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Abstract. A sequence d of integers is a degree sequence if there exists a (simple) graph G such
that the components of d are equal to the degrees of the vertices of G. The graph G is said to be a
realization of d. We provide an efficient parallel algorithm to realize d; the algorithm runs in O(logn)
time using O(n+m) CRCW PRAM processors, where n and m are the number of vertices and edges
in G. Before our result, it was not known if the problem of realizing d is in NC'.
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1. Introduction.

1.1. Problem Definition. An important problem in graph algorithms is to
compute a (simple undirected) graph satisfying the given degree constraints. An
integer sequence d of length n is called a degree sequence if there exists a graph G
on n vertices such that the degrees of its vertices are equal to the components of
the sequence d. The graph G is said to be a realization of the sequence d. A pair
(r, s) of integer sequences is called a bipartite sequence if there exists a bipartite graph
H = (XUY, E) such that the components of r (respectively, s) are equal to the degrees
of the vertices in X (respectively, V). Degree sequences and bipartite sequences have
been extensively studied in graph theory [6, 15, 21, 26]. Because of the strong con-
nections between the structural properties of a graph and the degrees of its vertices,
these sequences find significant applications in the areas of communication networks,
structural reliability, and stereochemistry (cf. [7, 26]).

1.2. Previous Results. Given an integer sequence d, there are two problems
of interest: the decision problem is to test if d is realizable; the search problem is
to compute a realization of d. A characterization of degree sequences known as
the Erdds-Gallai inequalities [10] results in an efficient sequential algorithm for the
decision problem. Another characterization called the Havel-Hakimi characteriza-
tion (cf. [15]) leads to an efficient sequential algorithm for the search problem. In
the case of bipartite sequences, a characterization known as the Gale-Ryser theo-
rem [13, 22, 24] leads to efficient sequential algorithms for the decision as well as the
search problems. Recently, degree sequence problems have gained lot of attention, see
for example [2, 3, 4, 9, 21, 23, 25, 26].

The Erdés-Gallai inequalities and the Gale-Ryser theorem imply efficient parallel
algorithms for the decision problems on degree sequences and bipartite sequences,
respectively. Recently, a parallel algorithm for a special case of the search problem, in
which the maximum degree is bounded by the square-root of the sum of the degrees,
is presented in [9]; it runs in O(log" n) time using O(n'®) EREW PRAM processors.
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Network-flow based proofs [11, 12] give rise to randomized parallel algorithms for the
search problems on degree sequences and bipartite sequences.

1.3. Our Results. The main contributions of this paper are deterministic par-
allel algorithms for the search problems on degree sequences and bipartite sequences.
Our results are:

e An efficient parallel algorithm for realizing bipartite sequences; it runs in
O(logn) time using O(n) EREW PRAM processors, where n is the number
of vertices in the realization.

e A new proof of a relation between degree sequences and bipartite sequences.

e An efficient parallel algorithm for realizing degree sequences; it runs in O(logn)
time using O(n + m) CRCW PRAM processors, where n and m denote the
number of vertices and edges in the realization.

The complexity results of this paper are with respect to the PRAM computational
model. For details on the PRAM and NC, see [18, 19]. The work, i.e. time X processor
product, of our parallel algorithm for realizing bipartite sequences is o(n?), whereas
there are bipartite graphs that have Q(n?) edges (e.g. a complete bipartite graph on n
vertices). The complexity results of this paper are feasible since the graphs computed
by our algorithms possess implicit representations, i.e., the graphs can be stored in
O(n) space, and the adjacency information between any two vertices can be reported
in constant time [27].

Our result for realizing bipartite sequences is based on a non-trivial parallelization
of the techniques from the theory of majorization [16, 22]. Our algorithm for realizing
a degree sequence d is based on a new proof of a relation between degree sequences and
bipartite sequences and it proceeds as follows. From d, we compute an appropriate
bipartite sequence (¢, c), and then compute a realization H of (¢, c¢). Using the graph
H, we compute a symmetric bipartite graph that leads to a realization of d. The
computation of the symmetric bipartite graph from H is the crucial step, for which
we provide two alternate parallel algorithms: the first one has higher complexity than
the second. The latter algorithm exploits the implicit structure of the bipartite graph
H computed by our algorithm and thus is efficient. The former algorithm does not
assume any structural knowledge of H, and can work with any realization of (¢, c). It
is based on several interesting lemmas, which may be of independent interest in their
own right.

1.4. Organization of the Paper. The rest of the paper is organized as follows.
In Section 2 we introduce notation and state preliminaries. In Section 3 we state some
of the classical characterizations of degree sequences and present simple algorithms for
realizing the degree sequences corresponding to multigraphs and trees. In Section 4
we prove a relation between degree sequences and bipartite sequences. In Section 5 we
present the required results from the theory of majorization, including an algorithm
for computing unit transformations. In Section 6 we present a parallel algorithm for
realizing bipartite sequences. In Section 7 we provide parallel algorithms for realizing
degree sequences.

2. Preliminaries.

2.1. Basic Definitions. In a multigraph G = (V, E), V is a set of vertices and E
is a multiset of edges (multiple edges may exist between two vertices but no self-loops).
By a graph G = (V, E), we mean a simple graph—without multiple edges and self-
loops. A bipartite graph H with the bipartition X UY is denoted by H = (X UY, E).
In a multigraph G = (V, E), dg(v) denotes the degree of a vertex v and Ng(v)
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denotes the multiset of the neighbors of v (we omit the subscript, if no confusion
arises). Similarly, Ng(U) is defined as the union of the neighbors of the vertices of
U C V. By definition, G is a graph if and only if the following hold for all v € V:
(i) v € Ng(v) and (ii) Ng(v) is a set. If (u,v) is an edge of a graph G, we say that
(u,v) € G. Throughout, by a sequence we mean a sequence of nonnegative integers.

2.2. Graph Matching. A matching M in a graph G = (V, E) is a collection
of edges such that no two edges of M are incident at a common vertex. The size of
M, denoted by |M], is the number of edges in it. M is called a perfect matching if it
matches all vertices of G. M is called a maximum matching if it has maximum size
among all matchings. M is called a mazimal matching if no other matching properly
contains M. We will need the following theorem due to P. Hall (cf. [21]).

THEOREM 2.1 (THE HALL’S THEOREM). Let H = (XUY, E) be a bipartite graph.
Then H has a matching that matches all vertices of X, if and only if |N(A4)| > |A]
for every A C X.

We need the following two lemmas; the first lemma can be proved easily.

LEMMA 2.2. Let M (respectively, M/) be a mazximal (respectively, mazimum,)
matching in a graph G. Then |M| > %|M,|

LEMMA 2.3. Let H = (X UY, E) be a bipartite graph such that (i) d(x) > 1 for
all x € X and (ii) the inequality d(x) > d(y) holds for every edge (x,y) of H. Then
H has a matching that matches all vertices of X.

Proof. We show that H satisfies the sufficiency part of the Hall’s theorem. We
use induction on |A|, where A C X. Since d(z) > 1 for all x € X, the basis case,
|A| = 1, follows. Consider now the case that |A| = k, where k > 2. We need
to prove that |[N(A)| > k. Assume the contrary, namely that |[N(A)| < k. Pick
any vertex z € A and put A" = A — z. By induction, [N(A")| > k — 1. Since
N(A") € N(A), it follows (A") = N(A) and |[N(A")| = |[N(A)| = k — 1. Consider now
the subgraph H = (A' U N(A/), E/) of H. By induction, H' satisfies the sufficiency
condition of the Hall’s theorem and hence has a perfect matching. Let the edges
of the perfect matching be (x1,y1), (z2,92),- ., (Xx—1,Yr—1). Using condition (ii) of
the lemma, we obtain 3, v d(x) = Y7 d(z:) > i) d(yi) = Xyencar) dy)-
Since d(z) > 1 and N(A) = N(A'), we have 3,4 d(x) > 3 cna)d(y), which
contradicts 3 . 4 d(x) < 3, cna) d(y); the latter inequality holds for any bipartite
graph because every edge incident to a vertex in A contributes a 1 to both sides of
the inequality. This completes the induction step and hence the lemma. |

2.3. Digraphs. In a digraph D = (V, E), F is the set of arcs (directed edges);
the arc from u to v will be denoted by the ordered pair (u,v). The indegree (respec-
tively, outdegree) of a vertex v, denoted by dp,(v) (respectively, df(v)), is the number
of arcs into (respectively, from) v. Call D symmetric if it has only symmetric arcs:
(u,v) is an arc if and only if (v,u) is an arc. We will require the following lemma.

LEMMA 2.4. ([12]) Let D = (V, E) be a digraph such that indegree of each vertex
v equals its outdegree, i.c., d;(v) = d‘g(v) = d(v), and that ) d};(v) is even.
Then there exists a symmetric digraph D = (V, E) such that d,,(v) = dj,(v) = d(v).

Proof. If D is symmetric, then take D := D. Assume that D is not symmetric and
let D = (V, E) be the ‘asymmetric part’ of D: (u,v) € E iff (u,v) € E and (v,u) ¢ E.
Observe that d (v) = dg(v) for allv € V. Define a trail to be a sequence of (not neces-
sarily distinct) vertices vy, ..., vk, v1 such that (vi,vs), (ve,vs), ..., (Vk—1, k), (Vk,v1)
are distinct arcs of D. Call a trail even if it consists of an even number of edges,
otherwise it is an odd trail.
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Assume that D has an even trail, say vy, vs,...,v9,,v1. Change D as follows:
Delete the arcs (ve, v3), (v4,v5), ..., (Vag—2,v2k—1), (Var,v1) and add the arcs (vq, v1),
(vg,v3), ..., (Vog—2,V2k—3), (Vak,vor—1). Notice that this process does not create any
multiple arcs or self-loops in D. Further, the hypothesis of the lemma is maintained.
We repeat the above-mentioned process until D contains no even trails. Then, it
follows that ) d}; (v)isevenas ) .y djg (v) is even. Further, using d - (v) = d;g (v)
for v € V, we can decompose the arcs of D into odd directed cycles. There are an
even number of such cycles. Moreover, any two such cycles must be vertex-disjoint,
otherwise they create an even trail. Let wug,uq,...,usk,ug and v, vy, ..., vz, vo be
any two odd cycles in G. The fact that (ug,vo) ¢ D implies that either both (ug, vo)
and (vg,up) are arcs in D or none is an arc in D. We distinguish between these two
cases.

Case 1: Both (ug,v) and (vg,ug) are arcs in D. Change D as follows: Delete the

arcs (uo,v0), (vo,uo), (u1,u2), (us,uq), ..., (Uog—1,u2r) and (vy,ve), (v3,v4), ...,
(vae—1,v2¢); add the arcs (ug,uq), (uq,us), ..., (Uzg, u2p—1) and (ve,v1), (V4 v3), - .,
(v2e, v20-1). 3 3

Case 2: None of (ug,v9) and (vo, ug) is an arc in D. Change D as follows: Delete
the arcs (ug,u1), (ug2,us), ..., (u2k,up), and (vo,v1), (v2,v3), ..., (v2r,v9); add the
arcs (ug,vo), (vo,uo), (uz,u1), (ug,us), ..., (uzg, uzg—1) and (va,v1), (v4,v3), ...,
(Uze, Uze—l)-

In each case no multiple arcs or self-loops are created, and the number of odd cycles in
D decreases. Eventually, D contains no odd cycles and hence it becomes symmetric.
The proof is completed by taking D := D. 0

2.4. Parallel Techniques. The complexity results of this paper are with respect
to the PRAM. This is the synchronous parallel model in which all processors share a
common memory. In this paper, we need the following techniques previously devel-
oped in parallel computing: Euler tour in a graph [5], merging and cross-ranking [14],
sorting [8], maximal matching in a graph [17]. For other techniques such as parallel
prefix and list ranking, see [18, 19].

Consider a sequence of n elements {z1,z9,...,2,} drawn from a set S with a
binary associative operation x. The prefiz sums of this sequence are the n partial
sums (or products) defined by s; = x1 * 22 * ...x;, 1 < i < n. Consider a linked list
L of n nodes whose order is specified by an array S such that S(¢) contains a pointer
to the node following node ¢ on L, for 1 <4 < n. We assume S(i) = 0 when ¢ is the
end of the list. The list ranking problem is to determine the distance of each node
¢ from the end of the list. The rank of an element x in a given sequence X is the
number of elements of X that are less than or equal to z. Let A and B be two sorted
sequences. The cross-ranking problem is to find the rank of each element of A in B
and vice-versa.

3. Characterizations and Algorithmic Aspects.

3.1. Multigraphs. Realizability problems, in general, tend to be simpler if mul-
tiple edges are allowed. We show that this is the case in parallel computation too. We
first discuss realizing degree sequences of bipartite multigraphs and then show how to
reduce the general case to the bipartite case. Recall that in a multigraph, multiple
edges may exist between a pair of vertices but self-loops are not allowed.

Let (r,s), where r = (r1,...,7m) and s = (s1, ..., S, ), be a pair of sequences. Our
problem is to compute a bipartite multigraph H = (X UY, E) satisfying the degree

constraints 7 and s. Tt is easy to prove that H exists if and only if 377" | 7 = 3 °7_ ) 5.
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To realize (7, s) in parallel, test if 337", r; = 7, s; and stop if the test fails. Then,
compute the prefix sums of r and s and store them in the arrays R and S, respectively.
Cross-rank S in R using the algorithm of [14]. Connect y; to all the corresponding
x;’s using the required number of multiple edges.

We now discuss the general case. Given a sequence d, the problem is to compute
a multigraph with degree sequence d. The following lemma characterizes d [6, 15, 21].
The proof given below results in a simple parallel algorithm.

LEMMA 3.1. The sequence d = (dy,...,d,), where di = max(d), is the degree
sequence of a multigraph if and only if Y, d; is even and dy <Y . ,d;

Proof. We prove the sufficiency part, the other part being trivial. Sort the

sequence d into nonincreasing order, i.e., let d; > ds > --- > d,. Let vy,v9,...,v, be
the vertices of the multigraph G to be computed. Put m = %Z?:l d; and let p be
the index such that >0 d; <m < Z?=p+1 d;. We distinguish between two cases.
Case 1: Y ?  d; = m. Define sequences r and s by r = (di,ds,...,d,) and s =
(dp+1,--.,dpn). Then r and s have the same component sum and thus (r,s) can be
realized, using the procedure given above, as a bipartite multigraph G = (X UY, E),
where X = {v1,...,v,} and ¥ = {vp+1, ..,vn}
Case 2: Y7 d; <m. Put k = m and define sequences r and s as
follows: r = (di — k,da,...,dp, dpt1 — k:§ and s = (dp+2,...,dy). Then r and s have
the same component sum (: m—Fk) and thus (r, s) can be realized, using the procedure
given above, as a bipartite multigraph H = (X UY, E), where X = {v1,...,vp41}
and Y = {vpt2,...,v,}. By adding k multiple edges between v; and v,11 in H we
get the required multigraph G. a

2. Trees. We now discuss the degree sequences of trees. The following char-
acterization of such sequences is well known [6, 15, 21]. We will present a proof that
leads to a simple parallel algorithm to realize these sequences.

LEMMA 3.2. The sequence d = (dy,...,d,) is the degree sequence of a tree if and
only if all d;’s are positive and Z?zl d; =2n — 2.

Proof. The necessity part is trivial and we prove the other part. Sort the sequence
d into nonincreasing order; denote the resulting sequence also by d. Let vy, vs,...,v,
be the vertices of the tree G to be computed. If d; = 2 then G is a path and we are
done. So assume that d; > 3 and let k be the largest index such that dy > 3. Put
m = Zle(di —2). Let A be the set of d;’s that are equal to 1. The following claim
will be proved after we describe the computation of G.

Claim: |A| =m + 2.

First we compute a path consisting of vertices vy_1,v1, V2, .., Vn—m—2,0Un'. Delete
v, and v,_1 from A. Then we compute ‘stars’ using A and vy, vs, ..., v, as follows:
Connect the first d; — 2 vertices of A to vy, connect the next do — 2 vertices of A to
Vg, ..., and connect the remaining dy — 2 vertices of A to vi. This completes the
computation of G.

We now prove the above claim. Observe that Zle d; = m+2k and that there are

—|A] d;’s that are equal to 2. So2n—2=3"" | d; = m+2k+2(n—k—|A|)+|A]|.
The claim follows by rearranging the terms. 0

3.3. Graphs. We now discuss degree sequences of graphs. Let d be an integer
sequence of length n, where n > dy > dy > -+ > d,;, > 0. The proofs of the following
results may be found, e.g., in [6, 15, 21].

1 Observe that dp—1 = dn, = 1.
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The Erdés-Gallai Inequalities (EGI): The sequence d is realizable if and only if >, d;
is even and Zle di <k(k—1)+> ", min(d;, k) for k=1,2,...,n.

The Havel-Hakimi Characterization: The sequence d is realizable if and only if the
numbers do — 1,ds — 1,...,dg,+1 — 1,dd, 12, . .., d, are realizable.

Using EGI, we can test if d is realizable in linear time. We can use the second
characterization to derive an efficient sequential algorithm to compute a realization
of d.

In parallel computation, the inequalities of EGI can be tested optimally, and this
implies an optimal parallel algorithm to test if d is a degree sequence. As for the
problem of computing a realization of d, a proof of the EGI using network flows is
given in [12] and this proof results in a randomized parallel algorithm. The proof
consists of two steps.

Step 1: Define a network with edge capacities in unary and solve the maximum flow
problem on this network; then, construct a digraph D.

Step 2: Obtain a symmetric digraph from D.

Results of [20] imply a randomized parallel algorithm for Step 1. Based on the proof
of Lemma 2.4, Step 2 can be performed in NC.

4. Degree Sequences and Bipartite Sequences. We study in this section a
relation between degree sequences and bipartite sequences. The main result of this
section is a new proof of a theorem given in [25]. The proof presented in [25] is
via a cycle of eight implications and results in an inherently sequential algorithm to
compute realizations of degree sequences, whereas our proof is simple and helps us to
design a parallel algorithm.

Throughout this section, d denotes an integer sequence of length n, where n >
dy >dy > -+ >d, > 0. Let g = max{k : dp > k}. Define a new sequence
c¢=(c1,...,cn), where

[ di+1 dfi<p
G = d; otherwise.

Observe that ¢; =d; +1>p+1for1<i<pandcj=d; <pforp+1<j5<n.

THEOREM 4.1. The sequence d is a degree sequence if and only if (c,c) is a
bipartite sequence.

Before we prove this theorem, we remark that the ‘+1’ is required in the definition
of ¢, since there are sequences d such that (d,d) is a bipartite sequence but d is not a
degree sequence; for example, take d = (4,2, 2,2). The proof is based on the following
lemmas.

LEMMA 4.2. If d is a degree sequence then (c,c) is a bipartite degree sequence.

Proof. Let G = (V, E) be a realization of d. We obtain a bipartite realization
H = (XUY,E") of (¢,c) as follows: X and Y are two copies of V; if (v;,v;) € G then
(xi,95), (xj,y:) € H; turther, (z;,y;) € H for all 1 <14 < pu. 0

We need a few definitions before presenting the next lemmas. Let H = (X UY, E)
be a realization of (c,c). A vertex z; (or y;) is called a high-degree vertex if 1 <i < p,
otherwise it is a low-degree vertex. An edge (x;,y;) is called a high-degree edge if
1 <i<p. Similarly, an edge (z;,y,) is called a low-degree edge if 1+ 1< j <mn.
Edges of the form (z;,y;), where ¢ # j, are neither high-degree edges nor low-degree
edges. High-degree and low-degree edges play a very important role in our algorithms.

A pair of edges (x4, yg) and (z~, ys) form an exchange pairif (zq,ys), (~,ys) € H
(see Figure 1). An exchange on the edges (z4,ys) and (x.,ys) consists of deleting



REALIZING DEGREE SEQUENCES IN PARALLEL 7

(%a,yp) and (z+,ys) and inserting (x4,ys) and (z4,yg). The following two lemmas
imply that, given any realization H of (¢, c), we can always obtain another realization
H such that H contains all high-degree edges and no low-degree edges.

e Ys Lo & o Yo

s L ™ s

Ly

Fic. 1. An exchange operation. A solid line indicates the presence of an edge and a dashed
line its absence.

LEMMA 4.3. Let H be a realization of (c,c) such that (z;,y;) € H for some
1 <i < p. Then there exist k and £ such that (x;,yy) and (x¢,y;) form an exchange
pair, where k > p and k # £.

Proof. Since ¢; > p+1 there exists a k such that k > p and (x;,yx) € H. Further,
¢ < pand ¢; > p+ 1 imply that there exist an ¢ # k such that (z4,y;) € H and
(.’E[, yk) € H. u

LEMMA 4.4. Let H be any realization of (c,c) such that (x;,y;) € H for some
j > p. Then there exist k and ¢ such that (x;,y;) and (z¢,yx) form an exchange pair,
where k < p and k # L.

Proof. Since ¢; < p there exists a k such that k < p and (x;,yr) ¢ H. Further,
¢k > p+ 1 implies that there exists an ¢ # k such that (xg,yx) € H and (z¢,y,) & H.
0

LEMMA 4.5. If (¢,c) is a bipartite degree sequence then d is a degree sequence.

Proof. Let H be any realization of (¢,c¢). Assume that (x;,y;) ¢ H for some
1 <7 < p. Let k and £ be as defined in Lemma 4.3. Perform an exchange, by deleting
the edges (z;,yx) and (z¢,y;) and adding the edges (z;,y;) and (x¢,yx). Observe
that this process does not destroy any existing high-degree edges in H. We repeat
this process until H contains all high-degree edges. Assume now that H contains a
low-degree edge, say (x;,y;) for some j > p. Let k and ¢ be as defined in Lemma 4.4.
Delete the edges (x;,y;) and (x¢, yx) and add the edges (z;, yx) and (x¢,y;). Observe
that this process does not destroy any existing high-degree edges and does not create
any new low-degree edges in H. We repeat this process until H contains no low-degree
edges.

Define a digraph D = (V, E) on the vertex set V = {v1,...,v,}, where (v;,v;) €
D iff (x;,y;) € H and (z;,:) € H. Then dy(v;) = dg(vi) =d; for all 1 <i<n. By
Lemma 2.4, we obtain a symmetric digraph D = (V, E) such that d(v;) = df(v;) =
d; for all i. Obtain an undirected graph G from D by replacing the two symmetric
arcs (v;,v;) and (vj;,v;) with the edge (v;,v;). Then G is a realization of d. 0

Lemmas 4.2 and 4.5 imply Theorem 4.1. It is fairly easy to see that the proof of
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Lemma 4.5 implies a simple sequential algorithm to realize d from any realization of
(¢, ¢). In Section 7, parallel algorithms to achieve the same objective will be presented.

5. Majorization and Unit Transformations. Throughout this section, let
a=(a,...,a,) and b = (by,...,b,) be sequences of length n, where a1 > ay > --- >
anZOaﬂdb1ZbQZ"'an20-

5.1. Majorization. Majorization has been studied, over several decades, in the
theory of inequalities [22, 16]. It captures the intuitive notion that the components of
a vector are “less nearly equal” than are the components of another vector. Formally,
we say that a majorizes b, denoted by a = b, if Zle a; > Zle b; for k = 1,...,n,
with equality for k = n. For example, (4,2,1,0) = (2,2,2,1).

Majorization was used by economists in measuring inequality of incomes and in
studying the principle of transfers (cf. [22]). If a; > a; + 2 for some i and j, we say
that the sequence ¢ = (c1,...,¢,), defined by ¢; = a; — 1,¢; = a; + 1 and ¢ = ay, for
k # 1,7, is obtained from a by a wnit transformation from i to j. Clearly, a = ¢. A
classical result, known as the Muirhead Lemma (cf. [22]), states that the converse is
also true: If a = b then a can be transformed to b by performing a finite number of
(successive) unit transformations on a. The following lemma presents the details.

LEMMA 5.1. Suppose that a = b. Define a sequence § = (01,...,0,) by 0; =
max{0, (a; — b;)}, and define A(a,b) = >, 8;. Then a can be transformed to b
by performing A(a,b) unit transformations. Further, A(a,b) equals the minimum
number of unit transformations required to transform a to b.

Proof. If a = b then A(a,b) = 0. Assume that a # b and let i be the smallest
index such that a; # b;. Observe that a; > b;, since a = b. Let j > i be the smallest
index such that a; < b;. Define ¢ to be the sequence obtained from a by performing
a unit transformation from ¢ to j. Clearly, a = ¢ = b. By repeating this process on
the sequence ¢, we can obtain b.

To prove the second part of the lemma, observe that if ¢ is any sequence obtained
from a by a unit transformation, then A(c,b) > A(a,b) — 1. 0

5.2. An Algorithm for Computing Unit Transformations. In this subsec-

tion, we discuss the computation of unit transformations that are required to trans-
form a to b. The basic idea is to compute the numbers ¢(i, 7), for 1 <4, j < n, so that
a can be transformed to b by performing ¢(, ) unit transformations from position 4
to position j. We give an example to illustrate the idea.
Example 1: Let a = (15,12,9,8,5,4,4,0) and b = (11,10,9,9,9,3,3,3). Put
c=a—b=(4,2,0,—-1,—-4,1,1,-3) and define an array P (respectively, M) whose
components are given by: P, = max{0,¢;} (respectively, M; = max{0,—¢;}) for
1<i<8,ie., P=(4,2,0,0,0,1,1,0) and M = (0,0,0,1,4,0,0,3). Now, P, and My
are the left-most positive components of P and M, respectively. As My =1 < Py, we
subtract 1 from P; and My and add 1 to ¢(1,4). Then P and M become (3,2,0,0,0,1,1)
and (0,0,0,0,4,0,0,3), respectively. Now P; and Mj5 are the left-most positive compo-
nents of P and M and, as P; = 3 < M5, we subtract 3 from P; and M5 and add 3 to
t(1,5). Then P and M become (0,2,0,0,0,1,1) and (0,0,0,0,1,0,0,3), respectively. We
continue this process until all the components of P and M become 0’s, and we get
t(1,4) =1, t(1,5) = 3, t(2,5) = t(2,8) = t(6,8) = ¢(7,8) = 1. O

A simple linear-time sequential algorithm, based on the procedure explained in
the above example, for computing unit transformations is as follows. Compute the
arrays P and M and then scan both the arrays from left to right, starting at the
position i =1 in P and j = 1 in M. In each step compute the appropriate ¢(7, j) and
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either increment ¢ or j. Since the arrays P and M are scanned only once and the
number of reported (7, j)’s is linear, the algorithm runs in linear time.

A parallel implementation of this algorithm is presented in Algorithm 1. In Step
2 of the algorithm, P'[i] :== >~ _, P[i] for 1 < i < n. Moreover the arrays P’ and
M’ are obtained in the sorted order. After cross-ranking the elements of P’ in M’
and vice-versa, we know precisely the appropriate t(i, j)’s, for each value of i and j.
For each value of i we can store the ¢(i,7)’s in an array, with respect to increasing
j. Alternatively, we can store the ¢(i,7)’s in an n * n matrix, without initializing the
matrix, by a standard method (see [1]).

1. Compute ¢; := a; — b; for 1 < i <n and the arrays P and M.

2. Compute prefix sums of P and M and store them in the arrays P’ and M’,
respectively.

3. Cross-rank the arrays P’ and M’ by the algorithm of [14] and then compute

t(i,7)’s.

Algorithm 1: An algorithm for computing unit transformations.

THEOREM 5.2. Let a and b be sequences of length n such that a = b. Algorithm 1
computes the numbers t(i, j), for 1 <i,j <mn, such that a can be transformed to b by
performing t(i,j) unit transformations from the position i to j in a. The algorithm
runs in O(logn) time using O(n/logn) EREW PRAM processors.

Proof. The proof of correctness is straightforward. To analyze the complexity,
note that the prefix sums and the cross ranking of two sorted arrays can be computed
in O(logn) time using O(n/logn) processors. 0

5.3. Properties of Unit transformations. In this subsection we present prop-
erties of the numbers ¢(4, j) computed by Algorithm 1. These properties will be used
to design a parallel algorithm for realizing bipartite sequences.

Observe t(i,j) = 0 whenever ¢ > j or a; > b;. We need a few definitions to state
additional properties of ¢(z,j)’s. For 1 <+ < n, define A(4) to be the set of all j such
that Algorithm 1 reports a unit transformation from i to j, i.e., A(¢) = {j : t(4,5) # 0}
(see Example 2). Observe that A(¢) = @ if and only if a; < b;. Similarly, define
B(j) = {i : t(i,5) # 0}, and note that B(j) = 0 if and only if a; > b;. Furthermore,
if k € A(i) (respectively, B(j)), then k > i (resp. k < j) and aj < by (respectively,
ar, > by). The elements of A(7) and B(j) will always be listed in the increasing order.
Example 2: In Example 1,

A(1) = {4,5}, A(2) = {5,8}, A(6) = A(7) = {8};
B(4) = {1}, B(5) = {1,2}, B(8) = {2,6,7};
all other A(i)’s and B(j)’s are 0. 0

LEMMA 5.3.

1. If A1) # 0, then a; = bi + 37 ¢ ap) t(i, 5)-

2. If B(j) # 0, then bj = a; + 3¢ () t(i, ).
Proof. Follows from the definition of ¢(¢, j)’s in Algorithm 1. ]
Let a(i) = min{A(i)}2. For 1 <1,j < n, define (see Example 3)

0 ifi>jora; > b,
aj + X pen() kit Lk, J)  otherwise.

8.4 = {

2 By definition, max (@) = 0 and min() = co.
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For 1 <i < n, define

W){ g(i—i—l,a(i)) if A7) £ 0

otherwise.

Example 3: In Example 2,
a(l) =4, a(2) =5, a(6) = a(7) = 8;
B(3,5) = B(4,5) = B8(5,5) = a5 =5, B(1,5) = a5+ t(2,5) =5+ 1 = 6;
(1) =B2,a(1) = B(2,4) =B3,4) =B(44) =as=8. O

LEMMA 5.4. Let j be an integer such that the elements of B(j) are iy,ia,..., i,
where k > 2. Then A(iq) = {j} forall2 < ¢ <k —1, and a(ip) =j for all2 <p < k.

Proof. Follows from definitions. 0

LEMMA 5.5. Let j be an integer such that the elements of B(j) are iy,ia,. .., i,

where k > 2. Then (ix) = a; and y(ip) = a; + Z(lj:p-l-l t(iq,j) for all2 <p <k -—1.
Furthermore, if a(i1) = j, then y(i1) = vy(i2) + t(is, ).

Proof. By Lemma 5.4, (i) = j. So v(ix) = B(ir + 1,7)) = a;; the second
equality follows from the fact that t(¢,j) = 0 for £ > i), + 1. Consider now any p such
that 2 <p < k — 1. We have

V(ip) = Blip+1 + 1, a(ip))
= Blip+1 +1,7) (by Lemma 5.4)

The proof of the remaining part is similar. 0

6. Realizing Bipartite Sequences. We present in this section a parallel al-
gorithm for computing a bipartite graph that realizes a given pair of sequences.
Throughout this section, X = {z1,29,...,2m}, ¥ = {y1,92,.-.,Un}, and r and s
denote two nonnegative integer sequences, where n > ry > 79 > -+ > 1, > 0 and
m > 8 > 8y > -+ > 8, > 0. Given the pair (r,s), the problem is to compute a
bipartite graph H = (X,Y, E), if it exists, such that d(x;) = r; and d(y;) = s;.

6.1. The Characterization. The following theorem, known as the Gale-Ryser
theorem, characterizes bipartite sequences [13, 24, 11, 22]. Before stating the theorem,
we require a definition. The conjugate sequence of r, denoted by r* = (r3,...,rk), is
defined as 7} = [{¢ : r; > k}| for k=1,...,n. Both r and r* may be visualized by
means of a (0,1)-matrix of size m x n in which the ith row contains r; 1’s left-justified;
then 7} is the number of 1’s in the kth column.

THEOREM 6.1 (THE GALE-RYSER THEOREM). The pair (r,s) is a bipartite
sequence if and only if r* = s.

Theorem 6.1 suggests a simple parallel algorithm to decide if (r, s) is a bipartite
sequence. Moreover, a network-flow based proof of this theorem (cf. [11]), combined
with the results of [20], leads to a randomized parallel algorithm to realize (r, s).

6.2. An Algorithm. We present in this section a parallel algorithm for comput-
ing a bipartite graph H = (X UY, E) that realizes the pair (r, s). It follows from the
Gale-Ryser theorem that the pair (r,r*) is a bipartite sequence. In the corresponding
realization ' = (X, Y, E'), the neighbors of y; are z1, ..., x;, where p = r}. Represent
Nr(y;) by the interval [1,...,p] of integers. Our algorithm is based on the following
lemma.
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LEMMA 6.2. Suppose that (r,s) is a bipartite sequence. If the sequence t is
obtained from s by a unit transformation, then (r,t) is also a bipartite sequence.

Proof. Let H = (X,Y, E) be a realization of (r,s) and ¢ be obtained from s by
a unit transformation from ¢ to j. Since s; > s; + 2, there exists a neighbor, say zy,
of y; that is not a neighbor of y;. Let H " be obtained from H by deleting the edge
(21, i) and adding the edge (zx,y;). Then H is a realization of (r,1). O

We say that the graph H " constructed in the above proof is obtained from H
by a transfer of a neighbor between x; and x;. The main steps in our algorithm for
computing a realization of (r, s) are:
Step 1: Compute r*. Test if r* > s. If not, declare that (r,s) is not a bipartite
sequence and STOP.
Step 2: Obtain the realization F = (X,Y,E’) of (r,7*) by computing Np(y;) =
[1,...,7%].

1
Step 3: Transfer appropriate neighbors among the vertices of Y in F' to obtain H.

The parallel implementation of Step 3, which is the difficult step, is based on the
properties of the unit transformations (Section 5.3) required to transform the sequence
r* to s. For convenience of notation, we use the sequences a and b in place of r* and
s, respectively. Apply Algorithm 1 to the pair (a,b) and let t(¢,5), 1 <i,j <mn, be
the unit transformations computed by the algorithm. Recall from Section 5.3 the
definitions of A(z), B(j), a(i), B8(i,7) and (7). Consider an ¢ such that A(7) # 0.
We define intervals T'(i, ), where j € A(i), as follows. In the realization F' of (r,a),
all vertices x, such that p € T'(4, j) will be “transferred” from y; to y; to obtain the
required bipartite graph H. Let the elements of A(i) (in the increasing order) be
j1 = (i), ja, ..., jk. Define (see Figure 2 )

T(,51) =@ +1,...,7(0) +t(i,71)] and

p p—1
T(i,7p) = thyq .,ai—Zt(i,jq)], for2<p<k.
q=2 q=2

Observe that |T'(i,5,)] = t(4,7p) for all 1 <p<k. We state in Algorithm 2 the
procedure for realizing (r, s).
Example 4: Let r = (4,3,3,2,2,2,1) and b= s = (4,3,3,3,2,2). Then
X ={x1,...,27}, Y ={y1,...,96}, and a = r* = (7,6,3,1,0,0).
Applying Algorithm 1 to the pair (a,b) we get
t(1,4) =2, 1(1,5) = 1, £(2,5) = 1, £(2,6) = 2;
A1) = {4,5}, A(2) = {5,6};
B(4) = {1}, B(5) = {1,2}, B©) = {2}
o(1) = 4, a(2) = 5, 7(2) = as = 0, 5(1) = as = 1.
The realization F' of (r,a) has the following implicit representation. Recall that
(xk,y;) € Fiff k € Np(y;), and Np(y;) = [1, a;] is represented by its endpoints.
Nrp(y1) = [L,7], Nr(y2) = [1,6], Nr(ys) = [1,3],
Nr(ya) = [1,1], Nr(ys) = Nr(ys) = 0,

T(1,4) = [v(1) + 1,7(1) + £(1,4)] = [2,3],
(1,5) [al—t(l, 5)+1,a1] = [7,7],
T(2,5) = [v(2) + 1,7(2) + £(2,5)] = [1,1],
(2,6) [ag—t(27 )+1 ag] [576]
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i I T(i,51)
i I Ti,jn)
Yiy I T'(i, jp)
i I T(i,j2)

F1c. 2. Defining T(i,j). For example, T'(%, jp) is the set of elements a; — ZZ:Q t(i,jq)+1,a; —
. —1,,. .
22:2 t(%]q) + 27 sy @ — 25:2 t(%]q)-

The desired realization H of (r, s) has the following implicit representation.
Np(y1) = Nr(y1) — (T(1,4) UT(1,5)) = [1,1] U [4,6],
Np(y2) = Nr(y2) — (T(2,5) UT(2,6)) = [2,4]7
Nu(y3) = Nr(ys) = [1,3],
NH(y4) NF(y4)UT(1’ ) = [1’3]7
Nu(ys) = Nr(ys) U(T(1,5) UT(2,5)) = [1,1] U [7,7],
Nu(ys) = Nr(ys) UT(2,6) = [5,6] n

,6].

LEMMA 6.3. The bipartite multigraph H = (X UY, E) computed in Algorithm 2
s a simple bipartite graph.

Proof. 1t suffices to show that there are no multiple edges in H that are incident
to any vertex y;. This is equivalent to proving that Ng(y;) is a set (i.e., it has no
duplicate elements). If a; > b;, Ny(y;) is a set as Np(y;) is one. Consider now
the case that a; < b;. Then Np(y;) = Np(y;) U J, where J = ,cp;) T(i,75). We
prove that Ng(y;) has no duplicates by showing that J has no duplicates and that



REALIZING DEGREE SEQUENCES IN PARALLEL 13

Input: A pair (r,s) of sequences.
Output: A bipartite graph H = (X,Y, E), if it exists. H is specified implicitly by
the neighborhoods of vertices in Y.

1. Compute r*. Test if * > s. If the test fails, then declare that (7,s) is not a

bipartite sequence and STOP.

2. Set (a,b) := (r*,s) and apply Algorithm 1 to compute the unit transforma-

tions t(i,7) for 1 <1i,7 < n.

3. Compute the bipartite graph F which realizes (r,a). F is represented im-
plicitly: for each 1 < j < n, compute the set of neighbors of y;, namely
Np(y;) =[1,...,a4).

Compute A(z) and B(j) for 1 <4,5 <n.

Compute B(i,j) for all ¢ and j such that t(i,j) # 0; compute ~(i) for
1 <1< n.

Compute the intervals T'(i,j) for 1 <i < n and j € A(i).

For all ¢ such that a; > b;, compute N (y;) := Np(yi) — Ujeaq) T, 5)-

For all j such that a; < b;, compute Ny (y,) :== Np(y;) U (UieB(j) T(i,7)).
For all ¢ such that a; = b;, set Ny (y;) := Np(y;).

Rl

© o N>

Algorithm 2: Algorithm for computing a bipartite graph.

Np(y;)NJ = 0. Recall that Np(y;) = [1,...,a;].

Let the elements of B(j) (in the increasing order) be 4y, - -, 4. Since j € A(41),
we have a(i1) < j. First consider the case oz(il) =7.
Case 1: k=1. Then J =T(i1,j) = [y(i1)+1,...,7(¢1) +t(@1,J)] = [a; + 1,...,a; +
t(i1,7)]. Thus J is a set and Np(y;) NJ = 0.
Case 2: k > 2. By Lemma 5.4, a(iq) = j for 2 < ¢ < k. By definition, T'(iq,j) =
[Y(ig) +1,...,7(ig) + t(iq,j)] for 1 < g < k. Then, by Lemma 5.5, T'(iq,j) = [v(iq) +
1,...,7(ig—1)] for 2 < ¢ <k and T(i1,j) = [v(i1) + 1,...,7v(i1) —l—t(zl, )]. Hence, for
distinct p and g such that 1 < p,q < k, we obtain T(zp, ) N T(ig,7) = 0 and thus J
has no duplicates. Further, J = US_ T (ip,j) = [Y(ix) + 1,...,7(ix) + Z];ZI t(ip, 5)]s
and so min(J) = 7(ix). We now obtain Np(y;) NJ = 0, as max(Np(j)) = a; =
~(ix) = min(J) — 1 (the second equality follows from Lemma 5.5).

Now consider the other case, namely a(i1) < j. Let j1 = a(i1),j2,...,Jp = j be
the elements of A(i1) that are < j. By definition

p p—1
T(i1,j) = [ai, — Zt i1,7q) Ce Gy —Zt(il,jq)}.
q=2 q=2
Case 1: k=1. Then J =T(i1,7) and
max(Nr(j)) = a;
< b;
< b (as i1 < j and b is nonincreasing)
=i, — Z t(i1,u) (by Lemma 5.3)
u€A(i1)
p
< a;; — Zt(il,jq)
q=2

= min(J) — 1.
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Hence Ny (y;)NJ = 0.

Case 2: k> 2. Put I = Uﬁ:g T(ip,4); then J = T(i1,5) UI. We claim that I
is a set. By Lemma 5.4, «a(i,) = j for all 2 <p <k. By Lemma 5.5, T(ip,j) =
[y(ip) + 1, y(ip—1)] for 3<p <k, and T(iz,j) = [y(i2) + 1,...,7(i2) + t(i2, j)].
Using ~v(ix) = aj, we obtain I = [a; + 1,...,7(i2) + t(i2,j)], completing the claim.
Now,

max () = y(i2) + t(ia, §)

k
=a; + Zt(iqaj) +1t(i2,j)  (by Lemma 5.5)
q=3

<aj+ Y t(u,j)

uw€B(j)
= b, (by Lemma 5.3)
< b, (as i1 < j and b is nonincreasing)
= Qi — Z t(i1,u) (by Lemma 5.3)
u€A(ir)
P
< Qi — Zt(ilajq)
q=2

= min(7T(i1,4)) — 1.

Hence T'(i1,j) NI = (), implying that J has no duplicates. Finally, max(Np(y;)) =
aj =min(/) — 1 = min(J) — 1 and hence Np(y;) N J = 0. 0

LEMMA 6.4. In the graph H = (X UY, E) computed by Algorithm 2, dy(z;) = r;
and dy (y;) = bj (= s;).

Proof. Clearly, dp(x;) = dp(z;) = 7. If a;j = b; then dg(y;) = bj;, since
Ny (y;) = Np(y;) and dp(y;) = a;. Suppose next that a; < b;. Then

dr(y;) = [NF(y;)|
= [Ne(w)l+ > |1T(,5)]
i€B(j)
=aj+ Y i)
i€B(7)

== bj.
Consider now the remaining case: a; > b;. Let ¢ = j for convenience and put
I= ZUGA(i) T(i,u). Then Np(y;) = Np(y;) — I. Let the elements of A(i) be
ji = j7j2a ce e 7jk;- Now

V@) + 1, 51) < a + Y Has )
q€B(j1)

=bj,

>~ Uy

k
= a; — Zt(iajq)
qg=1
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k
<a;— Yt jy)-
q=2

Thus I = [y(&) + 1,...,v() + t(i,51)] U [a;i —1,...,a; — Z];:z t(7,74)] and hence

k
1] = t(i, 51) + > t(i. jg)

I

-
o

S
~—

u€A(7)
= a; — bl

Finally, du(y:) = INu (i)l = [Nr(yi)| — 1| = a; — (@i —=b;) =b;. O

We now outline the parallel complexity of Algorithm 2. As mentioned in Intro-
duction, the graphs computed by our algorithms possess implicit representations: the
graphs can be stored in O(n) space. For ease of notation, we assume that n denotes
the total number of components of r and s (i.e., n := n + m). To analyze Step 1,
we first sort the sequences r and s using the algorithm of [8] and store the sorted
sequences in the arrays R and S, respectively. Sorting can be performed in O(logn)
time using O(n) EREW PRAM processors. We show how to perform all other steps
in O(logn) time using O(n/logn) EREW PRAM processors. r* can be computed by
cross-ranking [14] the array R with the array (1,2,...,n). Step 2 can be performed by
using Algorithm 1. Tt reports ¢(¢, j)’s in a lexicographic order. Steps 4, 5, and 6 can
be implemented by performing the appropriate prefix sums. In Step 7, observe that
U e T'(i,7) is union of at most three intervals, and hence can be computed within
the same resource bounds. Therefore, Algorithm 2 can be implemented in O(logn)
time using O(n) EREW PRAM processors. We summarize the result in the following.

THEOREM 6.5. Given a pair (r,s) of nonnegative integer sequences, a bipartite
graph that realizes (r,s) can be computed in O(logn) time using O(n) EREW PRAM
processors, where n is the total number of components of r and s. Moreover, if the
sequences T and s are given as sorted sequences, then the graph can be computed in
O(logn) time using O(n/logn) EREW PRAM processors.

7. Realizing Degree Sequences. Let d = (dy,...,d,) be a nonnegative integer
sequence, where n > d; > dy > ... > d,, > 0. In this section we present parallel
algorithms to compute a graph G = (V, E) on the vertex set V = {vy,...,v,} that
realizes d. Our parallel algorithms are based on the proof of Theorem 4.1 and the
main steps are:

Step 1: From d, compute the sequence (¢, ¢) and a realization H = (XY, E) of (¢, ¢).
From H compute another realization H of (¢, ¢) such that (z;,y;) € H if and only if
1< <.

Step 2: Compute from H a symmetric digraph D = (V, E) such that dp(v;) =
d}(vi) = d;. Then compute G.

We first discuss the parallel implementation of Step 2; the essential ideas are
described in the proof of Lemma 2.4. Compute the digraph D = (V, E) on the vertex
set V = {v1,...,v,}, where (v;,v;) € D if and only if (z;,y;) € H and (z;,y;) & H .
Then, the indegree of each vertex in D is same as its outdegree. Compute Eulerian
tours in D using the algorithm of [5]; this algorithm computes an Eulerian tour for
each connected component of D. Each trail is stored in an array. Using parallel
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list ranking, compute the number of edges in each trail. Consider first the even
trails. Using the array representation of the trails, delete alternate arcs and insert the
appropriate arcs as stated in the proof of Lemma 2.4. After this step, we are left with
an even number of odd trails and we group them in pairs. For each pair, determine if
it belongs to Case 1 or Case 2 in the proof of Lemma 2.4. In either case, delete and
insert appropriate arcs. We now have the required symmetric digraph D = (V, E).
Compute an undirected graph G from D by replacing the two symmetric arcs (v;, v;)
and (vj,v;) with the edge (v;,v;). Then G is the desired realization of d.

We now analyze the complexity of Step 2. The graph H " s represented in terms
of adjacency lists: for each y € Y, we maintain Ny (y) as a list. Let m denote
the number of edges of G. The digraph D can be computed in O(logn) time using
O(m) CRCW processors as follows. For each vertex, sort the vertices adjacent to
it by the algorithm of [8], and test in O(logn) time if (z;,y;) € H. The algorithm
of [5] computes Eulerian tours in D in O(logn) time using O(m) CRCW PRAM
processors. Parallel list ranking requires O(logn) time using O(m) processors and
the lists can be represented as consecutive elements in an array. Once we have the
array representation, all other steps can be performed within the claimed complexity
bounds. Hence the overall complexity of performing Step 2 is O(logn) time using
O(m) CRCW PRAM processors.

In the remainder of this section, we discuss the parallel implementation of Step 1.
Recall from Section 4 the definitions of high-degree and low-degree edges. In Step 1,
we wish to compute a realization of (¢, ¢) which has all high-degree edges and no low-
degree edges. The main steps involved in obtaining such a realization are (i) compute
a bipartite realization H of (c¢,c¢) using, for example, Algorithm 2. (ii) compute
appropriate exchange pairs in H to obtain all high-degree edges and (iii) compute
appropriate exchange pairs in the resulting graph to remove the low-degree edges.

We provide two alternate parallel algorithms for implementing Step 1. The first
algorithm is simple and intuitive and is based on several interesting lemmas. It has
high complexity, since it proceeds by reducing the computation to that of recursively
computing maximal matchings. On the other hand, the second algorithm is efficient,
though involved: it is based on the implicit structure of H computed by Algorithm 2.
We present the first algorithm Section 7.1 and the second one in Section 7.2.

7.1. The First Algorithm. Recall that H is a realization of (¢,¢). If there
are missing high-degree edges in H, then we execute the procedure described in Sec-
tion 7.1.1. This is followed by executing the procedure for low-degree edges, as de-
scribed in Section 7.1.2. After performing these two steps, we are left with a bipartite
realization H' of H, which has all high-degree edges and no low-degree edges. This
gives the outline of the first algorithm and we summarize the result in the following.

THEOREM 7.1. Given an integer sequence d, a realization of d can be computed
in O(log*n) time using O(n®) CRCW PRAM processors.

Proof. The proof and the complexity analysis follow from Lemmas 2.4, 7.4,
and 7.5. 0

7.1.1. Procedure for High-Degree Edges. In this subsection, we present a
parallel algorithm to compute appropriate exchange pairs in the realization H, so
that by performing the corresponding exchanges (see Figure 1) we obtain another
realization of (¢, ¢) having all high-degree edges. The procedure has two phases.

In the first phase, we restrict ourselves to the subgraph of H induced by the
high-degree vertices. Compute a maximal number of exchange pairs in this subgraph
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as follows. Define a graph G’ on the vertex set {1,2, ..., u}. There is an edge between
tand j in G’ if and only if (z;,v:), (z;,y;) € H and the edges (z;,y;) and (x;,y;)
form an exchange pair. Compute a maximal matching M in G’ and then perform
the corresponding exchanges in H. For notational simplicity, let H be the resulting
bipartite graph after performing these exchanges.

In the second phase, we obtain the rest of the missing high-degree edges in H.
Define as follows a bipartite graph H = (P, Q, ) over the missing high-degree edges
and the corresponding exchange pairs in H. P = {p; : (x;,y;) € H,1 < i < u} and
Q= {aqx : (zi,yx) € Hl # k and n > k > pu}. Further, (p;,qix) € € if and only
if the edges (x;,yx) and (x;,y;) form an exchange pair in H. The following lemma
establishes an important property of the bipartite graph H.

LEMMA 7.2. Suppose that there is at least one high-degree edge missing in H and
let the bipartite graph H = (P, Q,E) be as defined above. Then (i) d(p;) > 1 for alli
and (it) if (pi, qix) € E, then d(p;) > d(qix), where d(z) is the degree of vertex z in H.

Proof. Part (i) follows from Lemma 4.3. We say a vertex x; is a high-degree
neighbor of yg, if (x;,yx) € H and 1 < i < p . Let A; be the set of high-degree
neighbors of y, which are not neighbors of y; in H. Let Ay be the set of high-degree
neighbors of y;, which are also neighbors of y; in H. Observe that d(q,) < |A1|+|Az|.
To prove part (ii) of the lemma, we show that d(p;) > |A1| + |Az|. This is achieved
by pI‘OVng that Ny(pl) D) Bl @] BQ, where ‘Bl| > |A1|7 |B2| > ‘Agl and Bl n BQ = (Z)
Recall that ¢; is the degree of y; in H and that ¢; > u > ¢ (as i < p and k > p).
This implies that |A}| > |A1|, where A] = {a : zo € Ny(yi) — Nu(yp), o # k}.
The edges (z;,yx) and (z4,y;) form an exchange pair for every a € A/1 and we
define By = {qar : @ € All} Observe that By C Ny(p;). We define By now. If
(xj,y;) € H for some 1 < j < p and (zj,y;) € H, then (z;,y;) ¢ H by the fact that
a maximal matching is found in Phase 1 of the algorithm. Hence |A5| > |As|, where
A/2 ={B: (z;,y3) € H, > u,B # k}. For every 3 € A;, there exists a vertex, say
z g, such that B+ B and (zi,yp) and (24 ,y;) form an exchange pair in H. Define

By = {qgp: B € AIQ} and note that Bs C Ny (p;). To complete the proof, observe
that Bl N BQ = @ 0

COROLLARY 7.3. In H = (P,Q,&), there exists a matching that matches all
vertices of P.

Proof. Follows from Lemmas 2.3 and 7.2. a

We discuss some algorithmic aspects of Lemma 7.2. We compute the bipartite
graph H = (P,Q,€) from H. From Corollary 7.3, we know that any maximum
matching in ‘H matches all vertices in P. By finding a maximum matching in H, we
can compute the corresponding exchange pairs in H and hence obtain all the missing
high-degree edges. Unfortunately, only randomized parallel algorithms are known for
computing a maximum matching [19]. In order to solve our problem deterministically,
we resort to the special structure of H stated in Lemma 7.2 and Corollary 7.3. The
solution is presented in Algorithm 3.

LEMMA T7.4. Algorithm 8 computes a bipartite realization of (c,c¢) having all
high-degree edges. It runs in O(log* n) time using O(n®) CRCW PRAM processors.

Proof. We first show the correctness of the algorithm. In every step, observe
that (e, c) is the degree sequence of the bipartite graph H. Consider an iteration of
the while loop. The correctness of Phase 1 is obvious. Assume that H has some
high-degree edges missing after Phase 1 and let H be as defined in Phase 2. Then £
is not empty by condition (i) of Lemma 7.2. Thus H has more high-degree edges at
the end of Phase 2 than it has in the beginning.
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While there are missing high-degree edges in H do
begin
Phase 1
1. Compute a graph G’ on the vertex set {1,2, ..., u}; there is an edge between
¢ and j if and only if (z;,y;) and (z;,y;) form an exchange pair.
2. Compute a maximal matching M in G’ using the algorithm of [17].
3. From M, compute the exchange pairs in H and perform exchanges to obtain
the corresponding high-degree edges; let the resulting graph be H.
Phase 2
1. Compute a bipartite graph H = (P, Q, &) from H, where P = {p; : (zi,y;) &
H1<i<u}, Q= A{qr: (z,ye) € HI # kand n > k > u}, and
(pi,qix) € € if and only if the edges (z;,yr) and (z;,y;) form an exchange
pair in H.
2. Compute a maximal matching M in H using the algorithm of [17].
3. From M, compute the exchange pairs in H and perform exchanges to obtain
the corresponding high-degree edges; let the resulting graph be H.
end.

Algorithm 3: A parallel algorithm to obtain the missing high-degree edges in H

We now discuss the complexity of the algorithm. By Lemmas 2.2 and Corol-
lary 7.3, the maximal matching computed in Step 2 of Phase 2 has size at least %|73|
Thus in each iteration of the while loop, the number of missing high-degree edges in
H drops down by at least a factor of 2, which implies that the while loop is executed
for at most O(logn) times. In each iteration, the graph G’ can be computed in O(1)
time using O(n?) processors and the graph H in O(1) time using O(n?) processors.
Computing maximal matchings in G’ and H takes O(log® n) time using O(n3) CRCW
PRAM processors. Hence the overall complexity is as stated in the lemma. ]

7.1.2. Procedure for Low-Degree Edges. Let H be the bipartite graph com-
puted by Algorithm 3; H has all high-degree edges and possibly some low-degree
edges. Our aim in this subsection is to transform H into another bipartite realization
H' of (¢, c) such that H’ has all high degree-edges and no low-degree edges. Our algo-
rithm for achieving this is similar to Algorithm 3, and we present below the necessary
modifications.

As before, there are two phases. In the first phase, we restrict ourselves to the
subgraph of H induced by the low-degree vertices. Define a graph G’ on the vertex set
{p+1,...,n}. There is an edge between ¢ and j in G’ if and only if the edges (x;, y;)
and (xj,y;) form an exchange pair. In the second phase, define as follows a bipartite
graph H = (P, Q, &) over the low-degree edges and the corresponding exchange pairs
in H P ={p; : (x5,9;) € Hop <i<n},and Q = {qix : (z1,yx) € H,l # k and
1 <k < pu}. Further, (p;,qix) € € if and only if the edges (z;,y;) and (x;, yx) form
an exchange pair in H. The results of Lemma 7.4 hold with this definition of H also.
The rest of the discussion is similar to that of previous subsection. We conclude with
the following.

LEMMA 7.5. A bipartite realization of (c,c) having all high-degree edges and
no low-degree edges can be computed in O(log* n) time using O(n®) CRCW PRAM
Processors.

7.2. An Efficient Algorithm. We present an efficient computation of the bi-
partite graph H introduced at the beginning of this section. The computation is
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based on the structure of the bipartite graph computed by Algorithm 2.

The main result of this section is the following.

THEOREM 7.6. Given an integer sequence d of length n, a graph that realizes d
can be computed in O(logn) time using O(n +m) CRCW PRAM processors, where
m is the number of edges in the realization.

7.2.1. The Structure. We present in this section the structure of the bipartite
graphs F' and H computed by Algorithm 2.

Both graphs F' and H (defined on the vertex set X UY") are specified by giving the
neighbors of the vertices in Y. For y; € Y, Np(y;) is an interval of vertices, namely
Np(y;) ={zr : 1 <k < a;}, and we denote Np(y;) by the interval [1,...,a;]. Ng(y;)
is a union of at most two disjoint intervals of vertices (cf. the proof of Lemma 6.3):
Ny (y;) = {zk : k € (L;UM;)}, where L; and M; are defined below; we denote N (y;)
by L; U M;. Recall the definitions of (i, j), A(i), B(j), a(i), 8(i,7), v(¢) and T(4, )
from Section 6. To define L; and M;, we distinguish between the following cases.
Case 1: a; =b;. Then L; =[1,...,a;] and M; = (.

Case 2: a; > b;. Let the elements of A(7) be j1,...,Jk. Then L; =[1,...,v(7)], and

My = [y(i) + (i, 1) + 1, .o a0 — ey (i, Gg)]-

Case 3: a; < b;. Put j =i and let the elements of B(j) be i1, ..., ig.

Case 3.1: a(i;) =j. Then L; =[1,...,a; + Zz:l t(iq,7)] and M; = 0.

Case 3.2: a(i1) < j. Let j1 = a(i1),j2,...,Jp = j be the elements of A(i;) that are

< j._lThgn ;j =[L,....a;+ Xk, tlig, j)] and M; = [az, — P, t(i1, jg) + 1, .. i, —
a—2 111, Jq)]-

Example 5: In Example 4, Ly = [1,1], My = [4,6]; Lo = 0, My = [2,4]; L3 = [1, 3],

M3 = (Z); L4 = [1,3], M4 = (Z); L5 = [1, 1], M5 = [7, 7}; L6 = [Z), MG = [576} 0

LEMMA 7.7. For all 1 <i <n, max(L;) < min(M;).

Proof. The neighborhoods Ng(y;) are defined in the proof of Lemma 6.3. It is
routine to verify that max(L;) < min(M;) holds in all the cases considered in that
proof. O

7.2.2. The Algorithm. Our algorithm computes four bipartite graphs, namely
Hy, Hy,Hy, Hy = H/, on the same vertex set X UY. These graphs are represented
implicitly using the neighborhoods of vertices in Y. Throughout, N;(y) denotes the
set of neighbors of y € Y in H;, where i € {0,1,2,3}.

The algorithm (Algorithm 4) has three steps. In the first step, we compute Hy
and Hi; they are the realizations of (¢, ¢*) and (¢, ¢), respectively.

In the second step, we compute Hs that has all high-degree edges, i.e., (x;,y;) €
H, for all 1 <4 < p; no new low-degree edges are created in this step. Suppose the
high-degree edge (z;,y;) is absent in H;. To create the edge (x;,y;) by performing
an exchange, we need to find vertices z;,y; such that (x;,yr) and (z;,y;) form an
exchange pair. To make sure that no multiple edges are created when parallel ex-
changes are done, we select k = «(i) (see Lemma 7.11). Further, we impose the
condition [ # k in order to avoid creating any low-degree edges. More precisely,
we choose [ = 0(i) = min{l : £ # a(i),r¢ € N1(yi) — N1(ya(i))}- See Step 2 of
Algorithm 4.

In the last step, we compute H3 by deleting from Hs all low-degree edges without
destroying the high-degree edges. Suppose the low-degree edge (x;,y;) is present in
Hj. To destroy the edge (z;,y;) by performing an exchange, we need to find vertices
x1, Yy such that (z;,y;) and (z7,yx) form an exchange pair. To make sure that no
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multiple edges are created when parallel exchanges are done, we select k = 7(j) = ¢,
where j € T'(i,7) (see Lemma 7.14). Further, we impose the condition I # k in order
to avoid destroying the high-degree edges. More precisely, we choose | = ¥(j) =
min{l : £ # 7(j), 2 € Na(y-(;)) — Na(y;)}. See Step 3 of Algorithm 4.

1. Let Hy and Hq, respectively, be the realizations of (¢, ¢*) and (¢, ¢) computed
by Algorithm 2.

2. Compute I = {i: i < p,(x;,y;) € H1}. Compute a new bipartite graph Hy
from H; by doing in parallel the following for all ¢ € I: Delete the edges
(%4, Ya(iy) and (zg¢;y,y:) and add the edges (x4, ;) and (Tg(), Ya(i))-

3. Compute J = {j : j > p,(z;,y;) € H2}. Compute a new bipartite graph
Hj from Hy by doing in parallel the following for all j € J: Delete the edges
(w5,y5) and (Ty(;), Yr(j)) and add the edges (zy(;),¥;) and (2, Yr(;))-

4. Output Hs.

Algorithm 4: An efficient algorithm.

The rest of this section is devoted to prove the following important result.

LEMMA 7.8. Algorithm 4 computes a realization of (c,c) that has all high-degree
edges and no low-degree edges. It runs in O(logn) time using O(n) EREW PRAM
PTOCESSOTS.

We let, for ease of notation, a = ¢* and b = ¢. Recall from Section 6 that the
condition k € T'(7,j) means: ‘y; gets xy from y; in Hy', i.e., (xx,y;) € Ho — Hy and
(xk,yj) € H, — Hy.

The following two lemmas are used to prove the correctness of Step 2 of Algo-
rithm 4.

LEMMA 7.9. Let i < u be such that (x;,y;) & Hy. Then there exists a unique j
such that i € T(i,7). Furthermore, j = a(i) and j > p.

Proof. The condition i < p implies that a; > u, and thus (x;,y;) € Hy. Further,
the condition (z;,y;) ¢ H; implies that a; > b; as N1(y;) C No(y;) otherwise. Let
the elements of A(i) be ji,...,jk. The condition (z;,y;) ¢ H; implies that there
exists a j; such that ¢ € T(4,j,). From the definition of T'(4,j) it follows that j,
is unique. We now show that j, satisfies the other properties of j stated in the
lemma. Suppose for contradiction that j, # «(i), i.e., jo > a(i). Then T(i,j;) =

¢ o =1, .
[ai =32 o (i, Jg) + 1, ai — D2 5 t(i, jg)], and

bi = [N1(y:)|
= |Li| + [ M;]
< max(M;) (by Lemma 7.7)
k
=a; — Y t(i,]q)
q=2
¢
<a;— Y t(i,jqg)
q=2

< min(7T'(4, j¢))
< (as i € T(i,75¢))
<

which contradicts b; > pu + 1. To prove the remaining part, observe that (i) > aj,
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and that i belongs to T'(i,j¢) only if v(i) < 4; the last inequality is possible only if
je>p(asaj, > p+1if jo<p). O

LEMMA 7.10. Let < j < n. There exists at most one i such thati € T(i,j7). In
that case, i < p and «(i) = j.

Proof. That there exists at most one i is clear from the definition of T'(,5)
(cf. Figure 2). Observe that ¢ belongs to T'(i,5) only if ¢ < p. Then «(i) = j by
Lemma 7.9. O

LEMMA 7.11. The bipartite multigraph Hy computed in Step 2 of Algorithm 4 is
a simple bipartite graph that realizes (c,c). Moreover, (x;,y;) € Ha if 1 <1i < p.

Proof. Let the set I be as defined in Step 2 of the algorithm. Then, for distinct ¢
and i in I we obtain (i) # a(i') using Lemmas 7.9 and 7.10. Thus no multiple edges
are created when new edges are added in Step 2, and hence Hs is a simple graph.
The proof of the remaining part of the lemma is obvious. O

The following two lemmas are needed to prove the correctness of Step 3 of Algo-
rithm 4.

LEMMA 7.12. Suppose (z;,y;) € Ha for some j > p. Then (xj,y;) € Hi.
Further, there exists a unique @ such that j € T(i,7), a(i) < j and i < pu.

Proof. Recall that 6(i) # a(i) in Step 2 of Algorithm 4. So no new ‘low-degree
edges’ are created in Ho, i.e., no edge of the form (xy,yx), where k > p+ 1, is
introduced into Hy. Thus (z;,y;) € Hi. The rest of the proof is similar to the proof
of Lemma 7.9. O

LEMMA 7.13. Let i < p. There exists at most one j such that j € T(i,7). In
that case, j > (i) and j > pu.

Proof. The proof is similar to the proof of Lemma 7.10. O

LEMMA 7.14. The bipartite multigraph Hs computed in Step 3 of Algorithm /
is a simple bipartite graph that realizes (c,c). Moreover, (x;,y;) € Hs if and only if
1<e< .

Proof. Let J, 7(j) and 1(5) be as in Step 3 of the algorithm. For distinct j and j’
in J we obtain 7(j) # 7(j) using Lemmas 7.12 and 7.13. Thus no multiple edges are
created when new edges are added in Step 3 and hence Hj is a simple graph. Clearly,
Hj3 is a realization of (¢, c) and (xj,y;) & Hs for all u+1 < j <n. By Lemma 7.11,
(24,9;) € Ho for all 1 <4 < p. The fact that ¢(j) # 7(j) implies that no such edge
(high-degree edge) of Hs is destroyed when some edges are deleted in Step 3. O
Proof of Lemma 7.8: The correctness of the algorithm follows from Lemma 7.14.
Recall that the graphs Hy, H1, Hy, H3 are represented implicitly using the neighbor-
hoods of vertices in Y. The complexity bounds for Step 1 follow from Theorem 6.5.

Suppose the neighborhood of some vertex y; changes in Step 2. Then one of the
following must hold: k € I or k = «(i) for some ¢ € I. The following claim states
that the neighborhood of y; changes by exactly one vertex.

Claim 1: |Ny(yr) — N1(yx)| = 1.

Consider first the case k € I. Lemma 7.9 implies that «(i) > p+ 1 for all ¢ € I.
Since k < u, k # a(i) for any ¢ € I. Consider now the case k = «(¢) for some i € I.
Then ¢ is unique by Lemmas 7.9 and 7.10, completing the proof of the claim. Since
Ni(y) is a union of at most two disjoint intervals of vertices for all y € Y, we can
compute all 6(7)’s in constant time using O(n) processors. Further, the graph Hs in
Step 2 can be computed in constant time using O(n) processors.

Suppose the neighborhood of some vertex yj, changes in Step 3. Then one of the
following must hold: k € J or k = 7(j) for some j € J. The following claim states
that the neighborhood of y; changes by exactly one vertex.
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Claim 2: |N3(yr) — Na(yx)| = 1.

Consider first the case k € J. Lemma 7.12 implies that 7(j) < u for all j € J.
Since k > p+ 1, k # 7(j) for any j € J. Consider now the case k = 7(j) for some
j € J. Then j is unique by Lemmas 7.12 and 7.13, completing the proof of the claim.
All 7(j)’s can be computed in constant time using O(n) processors. Claim 1 implies
that Na(y) is a union of at most three disjoint intervals of vertices for all y € Y.
Hence all 9(j)’s can be computed in constant time using O(n) processors. Further,
the graph Hs in Step 3 can be computed in constant time using O(n) processors. |
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