
On the size of weights for threshold gates

Johan H�astad

Royal Institute of Technology

100 44 Stockholm, SWEDEN

Abstract

We prove that if n is a power of 2 then there is a threshold function

that on n inputs that requires weights of size around 2(n log n)=2�n.

This almost matches the known upper bounds.

keywords: Threshold function, computational complexity, neural nets.

AMS classi�cation: 68R05

Warning: Essentially this paper has been published in SIAM Jour-

nal on Discrete Mathematics and is hence subject to copyright

restrictions. It is for personal use only.

1 Introduction

One very interesting computational element is that of a threshold gate. A
threshold gate of n inputs is speci�ed by a set of weights w1; w2 : : : wn and
a threshold t. On input x1; x2 : : : xn it outputs sign(

Pn
i=1wixi � t). In this

notation we assume that the gate computes a function f�1; 1gn 7! f�1; 1g,
but the set f�1; 1g could be replaced by and two element set (e.g. by f0; 1g).

Threshold circuits, i.e. circuits that contain threshold gates have been
studied extensively. On the more theoretical side one has established many
upper and lower bounds on the power of small depth threshold circuits. For
a discussion of these results we refer to [1] and its references. It is striking
to note that there are no known strong lower bounds for general depth 2
threshold circuits. On the more applied side we note that threshold circuits
have many similarities with neural networks. We refer to [2, 5, 6] for more
information on these connections and the area in general.

1



For both type of investigations mentioned above it is important to un-
derstand what conditions can be put on the weights wi. Since some �nite
amount of precision is always su�cient it is easy to see that we can as-
sume that the weights are integers. Furthermore, it has been proved many
times (one early source is [4]) that if we have a function with n inputs
then jwij � 2�n(n + 1)(n+1)=2 is su�cient. Since there are at least 2n

2=2

di�erent threshold functions ([4],[8],[9]), there are some functions that re-
quire max jwij on the order of 2n=2. On the other hand there are at most
2n

2
threshold functions [3], [7] and hence these are the essentially the best

bounds that can be proved by this type of simple counting.
There are also known explicit functions which require weights of size at

least cn for some constant c > 1. In particular, if we let the input encode
two numbers in binary and ask which number is the greater, then a lower
bound of essentially 2n=2 holds. There are other, slightly more complicated,

explicit functions giving a value of c up to 1+
p
5

2 [6].
The above mentioned bounds imply that 
(n) bits are sometimes needed

and O(n logn) bits are always su�cient to specify the individual weights.
The gap between these two bounds are not substantial enough to matter
greatly in arguments in complexity theory. The reason for this is that one
in general is only interested whether the quantities are polynomial in size.
However the gap is rather large and the goal of the this paper is to bring
the two bounds closer together. We do this by improving the lower bound
for an explicit function Fn. We prove that when n � 8 is a power of 2,
this function requires jwij �

1
2ne

�4n�2(n log n)=2�n for all i, where � = log2
3
2 .

Comparing to the known upper bounds we see that this is essentially tight.
The outline of the paper is as follows. In Section 2 we de�ne our function

and prove the lower bound on the size of the weights needed to realize this
function. In Section 3 we recall the proof for the upper bound on the weights
and we end by some �nal comments in Section 4.

2 A function requiring large weights

Let us assume that n is a power of two and that n = 2m. We will use
f�1; 1g notation throughout and we will think of vectors in f�1; 1gn as
functions from f�1; 1gm to f�1; 1g. This convention makes us use two
types of functions. Those on m variables and those on n variables. We
will use the former as inputs to the latter. To decrease the possibility of
confusion we reserve capital letters for functions on n inputs.

2



For � � [m] = f1; 2 : : : mg let '� be the character function i.e. '�(x) =Q
i2� xi where we let '; be the function which is identically 1. Choose an

ordering of �0; �1 : : : �n�1 of the sets such that:

1. j�ij � j�j j for i � j.

2. j�i��i+1j � 2 for all i, where j�i��i+1j is the symmetric di�erence of
the two sets �i and �i+1.

This implies that �0 = ; and �1, �2 : : : �m are the singletons and that
j�i��i+1j = 1 when j�i+1j = j�ij+ 1 while j�i��i+1j = 2 otherwise.

Lemma 2.1 There is an ordering that satis�es conditions 1 and 2 above.

Proof: Assume that we have an ordering of all sets containing at most d
elements satisfying conditions 1 and 2, and also an ordering of the set with
d + 1 elements which satis�es condition 2. If we think of these orderings
as lists, we can concatenate them. This might create an illegal ordering in
that condition 2 might not be satis�ed when j�ij = d and j�i+1j = d + 1.
However, if we just permute the names of the elements in the sets of size
d+1 we can take care of this condition and the concatenated list will satisfy
both conditions.

The above reasoning implies that the only problem is to �nd an ordering
of the d-element subsets of [m] for any d � m. We prove this by an induction
over d and m. The base cases d = 1 and d = m are obvious. In the general
case we �rst list all the sets of size d containing m and the all the other
sets. This �rst part of the list is essentially a list of all (d � 1)-element
subsets from [m� 1], while the second part consists of all d-element subsets
of the same set. Both can be given appropriate orderings by induction and
thus the only problem is the connection between the two sublists. However,
as above, by possibly permuting the names of the elements in the second
list, this connection can be made to satisfy condition 2. This completes the
induction step and hence the lemma follows.

Let (f; g) denote the inner product of the functions f and g. De�ne
F (f) : f�1; 1gn 7! f�1; 1g as sign((f; '�i)) where i is the largest index
such that (f; '�i) 6= 0. This function is a threshold function since

F (f) = sign

 
n�1X
i=0

(n+ 1)i(f; '�i)

!

3



and (f; '�i) is a linear function in the values f(j). This expression is correct
since j(f; '�i)j � n for all i.

We want to prove that if

F (f) = sign

0
@n�1X

j=0

wjf(j)� t

1
A

then one of wj is large. First let us observe something easy:

Lemma 2.2 We can assume that t = 0.

Proof: Note that F (f) = �F (�f). Hence j
Pn�1

j=0 wjf(j)j > jtj for any f
and we can set t = 0 without changing the function.

It will be easier to work with expressions of the form

sign

 
n�1X
i=0

w0
i(f; '�i)

!
:

This can be done by the following lemma:

Lemma 2.3 We have

n�1X
j=0

wjf(j) =
n�1X
i=0

w0
i(f; '�i)

for all f i�

w0
i =

1

n

n�1X
j=0

wj'�i(j)

and

wj =
n�1X
i=0

w0
i'�i(j):

Proof: The second statement follows from rearranging the terms. To see
the �rst note that by Fourier inversion

f(j) =
1

n

n�1X
i=0

'�i(j)(f; '�i):

This implies

n�1X
j=0

wjf(j) =
n�1X
j=0

wj
1

n

n�1X
i=0

'�i(j)(f; '�i ) =
1

n

n�1X
i=0

(f; '�i)
n�1X
j=0

wj'�i(j)

and the lemma follows.

4



We will establish that F requires large weights and in particular we have.

Theorem 2.4 Assume that n is a power of 2 and

F (f) = sign

 
n�1X
i=0

wi(f; '�i)

!

where wi are integers, then wn�1 � e�4n�2(n log n)=2�n, where � = log(3=2).

Before we prove Theorem 2.4 let us �rst deduce the corresponding result
when using the normal representation of threshold gates.

Theorem 2.5 Assume that n is a power of 2 and

F (f) = sign

0
@n�1X

j=0

wjf(j)

1
A

where wj are integers, then for some j, we have jwj j �
1
ne

�4n�2(n log n)=2�n,
where � = log(3=2).

Proof: (Of Theorem 2.5) If we have an expansion of the kind given in the
theorem then by Lemma 2.3 setting

w0
i =

1

n

n�1X
j=0

wj'�i(j)

we convert it to an expansion of the form considered in Theorem 2.4. The w0
i

might not be integers, but nw0
i are integers for all i. Multiplying every weight

by the same integer does not change the function and hence by Theorem 2.4
nwn�1 � e�4n�2(n log n)=2�n. This is equivalent to saying that

n�1X
j=0

wj'�i(j) � e�4n�2(n log n)=2�n

and the theorem follows.

Let us now prove Theorem 2.4.

Proof: (Of Theorem 2.4) Let us start by an easy observation.

Lemma 2.6 For any i, wi > 0.

Proof: This follows from setting f = '�i and noting that F (f) = 1 for
such f .

5



By choosing a suitable sequence of test functions f we will prove that
wi have to grow exponentially. Since the ordering of the �i is not explicit
we will sometimes use the notation w� which should be read as wi where i
is chosen such that �i = �.

Lemma 2.7 Suppose j�i+1j = j�ij = k where 2 � k � n � 1 and that

�i��i+1 = fa; bg. Let v 2 f�1; 1gm be any point with va = vb, then

wi+1 > (2k�1 � 1)wi �
0X
'�i(v)'�(v)w�

where the sum extends over all � such that � � �i
S
�i+1 and � contains

exactly one of a and b and � is not equal to �i or �i+1.

Proof: Let us assume that �i = f1; 2 : : : kg and �i+1 = f1; 2 : : : k�1; k+1g.
Let v1 be a vector of length k + 1 which satis�es v1j = vj for 1 � j � k + 1.
Furthermore let v2 be a similar vector such that v2j = vj for j < k and
v2j = �vj for j = k and j = k+ 1. De�ne the following function on the �rst
k + 1 variables:

f(w) =

(
'�i(w) if w = v1 or w = v2

�'�i(w) otherwise

We extend f to a function of m variables by ignoring the rest of the
variables. First note that (f; '�) = 0 for any � that contains an element
larger than k+1. We have that (f; '�i) = 2m�k�1(4� 2k+1) while for other
� � f1; 2 : : : k + 1g we have

(f; '�) = (�'�i ; '�) + 2m�k'�i(v
1)'�(v

1) + 2m�k'�i(v2)'�(v2)
= 2m�k'�i(v1)'�(v1)(1 + '�i(v

1v2)'�(v
1v2))

where v1v2 is the pointwise product of v1 and v2. Since this vector is 1
except for coordinates k and k + 1 we get a nonzero inner product i� � �
f1; 2; : : : k + 1g and � contains exactly one of the elements k and k + 1.
The only two sets of size k with these properties are �i+1 and �i while all
other sets with these properties have cardinality at most k � 1. Note that
by property 1 of our ordering all these sets appear before �i and this implies
that F (f) = sign(('�i+1 ; f)) = 1. Writing this statement as an inequality
of the weights yields the inequality of the lemma.

6



Next we have

Lemma 2.8 Suppose j�i+1j = 1 + j�ij = k where 2 � k � n � 1 and

�i+1 = �i
S
fag, then for any vector v with va = 1 we have

wi+1 > (2k�1 � 1)wi �
X

���i+1;�6=�i
'�i(v)'�(v)w�

Proof: Let us assume that �i = f1; 2 : : : k � 1g and �i+1 = f1; 2 : : : ; kg
and let v1 be the vector of length k which satis�es v1j = vj for 1 � j � k.
De�ne the following function on the �rst k variables:

f(w) =

(
'�i(w) if w = v1

�'�i(w) otherwise

Extend f to a function ofm variables by ignoring the rest of the variables.
Again (f; '�) = 0 for any � that contains an element larger than k. Clearly
(f; '�i) = 2m�k(2� 2k) while for other � � f1; 2 : : : kg we have

(f; '�) = (�'�i ; '�) + 2m+1�k'�i(v
1)'�(v

1) = 2m+1�k'�i(v
1)'�(v

1)

Again F (f) = sign(('�i+1 ; f)) = 1 and writing out the corresponding in-
equality for the weights gives the lemma.

Using the above two lemmas we will establish the main lemma for the
proof of Theorem 2.4.

Lemma 2.9 For each i such that j�i+1j � 2 we have wi+1 > (2j�i+1j�1 �
1)wi. Furthermore if � = fa; bg then

w� > wfag + wfbg +w0:

Proof: We establish the lemma by induction over i and we need to handle
the cases with j�i+1j small separately.

Let us �rst establish the lower bounds for w� when j�j = 2. Suppose
a = 1 and b = 2 and construct the function of the proof of Lemma 2.8 when
�i+1 = �, �i = f1g and v1 = (�1; 1). This shows that

w� > wf1g + wf2g + w0:

Let us now establish the lemma when j�i+1j = j�ij = 2. Suppose �i+1 =
f1; 3g and �i = f1; 2g. Then apply Lemma 2.7 with v1 = (�1; 1; 1). This
gives

wi+1 > wi + wf2g + wf3g:

7



Next suppose j�i+1j = 3 and j�ij = 2. We might assume that �i+1 =
f1; 2; 3g and �i = f1; 2g. Apply Lemma 2.8 with v1 = (�1;�1; 1). This
gives

wi+1 > 3wi + wf1;3g +wf2;3g + wf1g + wf2g � wf3g � w0 > 3wi

where the last inequality follows from the already established bounds.
Let us now take the case j�i+1j = j�ij = 3, where we assume that �i+1 =

f1; 2; 4g and �i = f1; 2; 3g. Apply Lemma 2.7 with v1 = (�1;�1; 1; 1). This
gives

wi+1 > 3wi + wf1;3g + wf2;3g + wf1;4g + wf2;4g � wf3g � wf4g > 3wi:

Now consider the case when j�i+1j = k and j�ij = k�1 where k � 4. We
can assume that �i+1 = f1; 2; : : : kg and �i = f1; : : : k � 1g. Suppose that
�j is the proper subset of �i+1 other than �i that has the highest index.
Choose a vector v with vk = 1 such that '�i(v)'�j (v) = �1. Now apply
Lemma 2.8 with this v. We have

wi+1 > (2k�1 � 1)wi + wj �
X

���i+1;�6=�j ;�i
'�i(v)'�(v)w�

Thus the lemma will follow from establishingX
���i+1;�6=�j ;�i

jw�j � wj :

We divide the sum into those � of size at least 3 and those of size at most
2. To bound the �rst sum we note that since wl+1 > 3wl when j�l+1j � 3
and l < j, even the sum over all sets of size at least 3 and index less than j
is bounded by wj=2.

To bound the second sum we observe that there are at most k(k�1)=2+
k+1 terms and each is bounded the maximal weight of a set of size 2. Now
there are at least k�2 sets of size 3 before �j in the enumeration (this bound
is tight for k = 4 but very weak otherwise) which implies by induction that
wj is at least 3k�1 times the maximal weight of any set of size 2. The
inequality 3k�1 > k(k � 1) + 2k + 2 valid for k � 4 concludes this case.

Finally suppose j�i+1j = j�ij = k and k � 4. We assume that �i+1 =
f1; 2; : : : k � 1; k + 1g and �i = f1; : : : kg. Suppose that �j is the set of
highest index that appears in the sum of Lemma 2.7. Choose a vector v
with vk = vk+1 = 1 such that '�i(v)'�j (v) = �1. Now apply Lemma 2.7
with this v. The analysis is similar to the last case. This �nishes the proof
of lemma.

8



All that remains to prove Theorem 2.4 is a simple calculation. Let �i0
be the last set of size 2 in our ordering. Then

wn�1 �
Y

j�ij>2

(2j�ij�1 � 1)wi0 > 2
Pn�1

i=1
j�ij�1

Y
j�ij�2

(1� 21�j�ij);

since wi0 > 1 and the two factors introduced when j�ij = 2 cancel each
other.

The �rst factor equals 2nm=2+1�n. This follows since the average size of
a subset of [m] is m=2 and that there are n such sets. The extra \1 � n"
is the result of �1 inside the summation. To estimate the second factor we
use that when 0 < x < 1

2 then (1� x) > e�2x and hence

Y
j�ij�2

(1� 21�j�ij) > e�
Pn

k=2 (
m
k )2

2�k

� e�4(1+ 1
2
)m = e�4n� :

and the theorem follows.

Please note that by slightly extra work, the constant in front of n� can
be reduced to any value greater than 2. In fact if we were willing to get an
extra term we could in fact get the value 2. This would be achieved by using
an inequality of the type 1�x � e�x�cx2 for an appropriate constant c. We
do not think this is of great concern unless the upper bound is improved.

If we use the full strength of Lemma 2.9 then we can actually strengthen
Theorem 2.5 to apply to all weights.

Theorem 2.10 Assume that n is a power of 2 and

F (f) = sign

0
@n�1X

j=0

wjf(j)

1
A

where wj are integers, then for n � 8 and all j, we have jwj j �
1
2ne

�4n�2(n log n)=2�n,
where � = log(3=2).

Proof: Use Lemma 2.3 to get a corresponding expansion

n�1X
i=0

w0
i(f; '�i);

where

w0
i =

1

n

n�1X
j=0

wj'�i(j)

9



We know by Lemma 2.9 that w0
n�1 � (2m�1 � 1)w0

n�2 � (2m�1� 1)(2m�2 �
1)w0

n�3 : : :, where n = 2m. By Lemma 2.3

wj =
n�1X
i=0

w0
i'�i(j)

and for n � 8,

j
n�2X
i=0

w0
i'�i(j)j �

1

2
w0
n�1

and since

w0
n�1 �

1

n
e�4n�2(n log n)=2�n

the theorem follows.

3 Recalling the upper bound

For completeness, let us recall the proof for the upper bound. Let F be
any threshold function and let H0 be a linear function with the following
properties.

1. sign(H0(x)) = F (x) for x 2 f�1; 1gn

2. jH0(x)j � 1 for x 2 f�1; 1gn

3. Among H satisfying the above conditions it maximizes the number of
x 2 f�1; 1gn such that jH0(x)j = 1. If there are several H giving the
same number of such points, choose one arbitrarily.

Since F can be represented by a linear threshold, there is some linear
function satisfying the �rst two conditions and thus there will exist such a
linear function H0.

Let x(i); i = 1; 2; : : : r be the set of points in f�1; 1gn with jH0(x
(i))j = 1.

We claim that H0 is uniquely determined by the equations

H0(x
(i)) = F (x(i)); i = 1; 2; : : : r:

Suppose this was not the case. The set of of solutions to this equations
would contain linear functions H0 + tH1 for all rational t and nonzero H1.
There is some point x(0) 2 f�1; 1gn such that H1(x

(0)) 6= 0. Suppose

10



for concreteness that H1(x
(0)) > 0 and that H0(x

(0)) < �1 (note that we
cannot have jH0(x

(0))j = 1 since we must have H1(x
(i)) = 0 for 1 � i � r).

Now let t0 be the minimal t > 0 such that jH0(x) + tH1(x)j = 1 for some

x 62 fx(1); x(2); : : : x(r)g. There must be such a t0, since t =
�1�H0(x(0))

H1(x(0))
will

give jH0(x
(0)) + tH1(x

(0))j = 1. Since jH0(x) + tH1(x)j � 1 for all t 2 [0; t0]
and all x 2 f�1; 1gn it follows that the two �rst conditions are satis�ed by
H0 + t0H1. This implies that we violate the maximality condition used to
de�ne H0 and we have reached a contradiction.

By the claim, the coe�cients of H0 can be obtained by solving a linear
system of equations where the coe�cients and the right hand side belong to
f�1; 1g. By Cramer's rule this means that each coe�cient of H0 is given
by the ratio of two (n + 1) � (n + 1) (remember that H0 has a constant
coe�cient) determinants with entries in f�1; 1g. Every coe�cient has the
same denominator and hence we can clear it. By Hadamard's inequality
each absolute value of a determinant of the above type is bounded by (n+
1)(n+1)=2. Thus F can be realized with integer weights of absolute value at
most (n+ 1)(n+1)=2. To get a better bound we need the following lemma:

Lemma 3.1 The determinant of an m�m matrix which has entries from

the set f�1; 1g is divisible by 2m�1.

Proof: Add the �rst row to each other row. Now these rows will consist of
elements from f�2; 0; 2g. The determinant of this matrix is clearly divisible
by 2m�1.

Using the lemma and clearing the common factor 2n gives:

Theorem 3.2 A threshold function of n variables can be realized with inte-

ger weights of size at most 2�n(n+ 1)(n+1)=2.

4 Final discussion

When n is a power of two we have established upper and lower bounds that
are only a subexponential factor apart. It is interesting to note that we do
not know how to establish as sharp bounds when n is not a power of 2.
It is not clear that this is an important problem to determining the true
bounds for every n. After all, taking the function F for the largest power
of 2 less than n will give fairly good lower bounds. However it is one of

11



these problems where we do get much better bounds for special values of
the parameter.

One natural way to try to prove the lower bounds given by Theorem 2.4
is to try to establish that a random threshold function require large weights.
In view of the fact that there are only 2n

2
threshold functions it is not clear

that this could succeed. One natural question that arises is how to de�ne a
random threshold function.

One de�nition is to pick a random point (w1; w2 : : : wn) uniformly from
the real n-dimensional sphere (

Pn
i=1 w

2
i = 1) and then de�ne the random

function to be sign (
Pn

i=1 wixi).
It is not hard to see that with very high probability we can replace wi

by integers with O(n) bits and keep the same function. It is not clear to me
that this is due to a de�ciency in the de�nition or that this is the typical
behavior of threshold functions.

Let us �nally note that our results extend to the case when the inputs
are from the set f0; 1; : : : ag for a � 2 (or the more symmetric range f�a; 2�
a; 4�a; : : : ag). We can use the same de�nition of the function and the proof
extends essentially word by word. The only part that does not seem to have
a counterpart is Lemma 3.1. We thus get a lower bounds which is rougly a
factor an stronger, and an upper bound which is a factor 2nan+1 worse.

Acknowledgment: I thank Pekka Orponen for a stimulating conversation
on this topic. I am also grateful to Ilan Newman, Ian Parberry, and Sasha
Razborov for helpful comments.

References

[1] M. Goldmann, J. H�astad, and A. Razborov. Majority gates vs. general
weighted threshold gates. In Proceedings of the 1992 Structures confer-

ence, pages 2{13, 1992.

[2] J. Hertz, R. Krogh, and A. Palmer. An Introduction to the Theory of

Neural Computation. Addison-Wesley, 1991.

[3] P. M. Lewis and C. L. Coates. Threshold logic. John Wiley & Sons, Inc,
1967.

[4] S. Muroga. Threshold logic and its applications. Wiley-Interscience,
1971.

12



[5] P. Orponen. Neural networks and complexity theory (invited talk).
In Proceedings of the 17th Internatational Symposium on Mathematical

Foundations of Computer Science, pages 50{61, 1992.

[6] I. Parberry. The computational and learning complexity of neural net-

works. MIT Press, In Preparation.

[7] V. Roychowdhury, K-Y Siu, A Orlisky, and Kailath T. A geometric
approach to threshold circuit complexity. In Proceedings of 4th annual

workshop on computational learning, pages 97{111, 1991.

[8] D. R. Smith. Bounds on the number of threshold functions. IEEE Trans.

Electronic Computers, EC-15:368{369, 1966.

[9] S. Yajima and T. Ibaraki. A lower bound on the number of threshold
functions. IEEE Trans. Electronic Computers, EC-14:926{929, 1965.

13


