
extensions of our work.

2. Preliminaries. Throughout the paper, we use the following notation for the
neighborhood of vertex v: N(v) denotes the set of vertices that are adjacent to v
and we always assume that v ∈ N(v). N i(v) is defined as ∪u∈Ni−1(v)N(u). Unless
otherwise stated, n denotes the number of vertices.

The game we study is formally defined as follows: It is played in rounds. In the
beginning of a round, suppose a player (either a hunter or a rabbit) is located at
vertex v. First, the player checks N(v) and if there is another player located at a
vertex u ∈ N(v), this information is revealed to the player. In this case we say the
two players see each other. Next, all the players make a decision about where to move
and choose a vertex in their neighborhoods. At the end of the round, all players move
to their chosen vertex simultaneously. A hunter catches the rabbit if they are located

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 29

on the same vertex.

A reactive rabbit strategy is a rabbit strategy where the rabbit is not allowed
to move from a vertex v unless the hunter is in N(v). A rabbit strategy is general
(sometimes called nonreactive) if it is not forced to be reactive. In other words, the
rabbit can move even if the hunter is not visible. A graph G is hunter-win against
reactive rabbits if there exists a hunter strategy that catches any reactive rabbit on
G with nonzero probability for all possible starting configurations. A graph that is
hunter-win against general rabbits is defined similarly.

Configuration versus state. For a single hunter game, a configuration refers
to an ordered pair (h, r) which corresponds to the locations of the hunter and the
rabbit, respectively. Note that this information may not be available to the rabbit
at all times due to its local visibility. A configuration (h, r) is adjacent if h ∈ N(r).
We use the notation 〈H, r〉 to denote the state of the game where r is the location of
the rabbit and H corresponds to the set of vertices where the hunter can possibly be
located (based on the information available to the rabbit). For the full visibility case,
if the current configuration is (h, r), the state is 〈{h}, r〉. For the zero visibility case,
the state is either 〈G− {r}, r〉 or 〈{r}, r〉. For the local visibility case that we study,
state has a more complex structure, and it evolves over time even when neither the
hunter nor the rabbit is in motion.

Suppose u and v are two nodes of a graph G such that N(u) ⊆ N(v). Then, the
operation of deleting u from G is called a folding of G and we say u folds onto v.
A graph is called dismantlable if there is a sequence of folds reducing it to a single
vertex. We say u eventually folds onto v if there is a sequence u0 = u, u1, . . . , uk = v
such that ui folds onto ui+1, 0 ≤ i < k. Let G be a dismantlable graph and ψ be
a folding sequence reducing G to a single vertex v. We can visualize ψ as a tree T
whose vertices are the vertices of G such that when rooted at v every vertex in T is
folded onto its parent.

If a graph G is not dismantlable, this means that after a sequence of foldings ψ it
reduces to a graph H which cannot be folded any further. We refer to the graph H as
the residual graph of G, or just the residual, if G can be inferred from the context. It is
known that the residual is unique up to isomorphism [6]. We can visualize the folding
process for nondismantlable graphs as a forest of trees Th hanging from each vertex
h ∈ H (see Figure 3). Th is composed of vertices that eventually fold onto h. We
define ψ(u) = w if and only if u ∈ Tw, w ∈ H. We note that the tree representation
depends on the folding sequence ψ and in general it is not unique.

3. A winning strategy with two hunters. In this section, we present a strat-
egy with two hunters that catches the rabbit on any graph. In general, a single hunter
cannot always capture the rabbit. This can be seen by considering a cycle of length at
least 4 as the input graph: The rabbit’s strategy is to wait until the hunter becomes
visible and move to its neighbor which does not contain the hunter. This strategy
guarantees that it will never get caught.

The strategy of the two hunters is divided into epochs that are comprised of two
phases. An epoch starts with the hunters located at a predetermined vertex. The
first phase starts at time t = 1.

In Phase One, two hunters move together and their goal is to see the rabbit.
To achieve this, the hunters generate a random vertex label v ∈ {1 . . . n} and move
together to v. Afterward, they wait at v until either (t mod n) = 0 or the rabbit
becomes visible. If the rabbit becomes visible at any time, the first phase is over and
the second phase starts. Otherwise, the hunters repeat the same process by generating

30 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

a new label v.
We claim that the first phase lasts only n2 log n steps with high probability. To

see this, let r1, r2, . . . be the location of the rabbit at times n, 2n, 3n, Suppose
the hunters have not seen the rabbit until time i × n. At that time, the probability
that they generate a label in N(ri+1) is at least 1

n . Since they generate a label after
every n steps, the first phase will be over in n2 log n steps with high probability.

In Phase Two, the hunters try to catch the rabbit as follows: Suppose the second
phase starts at time t = t0 and let ti = t0 + i. At that time both hunters H1 and
H2 are at vertex h and the rabbit is at vertex r, with r ∈ N(h). For the rest of the
second phase, let ri denote the position of the rabbit at time t = ti and let us define
r0 = h.

The strategy of H1 is as follows: At time t = ti, he is located at ri−1. With
probability p1 = 1

n2 , he attacks the rabbit by generating a random neighbor of ri−1

and going there in the next step. With probability 1 − p1, he chases the rabbit by
going to ri in the next step. The second phase ends with failure if H1 attacks and
misses the rabbit.

The strategy of H2 is based on the following observation: If H1 chases the rabbit
for more than n steps, the rabbit must revisit a vertex by the pigeonhole principle.
Let u be the first vertex revisited and suppose that at time tr, the rabbit visits a
vertex v ∈ N(u) for the first time before revisiting u. The goal of H2 is to enter v at
the same time as the rabbit. To achieve this, first he guesses u, v, and tr. In order
to reach u, he chases H1 by moving to his location in the previous time step until
u. Afterward, H2 waits until time t = tr − 1 and goes to v from u. We say H2 is in
chasing mode if he is following H1 and he is in attacking mode after he arrives at u.
The second phase ends with failure if H2 misses the rabbit when it arrives at v. To
summarize, at time t = t0, the hunters are at r0 and the rabbit is at r1. When the
hunters are chasing, the locations of the rabbit H1 and H2 at time ti are ri, ri−1, ri−2,
respectively. The phase ends when either hunter attacks. If no hunter attacks within
n2 steps, they end the phase and move to the predetermined vertex to start a new
epoch.

Next, we state the crucial property of the strategy of the hunters.
Lemma 1. During Phase Two, the rabbit cannot distinguish between the modes

of hunter H2.
Proof. If the attacking mode starts at time t = t1, the location of H2 is the same

for both modes. If it starts afterward, we show that if the rabbit sees H2, it will get
caught with nonzero probability.

Suppose the rabbit sees H2 at time t = t2, which implies r2 ∈ N(r0). In this case,
with probability at least p1

n , H1 can decide to attack from r0 to r2 at time t = t1 and
catch the rabbit.

Next, suppose the rabbit sees H2 at time t > t2. If H2 was in chasing mode at
that time, the fact that the rabbit sees H2 implies ri ∈ N(ri−2). In this case as well,
H1 could decide to attack in the previous step and catch the rabbit with probability p1

n .
Therefore H2 must be invisible to the rabbit during the chasing mode. But, H2 will
also be invisible in the attacking mode because as soon as the rabbit enters a vertex
v where it can see H2, H2 can catch it by guessing v and the arrival time correctly.

Therefore in order to avoid getting caught, the rabbit must avoid seeing H2. But
then the information available to the rabbit will be the same, no matter which mode
H2 is in: H2 is out of its sight since the beginning of the second phase.

Lemma 2. During Phase Two, the hunters succeed with nonzero probability.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 31

Proof. As discussed previously, after the start of the second phase, the rabbit
must revisit a vertex u at time k ≤ n. If the rabbit does not see H2 until t = k,
H2 can catch it with probability 1

n3 at least by guessing tr, u, v ≤ n. Note that H1

will still be chasing the rabbit with probability at least 1− k
n2 ≥ 1− 1

n . On the other
hand, if the rabbit sees H2, it is caught with probability at least 1

n3 = min{p1

n , 1
n3 },

by Lemma 1.

The length of an epoch is O(n2 log n): Phase One lasts O(n2 log n) time with high
probability and Phase Two lasts Θ(n2) steps. We have established that in Phase Two,
the rabbit is caught with probability at least 1

n3 . Therefore after n3 log n epochs, each
of which last O(n2 log n) steps at most, the rabbit will be caught, yielding our main
result.

Theorem 3. Two hunters can catch a rabbit with local visibility on any graph
with high probability.

4. Hunter-win graphs. In this section, we start the study of graphs on which a
single hunter suffices. An interesting feature of the strategy of two hunters is that one
hunter makes the rabbit move constantly and therefore forces it into making mistakes.
This suggests that moving when a hunter is not visible may be a disadvantage for the
rabbit.

To study this phenomenon we introduce reactive strategies where the rabbit moves
only when the hunter is visible and ask the question of whether the class of hunter-win
graphs against reactive graphs is equivalent to the class of hunter-win graphs against
general rabbits. The answer turns out to be negative.

a b c d e f g h

x y z w

Fig. 2. This graph is hunter-win against reactive rabbits but not against general rabbits.

The graph in Figure 2 is hunter-win against reactive rabbits. The input graph
consists of a cycle and the gadget shown in the figure. The hunter’s strategy is to
drive the rabbit into the gadget, by chasing it along the cycle. Once the rabbit is in
the gadget, the hunter drives the rabbit to a vertex such that he can reach another
vertex (without being seen) whose neighborhood dominates the rabbit’s neighborhood.
Next, we present the details of the hunter’s strategy. In the following, without loss of
generality, we assume that the hunter knows the rabbit’s next move.

In order to capture the (reactive) rabbit, the hunter first chases it counter-
clockwise until the rabbit is at b and the hunter is at a. It can be easily verified
that the rabbit cannot avoid reaching b without being captured.

If the rabbit moves to x from b, the hunter travels clockwise, arrives at c via y, and
wins the game (note that the rabbit, being reactive, will not move in the meantime).
Otherwise, if the rabbit moves to c, the hunter moves to b. In the next move, if the
rabbit moves to y from c, the hunter travels clockwise, arrives at d through e, and
wins the game. If the rabbit moves to d from c, then the hunter moves to c.

From d (while the hunter is at c), the rabbit has two options (it will be captured
if it goes to y). If it moves to e from d, the hunter goes to y and then to z. The rabbit
must then move to w to avoid capture. In this case the hunter goes to f and wins the

32 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

game. Otherwise, if the rabbit moves to z from d, the hunter travels clockwise again
and arrives at e through g and w. From z the rabbit can only go to y, in which case
the hunter moves to d from e and wins the game.

Therefore, no matter which strategy it chooses, the hunter can capture a reactive
rabbit. However, once it arrives at b, a general rabbit can keep moving in the opposite
direction of a until it leaves the gadget. If the length of the cycle is greater than 14, the
hunter cannot reach the other entrance of the gadget before the rabbit and therefore
a general rabbit is safe on this graph.

4.1. Characterization of hunter-win graphs against reactive rabbits.
In this section, we describe an algorithm that recognizes hunter-win graphs against
reactive rabbits. The algorithm marks configurations (h, r) according to the following
rules.

Algorithm Mark-Reactive:
Mark all configurations (v, v) for every vertex v. (Initialization)
Repeat

Mark (h, r) if for all r′ ∈ N(r) there exists a vertex h′ ∈ N(h) with (h′, r′) marked.
(Stride Rule)

For all (h′, r) that are marked, mark (h, r) for all h ∈ N(h′)\N(r). (Stealth Rule)
Until no further marking is possible.

Next, we prove the soundness (if all configurations are marked, then the graph is
hunter-win) and completeness (if the graph is hunter-win, then all configurations will
be marked) properties of the marking algorithm.

Soundness. The proof is by induction on the round k in which a configuration is
marked.

When k = 1 only the configurations (v, v) are marked and the hunter trivially
wins the game in these configurations.

Suppose the configurations marked in the first k rounds are sound and consider
the configuration (h, r) marked during step k + 1. If (h, r) was marked using the
Stride Rule, during the execution of the game, the hunter can force a configuration
marked during the kth step with nonzero probability. Hence these configurations
are sound. If, on the other hand, the configuration (h, r) is marked by the Stealth
Rule, we observe that the rabbit will remain at vertex r since the hunter is out of its
sight and hence the hunter can reach the configuration (h′, r) which has been marked
during the previous steps. Therefore the Stealth Rule is also sound by the inductive
hypothesis.

Completeness. Clearly, if the rabbit is captured the game ends at a marked
configuration. Otherwise, we show that the rabbit can always stay in an unmarked
configuration and hence never get caught. Suppose there is an unmarked configuration
(h, r) and the hunter and the rabbit are at vertices h and r, respectively. There are
two cases: If h ∈ N(r), the rabbit must have a move to a vertex r′ such that there
exists no h′ ∈ N(h) with (h′, r′) marked. Otherwise (h, r) would be marked by the
Stride Rule. On the other hand, if h /∈ N(r), no matter which vertex h′ the hunter
moves, (h′, r) is unmarked. Otherwise (h, r) would be marked by the Stealth Rule.

We can now state the result of this section which follows from the soundness and
completeness of the marking algorithm.

Theorem 4. A graph G is hunter-win against reactive rabbits if and only if the
algorithm Mark-Reactive marks all configurations.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 33

4.2. Characterization of hunter-win graphs against general rabbits. For
reactive rabbits, it is easy to see that on a hunter-win graph every rabbit walk can be
intercepted (i.e., the rabbit gets caught) by the hunter in O(n3) steps. However, it is
far from being clear that such a polynomial length intercepting walk (i.e., a witness)
exists for nonreactive rabbits. The difficulty is that at any point in time, the rabbit
can infer a subset H ⊆ V of possible hunter locations and plan its motion accordingly.
This suggests that the state of the game may require specifying arbitrary subsets of
vertices, potentially leading to exponential witnesses. Fortunately, we can establish a
monotonicity property to establish once again polynomial size witnesses.

Let 〈H, r〉 be the state of the game where H is the set of possible hunter locations
when the rabbit is at r. When the rabbit and the hunter are at adjacent vertices r and
h, respectively, the rabbit knows the hunter’s position with certainty and therefore
H = {h}. Now suppose the game starts at configuration (h, r).

Proposition 5. The hunter can reach an adjacent configuration from any start-
ing configuration (h, r).

The proof of Proposition 5 is implicit in the strategy presented in section 3.
During Phase One, the two hunters act as one and we showed that their strategy
ensures that the hunters and the rabbit will end up in adjacent vertices in n steps
with nonzero probability. This means that, no matter which path rabbit takes, there
exists a hunter path of length at most n that leads to an adjacent configuration.

Proposition 6. A graph G is hunter-win if and only if the hunter wins starting
from any adjacent configuration.

Proof. If the graph is hunter-win, the hunter must win from all starting con-
figurations including the adjacent ones. Conversely, if the hunter can win from any
adjacent configuration, then starting from any configuration he can reach an adjacent
configuration by Proposition 5 and win the game from here on.

Therefore, by Proposition 6, on a hunter-win graph, we can assume that the game
starts from an initial configuration where the players see each other. In addition,
without loss of generality, we assume that the rabbit moves so as to maximize the
time taken for capture and the hunter moves so as to minimize it.

We can view any hunter-win game as a sequence of rounds R1, . . . , Rp where each
round starts with the players located at adjacent vertices. Hence, the rabbit has full
knowledge of the hunter’s position. Clearly, there are at most n2 rounds and the
rounds do not repeat.

Lemma 7. For the optimal hunter strategy, the length of each round is O(n2).
Proof. Partition the round into segments of length n + 1 each. The rabbit must

revisit a vertex r within the same segment. Let 〈H1, r1〉 and 〈H2, r2〉 be the state
of the game during the first and second visits. First, we show that H1 ⊆ H2. This
is because, between r1 and r2, the rabbit cannot visit any vertex u with u ∈ N(h),
h ∈ H1. If the hunter is at h, the rabbit would be captured. Next, if H1 = H2, then
the part of the hunter strategy between r1 and r2 is redundant and hence the hunter
can shorten the game. Therefore as the rabbit keeps visiting the same vertex, its
uncertainty is monotonically increasing and after at most n revisits the state of the
game becomes 〈G−N(r), r〉. In this case, either the rabbit gets caught if it moves or
the hunter reveals himself, ending the round. Since the rabbit has to revisit a vertex
every n steps and there are at most n revisits, the lemma follows.

Since the length of a round is O(n2) and there are n2 rounds, we conclude that
the total length of a hunter-win game is O(n4).

Our characterization algorithm for general rabbits is based on the existence of
such a polynomial size witness. We will mark only adjacent configurations: if the

34 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

adjacent configurations are all marked, by Proposition 6 the hunter wins from all
starting configurations. A general rabbit can move even if the hunter is not visible.
In order to capture this capability we need to generalize the stealth moves, described
next.

4.2.1. Stealth moves. A k-stealth move from configuration (h, r) with h ∈
N(r) to a marked configuration (h′, r′) is defined as follows: For every rabbit path
Pr = {r, r1, . . . , rk = r′} of length k, the hunter has a path Ph = {h, h1, . . . , hk = h′}
such that hi /∈ N(ri) for i = 1, . . . , k − 1, hk ∈ N(rk), and (hk, rk) is marked. We
refer to Ph as the stealth path corresponding to Pr. A configuration (h, r) is marked
by the Stealth Rule if for all r′ ∈ Nk(r), there exists a k-stealth move to a marked
configuration (h′, r′). Note that the Stealth Rule for k = 1 subsumes the Stride Rule.

Lemma 8. The markings corresponding to stealth moves are sound.
Proof. Suppose all previously marked adjacent configurations are sound and con-

sider the next adjacent configuration (h, r) marked by a stealth move of length k. At
time t = 0 the rabbit is located at r. Since we mark only the adjacent configurations,
the state of the game is 〈{h}, r〉. Take any rabbit path of length k, and suppose at
time t = i the rabbit is at vertex ri. Let r′1, . . . , r

′
p be the vertices accessible from ri

in the remaining k − i steps and P1, . . . Pp be the corresponding stealth paths such
that at the end of k steps, Pj ends at vertex h′

j and (h′
j , r

′
j) is marked. Let Ej be

the event that the hunter has chosen path Pj , j = 1, . . . , p, and let hj be the jth
vertex on Pj . The claim follows from the observation that no matter which path
Pj the hunter chooses, the information available to the rabbit is the same—namely,
the hunter was not visible for the last i steps. Therefore the state of the game is
〈H, r〉 where {hj |1 ≤ j ≤ p} ⊆ H. Since the rabbit cannot distinguish between the
events Ej , no matter which final destination r′j it chooses, the hunter can be at the
corresponding vertex hj and arrive at the already marked configuration (h′

j , r
′
j).

The stealth moves starting from configuration (h, r) and ending at configuration
(h′, r′) can be computed efficiently by dynamic programming.

We will need an intermediate look-up table T , with T [h, r, h′, r′, k] = TRUE if
and only if for any rabbit path {r, r1, . . . , rk = r′} of length k there is a stealth path
of length k that starts from h and ends at h′.

The entries of the table T are filled as follows:
(i) T [h, r, h′, r′, 0] = TRUE if and only if h = h′, r = r′, and h′ ∈ N(r′).
(ii) T [h, r, h′, r′, 1] = TRUE if and only if h′ ∈ N(h), r′ ∈ N(r), and h′ ∈ N(r′).
(iii) T [h, r, h′, r′, k + 1] = TRUE if and only if for all u ∈ N(r) there is a vertex

v ∈ N(h) \N(u) with T [v, u, S, h′, r′, k] = TRUE for 1 ≤ k ≤ n2.
We now present a marking algorithm that uses the look-up table T to compute

the stealth moves.

Algorithm Mark-General:
Mark all configurations (v, v) for every vertex v. (Initialization)
Repeat

For all configurations (h, r) with h ∈ N(r), mark (h, r) if there exists an index
k ≤ n2 such that for all r′ ∈ Nk(r) there exists a vertex h′ with T [h, r, h′, r′, k] =
TRUE and (h′, r′) is marked. (Stealth Rule)
Until no further marking is possible.

Lemma 9. If the graph is hunter-win, then the marking algorithm Mark-General
will mark all adjacent configurations.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 35

Proof. Let (h, r) be an adjacent configuration left unmarked after the execution
of algorithm Mark-General. We claim that the rabbit can get to an adjacent config-
uration (h′, r′) that is unmarked. Suppose not. This means that for any rabbit path
r, r1, r2, . . . , rk there is a hunter path h, h1, h2, . . . , hk with hk ∈ N(rk) and (hk, rk) is
marked. By Lemma 7, we have k ≤ n2. This implies that (h, r) would be marked by
the Stealth Rule, which gives us the desired contradiction.

Therefore, starting from any unmarked adjacent configuration (h, r), the rabbit
can reach another unmarked adjacent configuration. This means that the rabbit will
never get caught, since a capture implies that the game enters the configuration (v, v)
for some vertex v which is a marked adjacent configuration.

Theorem 10. A graph G is hunter-win against general rabbits if and only if the
algorithm Mark-General marks all adjacent configurations.

Proof. If all the configurations are marked, G is hunter-win due to the fact that the
Stealth Rule is sound (Lemma 8). Conversely, if there is an unmarked configuration,
the rabbit is never caught by Lemma 9.

5. Complete visibility and dismantlable graphs. When the rabbit has full
visibility, the Stealth Rule does not make sense. In fact, we will show that the Stride
Rule against reactive rabbits is sound and complete against rabbits with full visibility.

Algorithm Mark-FullVisibility:

Mark all configurations (v, v) for every vertex v.

Repeat

Mark (h, r) if for all r′ ∈ N(r) there exists a vertex h′ ∈ N(h) with (h′, r′) marked.
(Stride Rule)

Until no further marking is possible.

It turns out that the algorithm Mark-FullVisibility recognizes hunter-win graphs
against rabbits with full visibility.

u

v

w
x

u′

Tw

H

Fig. 3. Visualization of the folding procedure for a nondismantlable graph. The vertices w, v,
and x are in the residual H. Since there is no edge from w to x, the edges shown with dashed lines
cannot exist.

We will need the following property of nondismantlable graphs.

Proposition 11. Let G be a nondismantlable graph, ψ be a folding sequence,
and H be the residual. Let x and w be two distinct vertices in H and Tx and Tw be
the corresponding folding trees (see Figure 3). If there exists a vertex u ∈ Tw that is
adjacent to a vertex u′ ∈ Tx, then x ∈ N(w).

Proof. Without loss of generality, suppose u was folded before u′. This implies
that the parent of u must be adjacent to u′. We replace u with its parent and continue

36 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

this process of propagating the edge between u and u′, which must eventually reach
the roots w and x of the corresponding trees.

Theorem 12. The algorithm Mark-FullVisibility marks all configurations if and
only if the input graph is dismantlable.

Proof. Suppose the input graph G is dismantlable. We can prove that all con-
figurations will be marked by induction on the order of G. Since G is dismantlable,
it must have two vertices u and v with N(u) ⊆ N(v). Let G′ = G − {u} and run
algorithm Mark-FullVisibility on G′. Suppose, inductively, that all configurations in
G′ are marked. Consider the marking algorithm for G which marks (u, u) first and
simulates the marking algorithm on G′ afterward. In addition, whenever (x, v) is
marked for a vertex x ∈ G′, we also mark (x, u). This is possible since that (x, v) is
marked implies that for all v′ ∈ N(v), there exists a vertex x′ ∈ N(x) with (x′, v′)
marked and N(u) ⊆ N(v). Next, we show that all the configurations (x, y) in G′ will
also get marked in G. Suppose there exists a configuration (x, y) that is marked in G′

but not in G. Consider the first such configuration that is discovered in the marking
of G. It must be that u ∈ N(y) and that for all x′ ∈ N(x), (x′, u) is not marked at
this point. Also, v ∈ N(y) since N(u) ⊆ N(v). Now using the fact that (x, y) gets
marked at this stage in G′, we know that there exists x′′ ∈ N(x) such that (x′′, v)
is already marked. But then (x′′, u) must also be marked at this point according to
the modified marking rule. A contradiction! Thus, any (x, y) marked in G′ will also
be marked in G. It follows that for any x such that (x, v) is marked in G′, we can
mark (x, u) in G. It is easy to see that for any x, the configuration (u, x) will also be
marked in G since u is adjacent to v and, by the argument above, for all x′ ∈ N(x),
(v, x′) is marked.

Now suppose the input graph is not dismantlable. Let ψ be a sequence of folds
reducing G to a residual graph H. For any two vertices u ∈ G and v ∈ H, we claim
that (u, v) is unmarked if ψ(u)
= v. Suppose this is not true and let (u, v) be the first
marked configuration such that ψ(u)
= v (Figure 3). Let w = ψ(u), w
= v. Note that
v must have a neighbor x such that x /∈ N(w); otherwise, v would fold onto w. When
(u, v) gets marked, there must be a vertex u′ ∈ N(u) such that (u′, x) is marked. If
ψ(u′) = x, this would imply x ∈ N(w) by Proposition 11. So it must be the case that
ψ(u′)
= x. But then, the fact that (u′, x) is marked contradicts the fact that (u, v)
is the first configuration marked with ψ(u)
= v. Therefore, we conclude that if the
graph is not dismantlable, the marking process will not mark all configurations.

As stated earlier, it has been shown that the class of graphs that are hunter-win
against rabbits with full visibility are precisely the class of dismantlable graphs [6].
Therefore we obtain the following corollary.

Corollary 13. A graph G is hunter-win against rabbits with full visibility if
and only if the algorithm Mark-FullVisibility marks all configurations.

We know that there are nondismantlable graphs that are hunter-win against rab-
bits with local visibility. An example is shown in Figure 4. The labels on the vertices
indicate their folding order: First, vertex 1 folds onto vertex 2; afterward, vertex 2
folds onto vertex 9, etc. After folding vertices 1 to 8, vertices 9 to 12 cannot be folded,
leaving a four-cycle as the residual. Therefore this graph is not dismantlable and con-
sequently it is not hunter-win against rabbits with full visibility. To see that the
hunter wins against rabbits with local visibility, let us define the mapping p : V → V ,
where V is the set of vertices. For v ∈ V with 1 ≤ v ≤ 8, p(v) is the vertex which v
folds onto. We define p(9) = 2, p(10) = 8, p(11) = 6, and p(12) = 4. The first obser-
vation is that the hunter wins the game if he can force the rabbit to go to vertex 1
while he is at vertex 2. Next, we observe that if the rabbit is at vertex v
= 1 and the

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 37

1 7

2

3

4

5

6

8

9 10

1112

Fig. 4. This graph is hunter-win against rabbits with local visibility. However, a rabbit with
full visibility never gets caught.

hunter is at p(v), the rabbit must move to a lower numbered vertex. Now suppose the
rabbit is reactive. In this case, it can be verified that for any rabbit location r and
for any hunter location h /∈ N(r), the hunter has a path to p(r) that does not enter
N(r). Therefore, by visiting p(r) repeatedly the hunter can force a reactive rabbit to
eventually move to vertex 1 and win the game afterward.

Hence, the rabbit must have a nonreactive strategy, meaning that it must move
when the hunter is not visible. Consider the first time this happens: Suppose the
hunter and the rabbit are at vertices h and r with h ∈ N(r) and the rabbit takes
the path r → r′ → r′′ such that the hunter is not visible from r′. It can be shown,
by enumeration, that for any such vertices h, r, r′, and r′′, the hunter has a path
h → h′ → r′′ that captures the rabbit. Therefore the rabbit cannot have a nonreactive
strategy either and the graph is hunter-win against both types of rabbits.

We conclude this section with an interpretation of Theorem 12: If G is a graph
that is hunter-win against rabbits with local visibility but not against rabbits with
full visibility, the hunter captures the rabbit with local visibility using the stealth
moves.

5.1. Hunter strategy for dismantlable graphs. Given a folding tree T rooted
at vertex v, consider the vertex r where the rabbit is located. We say the hunter is an
ancestor of the rabbit if he is located on the path from r to v. Suppose the vertices
of T are ordered by their deletion times. The hunter strategy is based on the following
two lemmas.

Lemma 14. The hunter can always maintain ancestry.

Proof. Suppose the hunter is at vertex h and is an ancestor of the rabbit who
is located at vertex r. Let r′ be the rabbit’s location in the next round. If h is a
common ancestor of r and r′ on the folding tree T , then the lemma is trivially true.
Otherwise, since h is an ancestor of r and (r, r′) is an edge, using basic properties of
foldings it can be shown that h is adjacent to a vertex on the path that connects r′

to the root of T . We show that there is always such a vertex h′ with h′ ≥ r′ by a case
analysis on r′ (see Figure 5). Suppose for contradiction h′ < r′. We will show that h
must be adjacent to r′ thus allowing the hunter to catch the rabbit in one step.

Case (h > r′ > r). In this case all the ancestors of h′ deleted before h (including
r′) must have edges to h.

38 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

’

’

’

’

’

’

’

h

h

h

h

hh

r

r

r

r

r

rr

h > r′ > r r′ > h r′ < r

Fig. 5. The hunter can always stay above the rabbit. The height of a vertex is proportional to
its label.

Case (r′ > h). All the ancestors of r deleted before r′ (including h) must have
an edge to r′.

Case (r′ < r). All the ancestors of h′ deleted before r (including r′) must have
an edge to h.

In fact, not only can the hunter maintain ancestry, but he can also reduce his
height in the tree gradually and therefore get closer and closer to the rabbit.

v

p(v) Cr

Cp

Ch

r

hp

Fig. 6. The hunter can make progress every time the rabbit revisits a vertex.

Lemma 15. Every time the rabbit revisits a vertex, the hunter can reduce its
height in the tree while maintaining ancestry.

Proof. Fix any rabbit cycle Cr and let v be the vertex with the lowest label on
this cycle and p(v) be its parent (see Figure 6). Since v was deleted first, p(v) must
have edges to the neighbors of v on the cycle, so we can make a new cycle by replacing
v with p(v). We continue this process until the cycle reaches h, the location of the
hunter (this must happen since the hunter is an ancestor at all times). Let us call this
cycle C. Let Cp be the cycle just before C which contains h’s child hp, instead of h.
Consider the path P = {h} ∪ (C ∩ Cp) ∪ {hp}. If the rabbit follows the cycle Cr, the
hunter can follow the path P and end up at hp which is lower than h.

We are now ready to present the hunter strategy on a dismantlable graph G.
First, the hunter builds the folding tree T for any folding sequence ψ. Afterward, he
simply guesses the vertex the rabbit will jump to and jumps to the lowest possible
ancestor of this vertex (see Figure 6). By Lemma 14 he can always remain an ancestor
of the rabbit. Further, he can reduce his height in T every time the rabbit revisits
a vertex (Lemma 15). Since the tree has a finite height, he can eventually catch the
rabbit.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 39

5.2. Extension to nondismantlable graphs. For nondismantlable graphs,
we can extend the notion of ancestry as follows. Suppose the rabbit is at r and the
hunter is at h. We say the hunter is an ancestor of the rabbit if there is a folding
of the vertices such that in the corresponding forest representation, h is located on
the path from r to the root of the tree that contains r. Once the hunter establishes
ancestry, it is easy to see that Lemmas 14 and 15 still hold—both for reactive and
general rabbits. Therefore the hunter can win the game afterward. Note that the
hunter can trivially establish ancestry on dismantlable graphs.

In addition, if we define each vertex as its trivial parent, it is clear that the rabbit
wins the game if the hunter can never become an ancestor. Therefore the class of
hunter-win graphs is precisely the class of graphs on which the hunter can become an
ancestor. One can view the stealth moves as giving the hunter the power to become
an ancestor on nondismantlable but hunter-win graphs such as the one in Figure 4.

6. Extending the rabbit’s visibility. Let us define rabbits with i-visibility as
the rabbits who can see all vertices within distance i. It is known that one hunter
always suffices to catch rabbits with 0-visibility [1]. In this paper, we studied rabbits
with 1-visibility and established that two hunters always suffice to catch such rabbits.
A natural question is how many hunters suffice when the rabbit has i-visibility.

Surprisingly, the number of hunters required for 2-visibility is unbounded: Con-
sider the random bipartite graph G = (U, V,E) with |U | = |V | = n and each edge
(u, v) is added with probability 1/

√
n.

For an arbitrary vertex u, let xi be the 0/1 random variable, which takes the
value 1 if and only if (u, i) ∈ E. The size of N(u) then becomes a random variable
X =

∑
i xi with the expected value of E[X] = n · 1√

n
=

√
n.

Using the Chernoff bound (see [14, p. 70]) with δ = 0.5,

Pr[X < (1 − δ)E[X]] < exp (−E[X]δ2/2) = exp (−
√
n/8).(1)

Let E1 be the event that a vertex has neighborhood of size less than
√
n/2. Using

the union bound and (1), the probability of E1 is at most n
exp (

√
n/8)

.

Let us also define the random variable yi which takes the value 1 if and only if
(u, i) ∈ E and (v, i) ∈ E. Here, v
= u is an arbitrary vertex. Let Y =

∑
i yi be the

size of the common neighborhood N(u) ∩N(v) with E[Y] = n · 1√
n
· 1√

n
= 1.

To bound the value of Y , we use the equation (see [14, p. 71])

Pr[Y > (1 + δ)E[Y]] < 2−(1+δ)E[Y] =
1

n3
,(2)

where δ is chosen such that (1 + δ) = 3 log(n).
Let E2 be the event that no two vertices have a common neighborhood of size

greater than 3 log(n). Summing (2) over all pairs of vertices and using the union
bound, we get that the probability of E2 is at most 1

n .
The probability that neither of the events, E1 and E2, happen is at least

p = 1 − n

e
√
n/8

− 1

n
.(3)

Since p becomes nonzero as n grows large, this means that for any (large) n, there

exists a graph G∗ where every vertex has at least
√
n

2 neighbors and the common
neighborhood of any two vertices has size at most 3 log n.

40 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

Now suppose a rabbit with 2-visibility is evading G∗. Note that the rabbit can see
the hunters all the time. Without loss of generality, suppose the rabbit is located at a
vertex u ∈ U . We can also assume that all the hunters are located in U without any
decrease in their power. It easy to see that, on G∗, the number of hunters required is

at least (
√
n

2)/(3 log n) = Ω̃(
√
n). Otherwise the rabbit will always have a safe vertex

not accessible by the hunters.

7. Concluding remarks. In this paper, we have studied a pursuit-evasion game
where the players have only local visibility. We showed that two hunters can catch the
rabbit with high probability on any graph. In addition, we presented an algorithmic
characterization of graphs on which a single hunter suffices for capture. To the best
of our knowledge, this is the only pursuit-evasion game in the literature where the
pursuers’ strategy explicitly exploits the local visibility of the evader.

An important aspect of the game is the time required to catch the rabbit. For
0-visibility, one hunter succeeds in time O(n log n) [1]. For 1-visibility we showed that
two hunters succeed in Õ(n5) time. However, it is not clear whether a single hunter
can catch a rabbit on a hunter-win graph in polynomial time. We leave this as a
direction for future work.

Acknowledgment. The authors would like to thank Sudipto Guha for several
useful discussions.

REFERENCES

[1] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, Randomized pursuit-
evasion in graphs, in Proceedings of the International Colloquium on Automata, Languages
and Programming (ICALP), Málaga, Spain, 2002, pp. 901–912.

[2] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math., 8 (1984),
pp. 1–12.

[3] T. Basar and P. R. Kumar, On worst case design strategies, Comput. Math. Appl., 13 (1987),
pp. 239–245.

[4] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd ed., Classics Appl.
Math. 23, SIAM, Philadelphia, 1998.

[5] P. Bernhard, A.-L. Colomb, and G. P. Papavassilopoulos, Rabbit and hunter game: Two
discrete stochastic formulations, Comput. Math. Appl., 13 (1987), pp. 205–225.

[6] G. R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs, J. Combin.
Theory Ser. B, 78 (2000), pp. 141–166.

[7] J. A. Ellis, I. H. Sudborough, and J. S. Turner, The vertex separation and search number
of a graph, Inform. and Comput., 113 (1994), pp. 50–79.

[8] S. Fitzpatrick and R. Nowakowski, Copnumber of graphs with strong isometric dimension
two, Ars Combin., 59 (2001), pp. 65–73.

[9] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, A visibility-based
pursuit-evasion problem, Internat. J. Comput. Geom. Appl., 9 (1999), pp. 471–493.

[10] J. P. Hespanha, G. J. Pappas, and M. Prandini, Greedy control for hybrid pursuit-
evasion games, in Proceedings of the European Control Conference, Porto, Portugal, 2001,
pp. 2621–2626.

[11] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, An efficient communication strategy
for ad-hoc mobile networks, in Proceedings of the 15th Symposium on Distributed Com-
puting (DISC’2001), University of Lisbon, Lisbon, Portugal, 2001, pp. 285–299.

[12] A. S. LaPaugh, Recontamination does not help to search a graph, J. ACM, 40 (1993), pp.
224–245.

[13] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The
complexity of searching a graph, J. ACM, 35 (1988), pp. 18–44.

[14] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[15] S. Neufeld and R. Nowakowski, A game of cops and robbers played on products of graphs,
Discrete Math., 186 (1998), pp. 253–268.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 41

[16] R. Nowakawski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math., 43
(1983), pp. 235–239.

[17] S.-M. Park, J.-H. Lee, and K.-Y. Chwa, Visibility-based pursuit-evasion in a polygonal region
by a searcher, in Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Comput. Sci. 2076, Springer-Verlag, New York,
2001, pp. 456–468.

[18] T. D. Parsons, Pursuit evasion in a graph, in Theory and Application of Graphs, Y. Alavi
and D. R. Lick, eds., Springer-Verlag, New York, 1976, pp. 426–441.

[19] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry, Probabilistic pursuit-evasion games:
Theory, implementation and experimental evaluation, IEEE Trans. Robotics and Automa-
tion, 18 (2002), pp. 662–669.

