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Abstract. We introduce the notion of unavoidable (complete) sets of word patterns, which
is a refinement for that of words, and study certain numerical characteristics for unavoidable
sets of patterns. In some cases we employ the graph of pattern overlaps introduced in this
paper, which is a subgraph of the de Bruijn graph and which we prove to be Hamiltonian.
In other cases we reduce a problem under consideration to known facts on unavoidable sets
of words. We also give a relation between our problem and intensively studied universal
cycles, and prove there exists a universal cycle for word patterns of any length over any
alphabet.
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1. Introduction

When defining or characterizing sets of objects in discrete mathematics, “languages of
prohibitions” are often used to define a class of objects by listing the prohibited subobjects,
i.e. subobjects that are not allowed to be contained in the objects of the class. The notion
of a subobject is defined in different ways depending on the objects under consideration: a
subword (a block or segment) for fragmentarily restricted languages, a subgraph for families
of graphs, a subshape for two-dimensional shapes (e.g. a submatrix for matrices) and so on.

We collect all prohibited objects into a set that we call a set of prohibited objects, or
simply a set of prohibitions. The idea of unavoidable (or complete1) set is as follows: if there
exists a restriction on the size of an object, in other words, if large enough objects must
contain prohibited subobjects, then the set of prohibitions is unavoidable.

1The word “complete” appears in e.g. [5]–[9], but the word “unavoidable” is of common use in con-
temporary literature (e.g. see [15, Chapter 3], [16]), so we decided to use the latest terminology in this
paper.

http://arxiv.org/abs/math/0311399v1
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In this paper, we are interested in unavoidable sets of word patterns, or just patterns
(see Section 3 for definitions). These patterns are an extension of the permutation patterns
studied extensively for the last twenty years (see [13] for a survey on the corresponding
problems). Our unavoidable sets of patterns are refinements for those of words. Questions
on unavoidability of sets of words appear, for instance, in algebra (sequences without repe-
titions), coding theory (chain codes), number theory (arithmetic progressions in partitions
of the set of natural numbers), dynamical systems (motions of an object in a space with
certain restrictions).

There is a number of numerical characteristics that are valuable for unavoidability criteria
and the recognition algorithms based on them. Three such characteristics, namely Mw(n),
Lw(n) and Cw(n) (for definitions see Section 2), are considered in [6]. We consider the
similar characteristics Mp(n,m), Lp(n,m) and Cp(n,m) for the case of prohibited patterns
(for definitions see Section 3), where m is the number of letters in the corresponding alphabet
(we do not use this parameter for the functions Mw(n), Lw(n) and Cw(n) to be consistent
with [6]). Moreover, in Subsubsection 3.2.2 we discuss how finding a lower bound for Cp(n,m)
is related to the so-called universal cycles for combinatorial structures that have been studied
intensively (e.g. see [4, 12] and references therein). To get the lower bound, we prove that
the graph of pattern overlaps (see definition in Section 3) is Hamiltonian, and derive as a
corollary that there exists a universal cycle for word patterns of any length over any alphabet
(see Corollary 3.11).

We remark that when considering patterns, the underlying alphabet must be ordered, as
opposed to the objects considered in [6].

The paper is organized as follows. In Section 2 we review the main results on unavoidable
sets of words in [6, 7]. The motivation for a relatively detailed review of these papers is the
fact that they are available only in Russian (as far as we know), which caused, in particular,
the rediscovery of some of those results in [16]. Besides, the results obtained in [6, 7] are of
great interest in general and very useful in this paper in particular. In Section 3, we define
the notion of a pattern, an n-pattern word, and study unavoidable sets of patterns.

2. Unavoidable sets of words

Let A = {a1, . . . , an} be an alphabet of n letters. A word over the alphabet A is a finite
sequence of letters of the alphabet. Any i consecutive letters of a word X generate a subword
of length i. The set A∗ is the set of all words over the alphabet A, and An is the set of all
words over A of length n. Let S ⊆ A∗ be a set of prohibited words or a set of prohibitions.
A word that does not contain any words from S as its subwords is said to be free from S or
S-free. The set of all S-free words is denoted by Ŝ.

If there exists a natural number k such that the length of any word in Ŝ is less than k,
then S is called an unavoidable set. This is straightforward to see that S is unavoidable if

and only if Ŝ has finitely many of elements. Thus, for any unavoidable set S we can define
the function

Lw(Ŝ) = max
X∈Ŝ

ℓ(X),
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where ℓ(X) is the length of a word X .

The basic problem in considering of sets of prohibitions is whether or not a given set S
of prohibitions is unavoidable. Other possible questions are: given an unavoidable S find or

estimate Lw(Ŝ); construct an S-free word of length Lw(Ŝ); find the number of elements in Ŝ.
If S is avoidable then some possible questions are: find an infinite S-free sequence; describe
all such sequences; find the cardinality of the set of these sequences; find the cardinality of
the set of finite S-avoiding sequences of a given length.

Let S be a finite set of words over an alphabet A, and let n be the maximal length of a
word in S. If a word X is a subword of a word Y then we say that Y is a superword for
X . Suppose now that a word X ∈ S and ℓ(X) < n. Remove X from S and adjoin to S
all superwords for X of length n. If this procedure is performed for any such X , and all
resulting repetitions are removed, we will get a set S

′

of distinct words of length n.

Proposition 2.1. ([6, Proposition 1]) S is unavoidable iff S
′

is unavoidable.

Thus, sets of prohibitions S ⊆ An are of special interest, and for the most part, our
considerations in this paper are related to these sets. More precisely, we will consider the
functions

Mw(n) = min |S| and Lw(n) = maxLw(Ŝ),

where the extremum is taken with respect to all unavoidable S ⊆ An. These functions
are examples of numerical characteristics that describe the bound between avoidable and
unavoidable sets of prohibitions. To give an instance of such a bound, we consider the
following example.

Example 2.2. ([6, Examples 1,2]). Consider A = {0, 1} and the sets of prohibitions

S1 = {000, 001, 1011, 0101, 1111},

S2 = {000, 001, 1010, 0101, 1111}.

Thus S1 and S2 differ only in one underlined letter. One can see that S1 is unavoidable, and

Lw(Ŝ1) = 8. On the other hand, S2 is avoidable. Indeed,

011︸︷︷︸ 011︸︷︷︸ . . . and 0111︸︷︷︸ 0111︸︷︷︸ . . .
are S2-free, and

011︸︷︷︸ 0111︸︷︷︸ and 0111︸︷︷︸ 011︸︷︷︸
are S2-free. Hence, substituting 0 7→ 011 and 1 7→ 0111 in any sequence over A, we get an
S2-free sequence. Hence, the cardinality of Ŝ2 is the continuum.

In what follows, we will need the following graph. A de Bruijn graph is a directed graph
~Gn = ~Gn(V,E), where the set of vertices V is the set of all words in An, and there is an arc
from u ∈ An to v ∈ An if and only if

u = aw and v = wb for some w ∈ An−1 and a, b ∈ A.

Figure 1 shows the de Bruijn graphs for a 2-letter alphabet and n = 2, 3.
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Figure 1. The de Bruijn graphs for the alphabet A = {0, 1} and n = 2, 3.

The de Bruijn graphs were first introduced (for the alphabet A = {0, 1}) by de Bruijn in
1944 for finding the number of code cycles. However, these graphs proved to be a useful tool
for various problems related to combinatorics on words (e.g. see [6, 7, 11]). It is known that

the graph ~Gn can be defined recursively as ~Gn = L( ~Gn−1), where L indicates the operation
of taking the line graph.

A chord of a directed simple path ~P in ~Gn is an arc that does not belong to ~P but connects
two of its vertices in a such way that there is a circuit generated by this arch and the part
of the path between the ends of the arc. For instance, on Figure 2 the arc ~BA is a chord for
the path ~P , whereas ~AB is not.

Let Cw(n) denote the greatest length (the number of vertices) of a simple path in ~Gn that
does not have chords and does not go through any vertex that has a loop. The following
theorem was proved by considering the de Bruijn graph.

Theorem 2.3. ([6, Theorem 1]) Lw(n) = Cw(n) + n− 1 = |A|n−1 + n− 2.

The following theorem was proved using the cyclic structure of the de Bruijn graph (the
main result of [11]) as well as the number of conjugacy classes of words with respect to a
cyclic shift.

A

P

B

Figure 2. The arc ~BA is a chord for the path ~P , but ~AB is not.
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Theorem 2.4. ([6, Theorem 2])

Mw(n) =
1

n

∑

d|n

ϕ(n/d)|A|d,

where ϕ(n) is the number of integers in {1, 2, . . . , n − 1} relatively prime to n (Euler’s ϕ-
function).

Since any set of prohibitions S with |S| < Mw(n) is avoidable, it is helpful to have a table
for Mw(n). For |A| = 2 and 2 ≤ n ≤ 10, see Table 1.

n 2 3 4 5 6 7 8 9 10
Mw(n) 3 4 6 8 14 20 36 60 108

Table 1. The function Mw(n) for 2 ≤ n ≤ 10 and a 2-letter alphabet.

In particular, any set of binary words of length 9 that has less than 60 words is avoidable.
Also, it is obvious that Mw(n) ∼ |A|n/n, when n → ∞. The last observation allows us to
prove the following statement.

Proposition 2.5. ([7, Proposition 1]) There exist at least 2|A|n(1−εn) unavoidable sets S ⊆
An. Here εn → 0 when n → ∞.

3. Unavoidable sets of patterns

The alphabets considered in this section must be totally ordered, and without loss of
generality they coincide with [m] = {1, 2, . . . , m} for an appropriate m.

We refer to [13] for a general survey of various pattern problems. However, in this paper
we are concerned only with word patterns studied for the first time in [2]. More precisely, we
consider the word patterns without internal dashes (see [13]). For this paper, we can define
a pattern to be a subword (of a word) that contains each of the letters 1, 2, . . . , k at least
once for some k, and no other letters. For instance, the word 2613235 contains an occurrence
of the pattern 1323, but its subword 2613 is not a pattern. By analogy with Section 2, if a
word does not contain a pattern p, it is free from p or p-free. However, the crucial difference
between this section and Section 2 is that instead of considering words free from a pattern
p, we consider the objects that we call the n-pattern words. An n-pattern word is a word in
which each subword of length n is a pattern. Thus, constructing n-pattern words, we can
restrict ourselves to alphabets having at most n-letters. Indeed, an occurrence of a letter
m > n in a subword A of length n of an n-pattern word W contradicts the fact that A must
be a pattern (A must contain each of the letters 1, 2, . . . , m).

By analogy with Section 2, when dealing with sets of prohibited words, we can consider sets
of prohibited patterns, or simply sets of prohibitions, when it is clear which prohibitions we
mean. We can also define the notion of an unavoidable set here in the same way. However,
in considering prohibited patterns and n-pattern words, we assume that all prohibitions
are of length n. Hence, for patterns, we can define the functions Lp(n,m) and Mp(n,m)
similarly to Lw(n) and Mw(n) (recall that m is the number of letters in the alphabet). As in
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Section 2, the basic problem is whether or not a given set Sp of prohibitions is unavoidable,
and Lp(n,m) and Mp(n,m) are important numerical characteristics to study.

3.1. The function Mp(n,m). Recall that the Möbius function is defined by

µ(n) =





0, if n has one or more repeated prime factors,

1, if n = 1,

(−1)k, if n is a product of k distinct primes,

so µ(n) 6= 0 indicates that n is square-free.

The purpose of this subsection is to prove the following theorem.

Theorem 3.1. For n-pattern words over [m], we have

Mp(n,m) =
∑

i|n

min(i,m)−1∑

j=0

(−1)j
(
min(i,m)− 1

j

)
1

i

∑

d|i

µ(d)(min(i,m)− j)
i
d ,

where Mp(n,m) = min |Sp|, and the minimum is taken over all unavoidable sets Sp of pat-
terns of length n over the alphabet [m].

One can compare this result with that of Theorem 2.4.

Remark 3.2. In Theorem 3.1, we can assume that n ≥ m, since if n < m we can only use
the first n letters in [m] to construct n-pattern words, which reduces to the case n = m.

Remark 3.3. For n = m, we have min(i,m) = i in the formula of Theorem 3.1.

To prove Theorem 3.1, we introduce the graph of pattern overlaps ~Pn = ~Pn(V,E), which

is a subgraph of the de Bruijn graph ~Gn, where the set of vertices V contains all n-letter
patterns over the underlying alphabet A, and the set of arcs E consists of all the arcs of ~Gn

between vertices corresponding to the patterns. In Figure 3, we can see the graph of pattern
overlaps in the case of a 3-letter alphabet and n = 3 (we omit parentheses around the triples

on the graph to indicate that we are dealing with ~P3, not ~G3).

Let Tp(n,m) denote the number of conjugacy classes of patterns of length n over the alpha-
bet [m] with respect to a cyclic shift. For instance, there are 5 conjugacy classes on Figure 3.
They are {111}, {112, 121, 211}, {221, 212, 122}, {321, 213, 132} and {312, 123, 231}. Thus,
Tp(3, 3) = 5.

Lemma 3.4. Mp(n,m) = Tp(n,m)

Proof. To prove the lemma, we follow the proof of Theorem 2.4 in [6].

Suppose Sp is an unavoidable set of patterns of length n and X is an arbitrary n-pattern
word of length n (X is a pattern) over [m]. We form the sequence

X∞ = XXX . . . ,
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111

122

213 312

231

123

212

221

121

132

321

211

112

Figure 3. The graph of pattern overlaps for A = {1, 2, 3} and n = 3.

by repeating the word X periodically. Since Sp is unavoidable, X∞ contains a prohibited
pattern p ∈ Sp. From the construction of the sequence, p is either X or a cyclic shift of X .
Thus Sp contains a pattern from each conjugacy class of patterns of length n over [m] with
respect to a cyclic shift. Thus, |Sp| ≥ Tp(n,m), and since Sp is an arbitrary set, we have

Mp(n,m) ≥ Tp(n,m).

To prove that Tp(n,m) is an upper bound, we need to find an unavoidable set of cardinality

Tp(n,m). We consider the graph ~Pn whose vertices correspond to the words over [m]. If

V ′ ⊂ V (~Pn) and each circuit of ~Pn contains a vertex in V ′ then we say that V ′ cuts all

circuits of ~Pn. By deleting all such V ′ with all incident arcs from ~Pn, we get an acyclic graph
on the vertex set V \V ′. The set of the patterns in [m]n corresponding to the vertices in V ′

is unavoidable. Indeed, if not, a sequence free from V ′ determines a self-intersecting walk in
~Pn and thus generates a circuit on the vertex set V \V ′, which is impossible.

Golomb [11] found a set of vertices Vc that cuts all circuits of the de Bruijn graph ~Gn

with |Vc| equal to the number of conjugacy classes of the words. Thus Vc cuts all circuits

in ~Gn and has one vertex in each conjugacy class. Since ~Pn is a subgraph of ~Gn, ~Pn will
have no circuit after removing the vertices in Vc. The set of vertices in Vc that belong to ~Pn

corresponds to an unavoidable set, and thus

Mp(n,m) ≤ Tp(n,m).

This proves the lemma. �

Lemma 3.5.

Tp(n,m) =
∑

i|n

min(i,m)−1∑

j=0

(−1)j
(
min(i,m)− 1

j

)
1

i

∑

d|i

µ(d)(min(i,m)− j)
i
d .

Proof. Recall that a word x ∈ A∗, where A is any (ordered or unordered) alphabet, is called
primitive if it is not a power of another word. Thus x 6= ∅ is primitive if x = ye only for
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e = 1. For instance, the words 121, 1221, 12121 are primitive, whereas the word 121212
is not. It is easy to show that each nonempty word is a power of a unique primitive word.
Thus, x = re for a unique primitive word r. The number e is called the exponent of x. It is
also easy to see that all words, and hence all patterns, in the same conjugacy class have the
same exponent. Moreover, if x1 = re1 and x2 = re2 and |x1| = |x2|, then x1 is conjugate to x2

iff r1 is conjugate to r2. We define the notion of a primitive pattern in the same way as for
words. Clearly, all properties of primitive words hold for primitive patterns as well.

So, in order to find Tp(n,m), we need to find the number of conjugacy classes of primitive
patterns of length i over the alphabet [m], where i|n, and then take a sum of these numbers.
However, for a given i, we cannot use directly the well known formula for the number of
conjugacy classes of primitive words over min(i,m)-letter alphabet (a primitive word of
length i can have at most i distinct letters, since we are dealing with patterns), given by

1

i

∑

d|i

µ(d)(min(i,m))
i
d .

Indeed, this formula counts, among others, primitive words which are not primitive patterns
(when some letter j, 2 ≤ j ≤ min(i,m) − 1, occurs in a primitive pattern whereas j − 1
does not). So, we need to use the standard inclusion-exclusion method (the sieve formula)
to handle this situation. We define the property Aj to be “the letter j does not occur in
a primitive word”. Clearly we may restrict ourselves to the case j ≤ min(i,m) − 1, since
the absence of the largest letter, namely min(i,m), is not a bad property when considering
patterns. Now we easily get the number of primitive patterns of length i, which is given by

min(i,m)−1∑

j=0

(−1)j
(
min(i,m)− 1

j

)
1

i

∑

d|i

µ(d)(min(i,m)− j)
i
d .

This proves the lemma. �

Now the truth of Theorem 3.1 follows from Lemmas 3.4 and 3.5.

3.2. The function Lp(n,m). Let Cp(n,m) denote the greatest length (the number of ver-

tices) of a simple path in ~Pn that does not have chords (see the definition in Section 2) and
does not pass through any vertex incident with a loop. Using exactly the same considerations
as in the proof of Theorem 2.3 (see [6]), one can prove the following theorem.

Theorem 3.6. Lp(n,m) = Cp(n,m) + n− 1.

Moreover, in the case m = 2, the de Bruijn graph ~Gn almost coincides with the graph of
pattern overlaps ~Pn. Indeed, the only difference between these graphs is the vertex (22 . . . 2)
and all edges adjacent to that vertex (22 . . . 2 is the only binary non-pattern). However, the
lemma to Theorem 2.3 (see [6]) provides that in the binary case Cw(n) = 2n−1−1, and since
Cw(n) is the maximal length of a path that, in particular, does not pass through the loop
(22 . . . 2), we have that in this case Cw(n) = Cp(n, 2). Thus the following theorem is true:

Theorem 3.7. Lp(n, 2) = 2n−1 + n− 2.
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However, in the case m ≥ 3, the only useful information we can extract from Theorem 2.3
is the following rough bound

Lp(n,m) < mn−1 + n− 2.

So, according to Theorem 3.6 we need to find Cp(n,m) in order to get Lp(n,m). The purpose
of the rest of the subsection is to find an upper and a lower bound for Cp(n,m) for m ≥ 3.

3.2.1. An upper bound for Cp(n,m). We only give a trivial upper bound. Clearly, in order
to avoid chords, each conjugacy class (with respect to shift) which has i words can have no
more than i− 1 words in the path. Thus, we use the formula for Tp(m,n) with a correction,
namely the factor of i−1, which indicates that each primitive word of length i is responsible
for a conjugacy class of i elements, and we take i− 1 elements out of these i:

Cp(n,m) ≤
∑

i|n

(i− 1)

min(i,m)−1∑

j=0

(−1)j
(
min(i,m)− 1

j

)
1

i

∑

d|i

µ(d)(min(i,m)− j)
i
d .

3.2.2. A lower bound for Cp(n,m). We observe that the line graph L(~Pn−1) for the graph
~Pn−1 determines a subgraph of the graph ~Pn. We get that by using the general properties of

the de Bruijn graph (since ~Pn is its subgraph), as well as the fact that if x1x2 . . . xn−1 and

x2x3 . . . xn are vertices in ~Pn−1, then the arc between them generates the vertex x1x2 . . . xn

in the line graph, and x1x2 . . . xn is a pattern and thus belongs to ~Pn. Moreover, from the
considerations in the proof of Theorem 2.3 (see [6]), it follows that a simple path in ~Pn−1

determines a simple path without chords in ~Pn after removing the loop 11 . . . 1.

So, in order to get a lower bound for Cp(n,m), we need to construct a simple path in ~Pn−1

of as great a length as possible (ideally a Hamiltonian path). In order to get a Hamiltonian
path or a path that is “close” to a Hamiltonian one, we can try to use the methods and
techniques similar to those used in constructions of universal cycles for various combinatorial
structures such as words, permutations, partitions, and others (e.g. see [4, 12]).

We briefly discuss the general notion of a universal cycle (see [4]).

Suppose we are given a family Fn of combinatorial objects of “rank n” and let m := |Fn|
denote their number. We assume that each F ∈ Fn is “generated” or specified by some
sequence x1x2 . . . xn, where xi ∈ A for some fixed alphabet A. We say that U = a0a1 . . . am−1

is a universal cycle (or a U -cycle) for Fn if ai+1ai+2 . . . ai+n, 0 ≤ i < m, runs through each
element of Fn exactly once, where index addition is performed modulo n.

In our case the combinatorial objects are patterns of length n, and as in many other cases
(e.g. de Bruijn cycles, permutations, partitions), but not in all cases (e.g. k-subsets of an n-
set), it is possible to define a directed transition graph, namely the graph of pattern overlaps
~Pn, and reduce the problem of constructing a U-cycle to constructing a Hamiltonian circuit
for ~Pn. Even though we do not need a Hamiltonian circuit (since we are concerned with
paths of maximal length), but we can still try to use the same techniques as in [4, 12] and
in references therein.
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However, it turns out that the abovementioned techniques work only for m = 2, which
we are not interested in since we have an explicit result in this case (see Theorem 3.7). The
main problem is that the graph of pattern overlaps is not balanced, i.e. we have vertices
where the indegree is not equal to the outdegree. Also, ~Pn is not the line graph of ~Pn−1.
However, it is possible to prove the following statement.

Theorem 3.8. The graph of pattern overlaps ~Pn contains a Hamiltonian circuit.

Proof. We first observe that ~Pn is strongly connected. Indeed, suppose we are given two
vertices of ~Pn, namely X = x1x2 . . . xn and Y = y1y2 . . . yn. If I denotes the vertex 11 . . . 1,
then we can find a path ~PX from X to I. Indeed, If xi is the largest letter in X , then we
consider the following path in ~Pn:

X = x1x2 . . . xn → x2x3 . . . xnx1 → · · · → xixi+1 . . . xi−1 → xi+1 . . . xi−11 = X ′.

Thus, in X ′ we get 1 in place of the largest letter of X . We observe that X ′ is obviously a
pattern. Clearly, we can continue this path by replacing the largest letters, one by one, with
1’s until we arrive at I. On the other hand, it is easy to see that the operation of changing a
largest letter to 1 is invertible. For instance, in order to find a path from X ′ to X , we may
do the following sequence of steps:

X ′ = xi+1 . . . xi−11 → xi+2 . . . 1xi+1 → · · · → 1xi+1 . . . xnx1 . . . xi−1 →

xi+1 . . . xnx1 . . . xi−1xi → xi+2 . . . xixi+1 → · · · → x1x2 . . . xn = X.

Thus, we can find a path from I to Y , which together with the path ~PX , gives a path from X
to Y . Similarly, one can get a path from Y to X , which proves that ~Pn is strongly connected.

The main property we use when proving ~P has a Hamiltonian circuit is illustrated in
Figure 4A. It says that if C1 and C2 are two circuits corresponding to different conjugacy
classes with respect to the shift, and there is an arc from C1 to C2 then there is an arc from
C2 to C1 and vise versa. Moreover, in all cases but one (see discussion below), we can choose
these arcs as in the Figure 4A, that is once we leave C1 at the vertex xW , we can come back,
after visiting C2, at the vertex Wx, which is adjacent to xW on the circuit C1. The notation
xW (resp. Wx) is used to indicate a pattern of length n with the first (resp. last) letter x.
The only exception when the picture differs from that on Figure 4A is the loop 11 . . . 1, and
there is only circuit adjacent to it, namely the one generated by 11 . . . 12. In this case xW
coincides with Wx, which however does not affect our considerations below.

The basic idea: We show the existence of a Hamiltonian circuit iteratively, starting from
any circuit corresponding to a conjugacy class with respect to the shift, and on each following
iteration creating a new circuit that contains the previous one and has more vertices since
it covers additional circuits corresponding to some conjugacy classes (by covering here we
mean containing all the vertices from a circuit in our big circuit). Moreover, we construct
the big circuit so that once it arrives at a new circuit corresponding to a conjugacy class, it
uses all the vertices from that circuit before leaving. We keep doing that using the fact that
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Wy

Wx xW
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Figure 4. Circuits in ~Pn.

~Pn is a disjoint union of the circuits corresponding to the conjugacy classes, until we create
a Hamiltonian circuit.

Let H1 be an arbitrary circuit corresponding to a conjugacy class with respect to the shift.
Now assume we made i iterative steps and obtained a circuit Hi. If Hi covers all the vertices
of ~Pn, then we are done. Otherwise, on iteration i+ 1 we proceed as follows.

The fact that ~Pn is strongly connected ensures that there is an arc from a circuit C covered
by Hi to a circuit which is not covered by Hi. Our strategy is to start from the vertex where
Hi arrived at C, then go around C following Hi vertex by vertex, until we reach the vertex
in which Hi leaves C, and at each step, checking if it is possible to extend Hi according to
the following considerations.

Assume we are in the vertex xW in C. If there is only one arc coming out of C, namely
the arc to the vertex Wx belonging to C, then we cannot extend Hi at this step, so we need
to consider the next vertex Wx instead. Otherwise, there are j ≥ 1 arcs that come out
from xW to j different circuits corresponding to some conjugacy classes (we denote the set
of these circuits by B). The case j = 1 is shown on Figure 4A, if we assume C = C1. In
this case there are two possibilities: either C2 is covered by Hi or not. In the first case we
cannot extend Hi, so we need to consider the vertex Wx belonging to C to proceed further.
In the second case, we can extend Hi by going to the vertex Wy, then through the vertices
belonging to C2 until we reach yW , then we come back to C at the vertex Wx.

When j > 1, either all circuits from B are already covered by Hi, or there is a number of
circuits that are not covered by B B (we denote the set of these circuits by B0). In the first
cannot extend Hi and we need to continue to proceed to the vertex Wx. We claim that in
the second case there is a path starting from the vertex xW , going through all the vertices
from the circuits from B0 and coming to the vertex Wx. We can extend Hi with this path.
This claim is not hard to prove for any j, for instance by induction. However, we only give
our proof in the case j = 3 (see Figure 4B) as it is easily generalizable.

In Figure 4B, Wy, Wz, and Wu are representatives from the circuits C3, C2 and C1

respectively, which belong to B. The key observation here is that any other circuit in B is
as good as C, that is, e.g. we can go from xW to any of the vertices yW , zW and uW , but
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we can also go from, say, uW to any of these vertices. If B = B0, then we can start at xW ,
go to Wu, go to uW through C1, then to Wz, then go to zW through C2, to Wy, to yW
through C3 and finally come to Wx, in which case we succeeded to extend Hi. If B 6= B0, we
use the same procedure simply skipping the circuits not in B0. E.g. if C2 /∈ B0, we change
the path above by going from uW directly to Wy, again extending Hi.

Thus, we constructed the circuit Hi+1 that contains more vertices than Hi does. Since ~Pn

has finitely many vertices, ~Pn must contain a Hamiltonian circuit. �

Remark 3.9. The proof of theorem 3.8 can be simplified, if we add exactly one circuit
corresponding to a conjugacy class at each iteration. Indeed, in this case we do not need
to consider the sets B and B0 used in the proof, as well as the illustration on Figure 4B.
Thus, once we find a circuit to add to the big circuit, we can start a new iteration. However,
we keep the more complicated proof since it helps understand the structure of the graph of
pattern overlaps more deeply.

Remark 3.10. One can test how the algorithm of finding a Hamiltonian circuit in ~Pn works
in the case n = 3 and m = 3 on Figure 3.

As an immediate corollary to Theorem 3.8 we have the following:

Corollary 3.11. For any m and n, there exists a U-cycle for word patterns of length n over
an m-letter alphabet.

The following proposition is easy to prove using elementary combinatorics.

Proposition 3.12. The number of different word patterns of length n on m letters is
m∑

i=1

∑

a1+···+ai=n

a1≥1,...,ai≥1

(
n

a1, . . . , ai

)
.

Now, using the discussion in the beginning of the subsubsection, Theorem 3.8 and Propo-
sition 3.12, we obtain the following proposition.

Proposition 3.13. Cp(n,m) ≥
m∑

i=1

∑

a1+···+ai=n−1

(
n− 1

a1, . . . , ai

)
.

As a final remark, we observe, that another way to get the number of different word
patterns of length n on m letters is using a correction in the formula for Tp(m,n) like we did
when we obtained the upper bound for Cp(n,m). But in this case the correction is i rather
then i − 1, which says that we consider each conjugacy class with respect to shift and find
the number of elements in it. Thus, i and 1/i cancel each other, and we get a combinatorial
proof of the following identity:

m∑

i=1

∑

a1+···+ai=n

a1≥1,...,ai≥1

(
n

a1, . . . , ai

)
=

∑

i|n

min(i,m)−1∑

j=0

(−1)j
(
min(i,m)− 1

j

)∑

d|i

µ(d)(min(i,m)− j)
i
d .
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