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ABSTRACT. We present new explicit lower bounds for some Ramsey numbers.
All the graphs are cyclic, and are on a prime number of vertices. We give a
partial probabilistic analysis which suggests that the cyclic Ramsey numbers
grow exponentially. We show that the standard expectation arguments are
insufficient to prove such a result. These arguments motivated our searching
for Ramsey graphs of prime order.

1. INTRODUCTION

A red blue coloring of the edges of the complete graph K,, (which we will regard
as having vertex set {0,1,2,3,...,n—1}) is eyclic if it is invariant under the rotation
i =4+ 1 (mod n). For integers k,l > 2, define the cyclic Ramsey number C(k,1)
to be the least N so that for all n > N, every cyclic coloring of K, contains either
ared Ky or a blue K;. Clearly C(k,l) < R(k,l). We note, however, that not every
n < C(k,1) is such that there exists a cyclic coloring without a red K}, or a blue
K;.

Many authors have searched for lower bounds for Ramsey numbers amongst
cyclic graphs, and most of the best known explicit lower bounds come either from
cyclic graphs or from cyclic graphs together with a small number of additional
vertices.

Our motivating question is: does C(k,l) grow exponentially?

Our paper will have two parts: in the first part we give a partial analysis of
random cyclic colorings. We show that standard expectation arguments cannot
be used to answer the question above. The analysis suggests that colorings on a
prime number of vertices may be slightly more likely to give extremal cyclic Ramsey
graphs, motivating our search for the graphs given below. In the second part, we
present some cyclic graphs which improve the previously best known bounds for
R(4,12), R(4,15), R(5,7) and R(5,9).

2. THE STANDARD PROBABILISTIC ANALYSIS, AND WHY IT FAILS HERE

The standard probabilistic lower bounds for R(k,[) are obtained as follows: let
0 < p < 1, randomly 2-color the edges of K,,, red with probability p, and blue with
probability 1 — p. Compute the expected number of red K}’s and blue K;’s: if this
expectation satisfies

Z Pr(K is a red clique) + Z Pr(L is a blue clique) < 1
|K|=k |L|=t
then there exists a coloring of K,, with no red K} and no blue K.
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In the cyclic case, the existence of one monochromatic subgraph implies the
existence of many, since the image of a monochromatic clique under the rotation
i — 1+ 1 (mod n) is also a monochromatic clique. It is easy to see that in fact the
existence of one monochromatic clique of order k£ implies the existence of at least
ﬁ distinct cliques, and in particular, if n is prime, at least n distinct cliques.
Hence, if

(n, k) . . (n,1) . .
— Pr(K is a red clique) + ——= Pr(L is a blue clique) < 1
- Kz_:k ( que) + ~— Lz;l ( que)

where the expectations are now computed over all random cyclic colorings, then
there exists a cyclic coloring of the edges of K, without a red Kj or a blue K;.
This dependence on the greatest common divisors (n, k) and (n,[) suggests that we
may be slightly more successful in finding graphs of prime order.

However, as we shall see, the computation of the expectation is not sufficient to
obtain any bounds for C(k,l): indeed, we shall see that the expression above grows
at least as fast as n/v/k for large n.

We shall concentrate on the first part of the sum: fix k,n, and for now set
p = 1/2. We wish to compute

Z Pr(K is a red clique).
|K|=k

Define the difference of a pair of vertices ¢ and j as min{|i — j|,n — |i — j|}. Note
that if a coloring is cyclic, then all edges with the same difference are the same
color. The differences D(K) of a set K of vertices are the differences between the
pairs comprising K x K.

If aset K = {zy,22,...,2x} C {0,1,2,...,n — 1} has exactly ¢ distinct differ-
ences, i.e. D(K) =1, then the probability that K is a red clique in a random cyclic
coloring is 27¢. Define N; ., to be the number of k-subsets of {0,1,2,...,n — 1}
having exactly ¢ distinct differences. Then the expected number of red k-cliques in
a random cyclic coloring of K,, is

(z)
> Nigm2 '
i=|k/2]

If k fn then N, =0 for j < k—2. Since the 277 part of the summand is largest
in the range i < k — 2, this appears as another slight advantage for prime values of
n.

Proposition 2.1. For n prime and k < \/n/2,

(5)
Nin2 ' = Q(n?/VE)
i=k—2
Proof: Clearly,
(2) 2k—3
Z Nz'7k7n27i >27(2k73) Z Ni,lc,n-
i=k—2 i=k—1

To bound the latter sum, consider the |n/2| arithmetic progressions mod n of
2k — 2 terms beginning at 0 with common difference d : 0 < d < n/2. Each of these
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sets has 2k — 3 distinct differences. From each progression we may remove k — 2
nonzero elements in (2::23) ways to form a collection of k-subsets. We claim these
are all distinct. It is obvious that those from the same progression are distinct,
so it suffices to show that no two progressions of 2k — 2 terms, starting at 0, can
contain the same k-subset. To see this, we first show that arithmetic progressions

of integers with initial term 0 can’t intersect in too many elements: let
A={0,a,2a,...,ka}

and
B ={0,b,2b,...,kb}

be two arithmetic progressions, with a < b, and (a,b) = 1 (otherwise just divide
both a and b by their greatest common divisor);we will show that

k
|AN B| > LEJ+1'

Since (a,b) = 1, if an element z is in their intersection, it is of the form ja and b,
where b|j and a|l. Thus the elements of A in the intersection are a subset of

k
0, ba, 2ba, 3ba, . . .bLEJa.

Hence there are at most | £] + 1 of them.
We now consider arbitrary arithmetic progressions: by translating both progres-
sions, we may assume that

A={0,a,2a,3a,...,ka}

and
B ={c,c+b,c+2b,c+3b,...,c+ kb}.

Now, if ¢ > 0 we can replace A by A\ {0} U {(k + 1)a} without decreasing the size
of the intersection. Iterating this process, we see that we can translate until the
arithmetic progressions both start with 0, and we are in the case handled above.

We now show that two arithmetic progressions taken modulo n have the same
property, provided that k is much less than n (clearly it fails to be true if £ is close
to n).

Since n is prime, by multiplying both arithmetic progressions by a ' mod p, and
by rotating, we may assume

A=1{0,1,2,3,...,k}

and
B ={c,c+b,c+2b,c+3b,...,c+ kb}.

Now, if we knew that B didn’t wrap around modulo n, then we would be able
to appeal to the statement for arithmetic progressions of integers above: we shall
show that there is a value d mod n so that neither dA mod n nor dB mod n wrap
around. Observe that since the progressions intersect in at least two elements then
we have e, f,g, h so that e = ¢+ gb and f = ¢ + hb, where each of e, f, g, h are at
most k and we may assume f > e. Then

f—e=(h—g)b
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if h < g, then we will replace the arithmetic progression B by the reverse arithmetic
progression (with common difference n — b and initial term ¢ + kb). Thus we are
now in the situation where we have 0 <e< f <k, 0< g < h <k, and

f—e=(h—g)h.

If we now let d = h — g, and consider the progressions A' = dA and B' = dB we
see that

A'=10,d,2d,...,dk}
and
B' ={cd,cd + bd,cd + 2bd, . . ., cd + kbd}

(taken modulo n). Now, since d < k and bd = f — e < k (mod n), each of A" and
B’ has a small common difference. Indeed, the difference of A is d < k and the
difference of B is bd < k. Thus, provided that k% < 5, A’ doesn’t wrap around
(mod n), and B' wraps around at most once: moreover, if B’ wraps around we can
rotate both arithmetic progressions so that B’ starts at 0 and neither progression
wraps around, reducing us to the cases handled above. Thus we have shown that
if the arithmetic progressions modulo n intersect in many elements then they are
the same arithmetic progression.

Now since n is prime and d < n/2 each subset may be rotated n — 1 times to
yield a total of

(LH/QD”<2:_ 23> ~ 0?2V

distinct k-subsets. Each of these subsets has at most 2k — 3 distinct differences,
since each is a subset of a progression having 2k — 3 distinct differences. Therefore,
2k—3
Z Ni7k7n = Q(n222k73/\/g)
i=k—1
and the proposition follows.

From the proposition we see that the standard argument will not give bounds
on R(k,1) that are exponential in min{k,1}.

An additional advantage of primes: a natural way to investigate bounds for N; ;, ,,
is to “grow” a set K randomly, counting the number of new distinct differences when
a vertex z is added to K. All |K| differences will be distinct only if z does not
satisfy any of a set of equations mod n derived from the vertices in K (e.g. x can
not be the mean of two points in K). When n is prime these equations are solved
over the field Z, and have unique solutions. But when n is composite there can be
multiple solutions, increasing the probability of duplicating a difference (e.g. both
3 and 0 are midpoints of 2 and 4, mod 6) .

3. NEW BOUNDS ON SOME CLASSICAL RAMSEY NUMBERS

As we’ve discussed, primes seem to show some advantage at several points in
the probabilistic analysis. We checked empirically for advantages of primes over
composites with regard to bounds for R(4,4), R(5,5), and R(6,6). The results are
given in in the figures below where shading denotes that a cyclic Ramsey graph is
known to exist, and blank areas indicate that there are no cyclic Ramsey graphs. A
question mark indicates cases where we do not know whether or not cyclic Ramsey
graphs exist.



17
16
15
14
13
12
11
10

NEW RAMSEY BOUNDS FROM CYCLIC GRAPHS OF PRIME ORDER

R(4,4)

R(5,5)




6 NEIL J. CALKIN, PAUL ERDOS, AND CRAIG A. TOVEY

Primes show a slight advantage in the first two cases, and a dramatic advantage
in the third case: the largest known ramsey graph of composite order has 74 ver-
tices, while every prime number order through 101 yields a ramsey graph, with the
possible exception of 97.

Having some empirical confirmation that prime order graphs are more apt to
provide good Ramsey bounds, we successfully searched for graphs to improve best
known lower bounds. The graphs were found by implicit enumeration of cyclic 2-
colorings. The program was written in Pascal and run on Sun SPARCstations (2,
10, or 20). We emphasize that the algorithm is straightforward and the hardware
unexceptional even by 1991 standards. The advantage that we had was knowing
to look at graphs of prime order. We suspect that in the past, when a complete
search revealed no cyclic Ramsey graphs of order n or n + 1, researchers did not
continue the search over larger orders. We hope that our computational results will
encourage other researchers with better algorithms and hardware to look for further
improvements, both by searching over larger orders, and by taking our graphs and
modifying them.

We searched for cyclic graphs of order equal to the smallest prime greater than
or equal to the best known bound. The required CPU times varied from 25 minutes
(for R(5,7)) to 10 days (for R(4,15)).

R(4,12) > 98. This improves on the bound of 97 reported in [1]. In the
97 vertex graph, the following edge differences are present: 11,19,21,22 23,29,
34,35, 38,39,43,44, 46,47, 48.

R(4,15) > 128. This improves on the bound of 123 reported in [1]. In the
127 vertex graph, the following edge differences are present: 14,27, 28,29, 38, 39,
41,43,44,45,47,49, 51,52, 58,60, 62, 63.

R(7,5) > 80. This improves on the bound of 76 reported in [1]. In the 79 vertex
graph, the following edge differences are present: 1,2,3,4,5,7,8,9,11,13,15, 16, 18,19,
23,27,29, 30,31, 32,33, 35,39.There is no such cyclic graph on 83 vertices.

R(5,9) > 114. This appears to the be first bound reported [1]. In the 113 vertex
graph, the following edge differences are present: 8,9,10,11,12,13,14,15, 16, 20, 28,
32,34,35,39,42,43,44, 46,48, 52, 54, 55.

Primes do not always fare better than composites. Besides the trivial case of
3-vertex graphs for R(3,3), the smallest example occurs for R(4,5): there is no

cyclic Ramsey graph on 23 vertices, but there is one on 24 vertices.
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