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THE GRAPHS WITH ALL SUBGRAPHS T-PERFECT*
A. M. H. GERARDS! AND F. B. SHEPHERD?

Abstract. The richest class of t-perfect graphs known so far consists of the graphs with no
so-called odd-K4. Clearly, these graphs have the special property that they are hereditary t-perfect
in the sense that every subgraph is also t-perfect, but they are not the only ones. In this paper we
characterize hereditary t-perfect graphs by showing that any non-t-perfect graph contains a non-t-
perfect subdivision of Ky, called a bad-K4. To prove the result we show which “weakly 3-connected”
graphs contain no bad-K4; as a side-product of this we get a polynomial time recognition algorithm.

It should be noted that our result does not characterize t-perfection, as that is not maintained
when taking subgraphs but only when taking induced subgraphs.
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1. Introduction. A graph G = (V, E) is t-perfect if the polyhedron

P(G) := {x € RV Ty, > 0 (veV),
W Tut+ Ty < 1 (w € E),
S oz < ML (Cis odd circuit in G)
veV(C)

has integral vertices only, i.e., when P(G) is the stable set polytope of G. T-perfection
was introduced by Chvital [4], and a characterization of it has proved elusive. The
first two classes of graphs known to be t-perfect are series-parallel graphs (conjectured
by Chvétal [4] and proved by Boulala and Uhry [2]) and almost bipartite graphs, i.e.,
graphs with a node that is contained in every odd circuit [5]. A common extension of
these two classes is the class of graphs that do not contain an odd-K4 as a subgraph.
Here odd-K4 means a subdivision of Ky, the complete graph on four nodes, in which all
triangles have become odd circuits (cf. Figure 1a). Graphs containing no odd-K, are
t-perfect [9]. However, there are odd-Ky’s that are t-perfect, namely, the good-Ky’s:
a good-K4 is a subdivision of Ky, in which two nonadjacent edges are not subdivided
and the other four edges have become even paths (cf. Figure 1b). An odd-K, that is
not good is called a bad¥; bad-K4's are not t-perfect (Lemma 11). The main result
of this paper is the following theorem.

THEOREM 1. If G contains no bad-K, as a subgraph, then it is t-perfect.

We prove this in section 3. One of the main tools is the following decomposition
result.

THEOREM 2. If G is weakly 3-connected, i.e., a subdivision of a 3-node-connected
stmple graph, then it contains no bad-Ky4 if and only if one of the following holds:

- G contains no odd-Ky;
- G is an odd-Py;
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Fia. 1. Dashed curves indicate internally node disjoint paths of positive length, which in (b)
all have even length.

(a) (b)

Fi1G. 2. Dashed curves indicate internally node disjoint paths of positive even length. The
shaded regions in (b) indicate the second and third leaf of the book.

- G is a clean pad;
- G is a book.

An odd-Py is a graph obtained from a six circuit ujus, ..., usug, ugu; by adding
three node disjoint even w;u;y3-paths (i = 1,2,3); see Figure 2a. Note that the
smallest odd-Py is the Petersen graph with a node removed.

A padis a graph G with a Hamiltonian circuit wy, uy, wa, ug, . .., Wk, Uk such that
an edge not on the Hamiltonian circuit has both end nodes in U(G) := {u1,u2,. .., ug}.
(We also define W(G) := {wy,wa,...,wg}.)

Clearly, a pad has exactly one Hamiltonian circuit, which we denote by R(G) and
call the rim of the pad. The set of edges not on the rim, called chords, will be denoted
by K(G). A pad G is clean if neither of the two pads in Figure 3 can be derived from
G by deleting chords and contracting edges on the rim.

A book is any graph that can be constructed as follows:

- Take two nodes h; and hg (the hinges of the book), and join them by an edge.

- Take a third node c, the center of the book, and add two internally node
disjoint even paths, one from c¢ to h; and one from ¢ to hy (together with
hihso these paths form the spine of the book).

- Add n internally node disjoint even hjho-paths Py, ..., P,, and select on each
P; a nonempty collection T; of nodes that are an even distance from h; on
P;.
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- Finally, add all edges in R; :=={cr|reT;},i=1,...,n.
Note that the union of each P; U R; with the spine forms a pad. We call these pads
the leaves of the book. The path P; is called the ¢rim of the leaf. Figure 2b indicates
a book with 3 leaves.

As side-product we obtain the following result (we shall give the easy proof in
section 2.3).

THEOREM 3. There exists a polynomial time algorithm that decides whether or
not a given graph G contains a bad-Ky.

Another easy side-product, of which we skip the proof, is that graphs with no
bad-Ky are 3-colorable. This generalizes a result of Catlin [3] that graphs with no
odd-K4 are 3-colorable. Toft [12] conjectures that a graph is 3-colorable if it does not
contain a subgraph isomorphic to a graph obtained from K4 by replacing all six edges
with odd paths.

Characterizations around t-perfection. Shepherd [11] characterized which
near-bipartite graphs are t-perfect. (A graph is near-bipartite if for each node v and
each odd circuit C' there is a neighbor of v on C. In fact, Shepherd [11] characterized
the stable set polytopes of all near-bipartite graphs.) However, the characterization
of t-perfection among all graphs is still open.

The graph in Figure 4 is t-perfect—as is easily proved—but contains a bad-Ky,
which is not t-perfect. Thus t-perfection is not closed under taking subgraphs. T-
perfection is however closed under taking induced subgraphs, i.e., under the deletion
of nodes, but a complete list of minimally induced non-t-perfect graphs is not yet
known.

However, combining Theorem 1 and Lemma 11, we do have the following:

(2) A graph contains no bad-Kj if and only if all its subgraphs are t-perfect.

The result of Gerards and Schrijver shows that graphs with no odd-Ky are t-perfect.
In fact, there it is proved that a graph G = (V, E) has no odd-K if and only if for all
a,b€ZY and all ¢,d € Z* the polyhedron
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3) {eRY |a, <2y <by (VE V)i po < Ty + 2 < duy (uv € E)}

has Chvétal-rank 1, which means that the convex hull of the integral vectors in that
polyhedron is obtained by adding all rank-1 Chvétal-Gomory cuts. From Theorem 1
it is not hard to see that a similar result holds for graphs with no bad-k.

COROLLARY 4. G = (V,E) contains no bad-K, if and only if for all a,b € ZV
and all ¢ € Z® the polyhedron

(4) {z eRY | ay, <2y <by (VEV); Ty + Ty < Cup (wv € E)}

has Chvdtal-rank 1.
The rank-1 Chvatal-Gomory cuts needed here are

() Z Zy < Z Cuv | (C is an odd circuit in G).
veV(C) wWEE(C)

B

One of the main open questions about t-perfection is whether the system of linear
inequalities given in (1) is totally dual integral. This property holds for graphs with
no odd-K [6], but we have not yet been able to verify this for graphs with no bad-K,.
By the decomposition results used in Gerards [6], it follows that to check for which
graphs the system in (1) is totally dual integral for all subgraphs, we may confine
ourselves to clean pads and books.

Preliminaries. If G is a graph and u and v are nodes in G of degree at least 3,
then a uv-leg of G is a uv-path P in G such that all nodes of P, except u and v, have
degree 2 in G.

If Pis a path in G and u,v € V(P) we denote the uv-path in P by P,,. If
e=w € E(G), P. := Py,.

2. Structure of graphs with no bad-K,. We first prove that if a weakly
3-connected graph with no bad-K4 contains an odd-Ky, then it is either an odd-Py, a
book, or a pad (Lemma 5). Next we prove that a weakly 3-connected pad with no
bad-K, is clean (Lemma 6). Together these two lemmas prove the only-if direction
of the equivalence in Theorem 2. As odd-Py’s clearly have no bad-Ky, the if direction
follows by proving that clean pads (Lemma 7) and books (Lemma 8) have no bad-Kj.
We conclude this section with a recognition algorithm for graphs with no bad-Kj.

2.1. Books and pads. Let G be a pad. If H is a subgraph of G and not a pad
itself, we denote by K (H) the edges in K (G) with both end nodes in V(H).

If P is a path on R(G), we say that chords e and f are nested on P, written as
e>p f,if e, f € K(P) and Py is a subpath of P,. Chords e, f of K(G) are nested if
they are nested on some path on R(G); if not, e and f cross (notation: e x f).

LEMMA 5. Let G be a weakly 3-connected graph with no bad-Ky. If G contains
an oddK,, then G is an odd-Py, a book or a pad.

Proof. We first give some definitions: Let H be a subgraph of a graph G. A route
of H or an H-route is a uv-path P in G such that V(P) NV (H) = {u,v} and such
that no leg of H contains both u and v. We say that nodes u1,us, and uz induce an
extended triangle in H if each pair is connected by a leg of H. A collection of three
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FIG. 5. Dotted and dashed curves indicate internally node disjoint paths; dashed curves have
positive length, whereas dotted curves may have length zero. In (a), dashed curves have an even

number of edges.

internally node disjoint vu;-paths P; (i = 1,2, 3) that are internally node disjoint from
H is called an H-tripod if v € V(H) and uj,u2,us induce an extended triangle in H.

It is an easy graph theoretical fact that if H is a weakly 3-connected proper
subgraph of a weakly 3-connected graph G, then G contains an H-route, or each leg
of H is a leg of G and G contains an H-tripod. Moreover, adding an H-route to a
weakly 3-connected graph H yields a weakly 3-connected graph.

Assume that G is a counterexample to the lemma with a minimum number of
edges.

CraiM 1. G contains no odd-Py.

Proof of Claim 1. Suppose the claim is false and that H is an odd-Pg in G. Let
Uiy, Ugus, . .., uguy be the six length-1 legs of H; and, for i = 1,2, 3, let P! be
the even w;u; 3-leg of H (see Figure 5a). By assumption G # H. As H is weakly
3-connected and has no extended triangle, there exists an H-route P in G. Let s and
t be the end nodes of P. One argues that without loss of generality, s € P!\ u; and
t € P2\ us (see Figure 5b). Let G’ := (H \ P} ,)UP and Cy,Cs,Cs, and Cy be
circuits as indicated in Figure 5c. Clearly, C; and Cy are odd circuits. Moreover, Cy
is even, as otherwise the union of C, Cs, and Cy is a bad-K4. Hence, C3 is odd, so the
union of Cy, C3, and the symmetric difference of C; and Cs forms a bad-K,. a

Cram 2. If H is a good-K4 and P an H-route, then P is an edge and H U P is
a pad with R(H U P) = R(H).

Proof of Claim 2. H is a pad. Let ujus and usus be the two chords of H
and Q', Q% Q% and Q* be the four legs of H on R(H) (see Figure 6a). Let s
and ¢ be the two end nodes of P. We may assume that s € V(Q') \ {u;,u2} and
t € V(Q*) UV(Q®) \ {uz,us}. Let C be the unique circuit in (R(H) U P)\ Q* (see
Figure 6b, ¢).

First suppose that C' is even. If ¢t were in V(Q?) \ {us} (Figure 6b), then
(H\ Qizt) U P would be an odd-Ky4, with R; := wjus and Ry := usus U Q,ﬂzs as
a pair of node disjoint legs. As R; has length 1 and R, does not, this odd-K; would
be bad, so t € V(@3 \ {us, us} (see Figure 6¢). As H U P is not an odd-Py, one of

'31137 tgsa Qfm, and @3 .+ has more than one edge. By symmetry we may assume
that this is the case for Q; .. But then all the legs of the odd-K, (H \ Q2)U P,
except maybe P or Q3 ,, have more than one edge. Hence this odd-Ky is bad.

Therefore, C'is odd and thus H* := R(H) UP U {uqus} is an odd-K4. Therefore,
P has length 1 and H* is a pad with R(H*) = R(H). From this it trivially follows
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Fic. 6. Dotted and dashed curves indicate internally node disjoint paths; dashed curves have
positive length, whereas dotted curves may have length zero. In (a), dashed curves have an even
number of edges.

that also H U P is a pad with R(H U P) = R(H). ]

A pad is called mazimal if there is no larger pad with the same rim. A subgraph
H of G is induced if all edges of G with both end nodes in V(H) are in H.

CrLamM 3. No weakly 3-connected mazimal pad has a route; hence each one is an
induced subgraph of G and has a tripod.

Proof of Claim 3. Let H be a weakly 3-connected pad, and let P be an H-route
with end nodes s and t. Let Q1 and Q2 be the two st-paths on R(H). As H' := HUP
is weakly 3-connected, there exists a chord e = uju, of H with u; € V(Q;) \ {s,t} for
i =1,2. Moreover, as H is weakly 3-connected, there exists a chord f of H crossing
e. Now, H* := R(H)U{e, f} is a good-K4. As P is an H-route, f # st. Thus, sand t
lie in different legs of H*. Hence, by Claim 2, P is an edge—e*, say—and H*Ue* is a
pad with R(H*Ue*) = R(H*) = R(H). It is trivial to see from this that H' = HUe*
is a pad as well. Hence H is not maximal. Therefore, weakly 3-connected maximal
pads have no routes.

Now, let H be a weakly 3-connected maximal pad. As it is not equal to G, it
must have a tripod. Moreover, if it were not induced, one of its legs would not be a
leg of GG, but then there would be an H-route. As we have seen, this is not the case,
so H is an induced subgraph of G. 0

If H is a pad, v € V(H) is called a center of H if the following hold: H has a
chord vw such that all other chords cross it and have u as end node, and H has a
tripod such that (i) one of its three paths has end node u and this path is of length
1 and (ii) the other two paths end in v and w and are even. We call such a tripod
fitting H at u.

CLAIM 4. Each weakly 3-connected maximal pad has at least one center, and each
of ts tripods fits at some center of the pad.

Proof of Claim 4. Let H be a weakly 3-connected maximal pad; let Pl,Pg,. and
P3 be the legs of any H-tripod. Denote the end node of P; on H by u;. Let Q% be
the u;u;-path on R(H) that does not contain the third node in {u1,uz,us}. As H is
weakly 3-connected, one of Q'2,Q%3, and Q3! is not a leg of H; i.e., one of the legs of
the extended triangle induced by u1,us, u3 is an edge of K(G). Suppose that Q* is
not a leg and, consequently, ujusz € K(H).

(6) If w;u; € K(H), then P; U P; is an even path.

Indeed, if not then R(H), P; U P; and one of the chords of H crossing u;u; form a
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Fia. 7. Dotted curves indicate internally node disjoint even paths. The bold edges and curves
form a bad-K.

b&d-K4.
(7)Py U P, and P, U Ps are odd paths, and so, by (6), @' and Q3 are legs of H.

To see this, let zy be a chord of H crossing ujus; assume z € Q3. It follows from
(6) that if (7) were false, then P;, Py, Ps, Qu,ﬂ,xy,Qw, and uijus would constitute a
bad-Ky. By (6) and (7), Py, Py, Ps,Q*?,Q?, and ujus form an odd-Ky4, which implies
that

(8) P, consists of a single edge.

It remains to prove that us is a center of H. Suppose that this is not the case; then
there exists a chord e of H with both end nodes in Q'3 (recall that Q'? and Q% are
legs of H). But then Pi, Py, P3,Q%,Q%, and (Q*\ QI®)U {e} form a bad-Kj. O

CLaM 5. G contains a book with at least two leaves.

Proof of Claim 5. There exists a weakly 3-connected pad (namely, each good-K4
is one). As G is not a pad, by Claim 3 there exists a weakly 3-connected pad with no
route and hence has a tripod. This pad and that tripod together form a book with
two leaves. 0

Let H be a book with center ¢ and hinges v and w, maximum number of leaves
Ly,..., Ly, and maximum number of edges. Note that for any ¢ # j, L; contains an
L;-tripod centered at ¢. As in the proof of Claim 4, this implies that each chord of
L; has one end in c and the other on the trim of L;. Moreover, each V(L;) induces
a maximal pad, so by maximality of H, each L; is a maximal pad.

CLAIM 6. There ezists no H -tripod.

Proof of Claim 6. Let T be a tripod of H. As all extended triangles are contained
in leaves, we may assume that T is a tripod of leaf L;. If T fits L at the center of
the book, H UT would be a larger book. Hence T fits L; at a node different from
c. However, then L, has two tripods (namely, T and one in Ly) that fit at different
nodes of Ly, so Ly has at least two centers, which implies that it is a good-K4. There
are two possibilities for how the tripods fit at different nodes (see Figure 7). It is not
hard to see that in either case, L1 ULy UT contains a bad-K,. ]

As G itself is not a book, H has a route—P, say. Let z and y be the end nodes
of P. As the leaves of H are maximal pads, no one contains both z and y, so we may
assume that z € V(L1) \ V(L2) and y € V(Lo) \ V(L1).
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Fi1c. 8. Dotted and dashed curves indicate internally node disjoint even paths; dashed curves

have positive length, whereas dotted curves may have length zero. The closed curve on the outside
is the rim.
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F16. 9. Dashed curves indicate internally node disjoint even paths of positive length. The closed
curve on the outside is the rim.

Let @ be the trim of Ly. First, if Q@ and P do not form a tripod of L;, then the
trim of L; contains at least three legs, so L; has a route, contradicting Claim 3. Thus
Q and P form an L;-tripod, which—as Q is even—fits at z (by (7)), so P consists of
a single edge and L, has exactly one chord other than vw, namely, zc. By symmetry,
the only chords of Ly are vw and yc. However, now, zc,yc,zy, and the three even
paths in L; U Ly from v to z,y, and ¢ form a bad-Ky. This yields a final
contradiction. 0

2.2. Clean pads. Before we can state and prove the next lemma, we need some
further definitions. Let G be a pad. Chords e and f touch, written as e V f, if they
share an end node. Chords e and f are parallel (e||f) if they are nested but do not
touch.

A mesh is a collection of four chords e, fi, fa, A with the following properties:

-eX fl, e X fz, fl“fQ, and hlle;
- h is not a chord of any of the four legs on R(G) of the pad R(G) U {e, f1, f2}
that are adjacent with e.
There are several possibilities for four chords to form a mesh. They are listed in
Figure 8. If we delete the paths P and Q on R(G) indicated in Figure 8, we obtain a
bad-K4. Hence, a pad with no bad-K, contains no mesh.

A 3-chain is a triple e, f,g € K(G) such that e >p f >p g for some path P on
R(G). A dirty triple is a collection of three pairwise parallel edges that do not form a
3-chain (see Figure 9a). A path P on R(G) is nesting if each pair of chords on K'(P)
is nested. G is nesting if, for each pair of nodes s,t € V(G), one of the two st-paths
on R(G) is nesting.

It is straightforward to prove that
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(9)  a pad is clean if and only if it is nesting and contains no mesh and no dirty
triple.

LEMMA 6. Each weakly 3-connected pad with no bad-Ky is clean.

Proof. Let G be a weakly 3-connected pad with no bad-Ks. We have already seen
that G contains no mesh. Assume that G is not clean.

CramM 7. G 1is nonnesting.

Proof of Claim 7. Suppose that G is nesting. Hence, it contains a dirty triple
T :={f,g,h}. Let P, Q. (e € T) be as in Figure 9a. As G is weakly 3-connected, for
each e € T there exists an edge 2z, := u.v, crossing e. Assume u, € P, foreache € T.
Then, for each e € T, ve € Qe, because if vy, say, were not in Qy, then zg,g,f,h
would form a mesh or G would be nonnesting.

By symmetry, we may assume that z¢|h. As zy,zp, f,h is no mesh, z, V f, so
zn|lg- Repeating this argument we get that z,Vh and z5Vg. However, now G contains
a bad-Ky (namely, the bold lines in Figure 9¢)—a contradiction! a

CrLAM 8. There exist two edge disjoint paths Py and P, on R(G) and edges
e, f1 € K(P,) and eq, fo € K(Pz) such that

(i) e and f; are not nested on P; (i = 1,2),

(i) both e; and f; share an end node with P; (i = 1,2),

(111) € X f1.

Proof of Claim 8. By the previous claim, there exist two edge disjoint paths P;
and P, on R(G) and chords ey, es, f1, and f, satisfying (i). It is not hard to see that
these paths and chords can be chosen to satisfy (ii) as well. If neither e; and f; nor
ez and f> are crossing, choose z crossing e; (G is weakly 3-connected). With the aid
of z, it is straightforward to see that either we can find edge disjoint paths P; and
P satisfying (i), (ii), and (iii) or we find a mesh (see Figure 9a). As the latter is
impossible, the claim follows. O

Choose Py, Py, e1, f1, €2, and f, as in the previous claim, with |E(Py)| + |E(Py)|
maximal. Let u;, v; be the end nodes of P, (i =1,2). As G is weakly 3-connected,
there exists a chord 2 = uv with v € P; \ {ug,v;} and u ¢ P,. By the maximality of
|E(P1)| + |E(Py)|, w € Py \ {u1,v1} (see Figure 10b).

First, consider the special case in Figure 10c. It contains a bad-Ky, indicated by
the bold edges. However, the general case, as in Figure 10b, can be transformed to
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F16. 11. Dashed curves indicate internally node disjoint even paths of positive length. The
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that special case by contracting legs on R(G). As legs are even paths, this contraction
could not have created a bad-Ky if one in G did not already exist. Hence we have a
contradiction, so G is clean. a

A chord of a pad is called universal if it is not parallel with any other chord.

LEMMA 7. No clean pad contains a bad-K,.

Proof. Let G be a clean pad containing a bad-K4 H such that |E(G)| is minimal.
Let uy,ug,u3, and ug be the four nodes of H that have degree three in H. For
i,5=1,...,4, let PY be the u;u;-leg of H.

CraM 9. The following hold:

() K(G) C E(H).

(i) All legs of G on R(G) have length 2.

(iii) If P is a leg of H, then |PNR(G)| < 2. If |[PNR(G)| = 2, then P is a leg of
G on R(G) or P has length 3. In the latter case, the four legs of H meeting
P are even, and the sizth leg consists of a single edge.

(iv) If u,v € U(G) form a 2-node cutset of G, then there exists a uv-path P on
R(G) with 2 or 4 edges. If P has 4 edges, it has one chord, which meets
exactly one of u and v.

Proof of Claim 9. If (i) were false, deleting an edge from K(G) \ E(H) would
contradict the minimality of G, as would contracting legs of G into legs of length 2 if
(ii) were false.

To prove (iii), suppose P is a leg of H that contains edges of R(G). Let e; and
eo be consecutive edges on P N R(G). By the minimality of G, contracting e; and ez
in H does not yield a bad-K,. This means that the leg P of H containing e; and e,
has length 2 or 3. Moreover, in the latter case the four legs of H meeting P are even
and the sixth one has length one. Hence (iii) follows.

To see (iv), note that if G has a two node cutset, then H lies mainly on one “side”
of that cutset in the sense that one side of the cutset contains at least five legs of H
and the other side contains at most (part of) the sixth leg. 0

Craim 10. G has no universal chord.

Proof of Claim 10. Let uv be a universal chord. This means that G \ {u,v} is
bipartite, so uv is a leg of H. Assume u = u; and v = us. Let Q' and Q? be the
two uv-paths in R(G). We call @' UK (Q?) and Q% U K(Q") the two sides of G. For
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i.j=1,...,4, let a;; be the first edge on P going from u; to u;. (Thus, aij = aji if
and only if |PY| =1.)

As |P'?| = 1, it follows by Claim 9 that for i = 1,2 and j = 3,4, a;; € R(G) if
and only if P¥ is a leg of G in R(G). Moreover, as the circuit P** U P2 U {ujuy} is
odd for i = 3,4, we have the following:

(10) Ifi=3,4, then ay; and ag; lie on the same side of G. Moreover, P'* and P%
are both even or both odd.

Also, as the circuit P® U P3* U P¥ is odd for i = 1,2, we have that
(11) if i =1,2, then a;3 and a;4 lie on different sides of G.
Next we rule out the different cases one by one:

(12) At least one of a1z, a14, @23, and asq is in R(G).

Suppose that this is not the case and that a;3 € K(Q"'). Then from (10) and (11) it
follows that as3 € K(Q') and ay4, azs € K(Q?). Thus both Q' and Q? are nonnesting,
which is a contradiction.

(13) For i = 1,2, either a;3 or a4 is in K(G).

To see this, assume that a;3 € Q' and a4 € Q? (see Figure 10a). By (10), all legs
of H adjacent to ujus are even. Hence P3* is odd, and as H is bad, it has at least
three edges. By symmetry, we may assume that Qizu . 1s not internally node disjoint
with P3*. Hence P?* # Q2_, . Therefore, by (10), azs € K(Q') and ass x ujus (by
Claim 9(iii) and since ujus is universal). However, this implies that P % Q... so,
by (10), a2z € K(Q?) and agy x ujus. If aza x ass, then ass, ass, ass, and agy form a
mesh, so azy and as3 do not cross. Similarly, ass and asg do not cross. However, this
implies that G is nonnesting, a contradiction. Hence (13) follows.

From the above we may assume that a13 € Q' and ay4 € K(Q!), so P2 cannot
be Q,,,- Hence ass € K(Q?) and a3z X ujus. First assume that apy € Q? and
consequently aq; X ujuy (see Figure 10b). As G is nesting, by symmetry we may
assume that agy X agg, but this implies that azg, as1,as3, and a4 form a mesh. As G
is clean, this is a contradiction, so azs & Q2. Hence, azy € K(Q!) (see Figure 10c).
As agzp, a41, 23, and agy is not a mesh, azp does not cross as;s. Similarly, as4 does not
cross aj4. But this means that G is nonnesting—a contradiction! a

A chord is crossed if it is crossed by at least one other chord. We call chords e;
and e distant if e;|lez and, for 7 = 1,2, the path P; on R(G) with the same end nodes
as e; but node disjoint from es_; satisfies K (P;) = {e;}.

CrLAm 11. Each pair of distant chords contains a noncrossed chord.

Proof of Claim 11. Let e; and ez be a pair of distant chords. Suppose that e,
is crossed by z; and e; by zo. For i = 1,2, z; does not cross es_;, as otherwise, z;
would be universal, or there would be a mesh, or e; and e would not be distant.
As G is nesting z; X 2o. Let 21 be the end node of z, and z9 be the end node of 29
such that there exists an z;25-path on R(G), called Q, that is internally node disjoint
with e; and e;. Assume z; and 2, are selected such that Q is as short as possible.
As G contains no mesh, either z; V ey or 25 V e1; assume the latter is the case (see
Figure 11).

For i = 1,2, let y; be a chord parallel with z; (21 and z; are not universal). From
the fact that G is clean, that e; and e are distant, and that Q is minimal, one is able
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F1G. 12. Dotted and dashed curves indicate internally node disjoint even paths; dashed curves

have positive length, whereas dotted curves may have length zero. The closed curve on the outside
is the rim.

to deduce that yo € K(Q \ z2). As e1, e, y» cannot form a dirty triple, y is adjacent
to ez, so z1 is an end node of e;. Hence we have symmetry between i = 1 and i = 2.
Therefore, y; € K(Q \ z1) and is adjacent to e;, but now the edges e), ez, y1, and yp
show that G is not nesting—a contradiction! g

If e = uv is a noncrossed chord, then u and v share a common neighbor in R(G)
(by Claim 9(iv)), which we denote by u.. As e € E(H), the node u. will not be in
V(H).

CLAIM 12. Each pair of distant chords contains a crossed chord. Moreover, the
noncrossed chords in G are pairwise adjacent and there are at most two of them.

Proof of Claim 12. To prove the first statement, suppose that it is false. Let
e and f be two parallel nonadjacent noncrossed chords. Let Q' and Q2 be the two
paths on R(G) joining an end of e with an end of f. As G is nesting, we may assume
that K (Q?) = 0 and that Q! is nesting. As H is contained in G’ = G \ {u¢,us}, G’
is nonbipartite. Hence K(Q') # 0. Let h € K(Q') with Q}, minimal. As G has no
dirty triple, h is adjacent to e or to f. Thus, let us assume that h and e share an end
node—v, say. As Q! is nesting all chords in K(Q!) are in 6(v). But that means that
all odd circuits in G’ contain v. This is impossible since not all odd circuits in H can
go through a single node.

The second statement easily follows from the first. Indeed, two parallel noncrossed
chords are clearly distant by Claim 9(iv), so by the first statement of this claim they
cannot exist. Suppose there are three pairwise adjacent noncrossed chords e, e2, and
e3. They cannot meet at a single node, as this would contradict Claim 9(iv), so they
form a triangle. Hence K(G) = {e1, €2, 3} and R(G) is a circuit of length 6, but that
graph has no bad-K;. O

CrLAIM 13. There is exactly one noncrossed chord.

Proof of Claim 13. Suppose that this claim is false. Let e = zy and f = yz be
two noncrossed chords. Let @ be the zz-path on R(G) not containing y. As e is not
universal, K(Q) # 0. Let g € K(Q) with @, minimal. Let h x g (by the previous
claim, g is crossed). As Q is nesting, h € 8(y) and each chord in K(Q) crosses h.
Hence, h is universal—a contradiction! |

As there are no universal edges, there exists a pair of distant chords. By Claims 11
and 12 one of the two—e = uv, say—is crossed, and the other, f, is not. Let P be the
uv-path on R(G) not containing us. Let Q! and Q2 be the two paths constituting
R(G)\ (P U {uy}). For i =1,2, let K; be the collection of edges crossing e with end
node in Q*.

CramM 14. K(QY) = K(Q?*) =0, K1 #0, and Ko # 0.

Proof of Claim 14. As G is nesting, (i) K(Q*) = 0 or K(Q?) =0, (i) KQY)=0
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or K2 =0, and (iii) K(Q?) = 0 or K! = . From this it is easy to check that if the
claim is false, then either K! = 0 and K(Q') = 0 or K2 =0 and K(Q?) = 0. Assume
that the latter is the case. Let w be the common end node of P and Q!. There exists
an odd circuit in H not containing w. As u; ¢ V(H), this means that G \ {uy,w}
is nonbipartite. It is straightforward to check that this implies that K (@) contains
a chord parallel with e. Let h be such a chord with Q3 minimal. Then e and h are
distant, so by Claim 11, h is noncrossed, but this contradicts Claim 13. ]

Let Q be the path R(G)\ uy. For i = 1,2, let e; € K* with Q,, N P maximal. As
e,e1, e, f donot from a mesh, e; X e or e; V ey, so there exists a node—w, say—that
lies on Q,, N P and on Q., N P. By Claim 14 this means that w lies on @, for each
chord g € K(Q) = K(G). Hence G\ {w,uy} is bipartite. As H does not contain uy,
this is a final contradiction. 0

LEMMA 8. No book contains a bad-Ky.

Proof. Suppose that G is a book, and let H be any odd-Ky4 in G. Let C be the
spine, h; and h, be the hinges, and ¢ be the center of G. It is easy to see that for
every e € E(C) there is a node v € {hy, ha,c} such that each odd circuit in G\ e
contains v. Hence H must contain C. Consequently, H should be entirely contained
in one of the leaves of G. As all leaves are clean pads, H must be a good-Kj4. 0

2.3. Recognizing graphs with no bad-Kj. In this section we prove Theo-
rem 3, which says that one can check—in polynomial time—whether or not a given
graph G contains a bad-Kj.

First of all, note that odd-Py’s, books and clean pads are easily recognized. Second,
a polynomial-time recognition algorithm for the containment of an odd-Kj is given
by Gerards et. al. [8] (cf. Gerards [7]). Hence, by Theorem 2, it suffices to prove that
we can find for each graph G in polynomial time a polynomial-length list £ of weakly
3-connected graphs smaller than G such that G contains a bad-K, if and only if at
least one member of £ contains a bad-Ky. The following two easy-to-prove lemmas
show that this is indeed the case.

We need some definitions and notations. If G is a graph, then [G1, Ga]y.. is called
a spht if Gy and Go are subgraphs of G such that V(G,) N V(Gs) = {u,v}; E(G1)
and E(Gz) partition E(G), |E(G1),|E(Gs)| > 4; and neither G; nor Gy is an odd
circuit. If G is bipartite and contains an odd uv-path, we call the split odd. If G5 is
bipartite and contains an even uv-path, we call the split even. If both G; and Go are
nonbipartite, we call the split strong.

If u and v are two nodes of a graph H and ¢ € N, then [H ], denotes the graph
obtained from H by adding a path from u to v with ¢ edges; we abbreviate this as
[H]y = [H]E )b
, [dLEMMA 9. Let [G1, Galu,v be a split of a 2-connected graph G. Then the following

old:

- If [G1, Golu,v s 0dd, then G contains a bad-K4 if and only if [G1]3 ., contains

a bad—K4.
- If [G1,Galu is even, then G contains a bad-Ky if and only if [G1]2 , contains
a bad-Ky. ,

- If [G1, G2y is strong and G has no odd or even split, then G contains a
bad-Ky if and only if at least one of [G1]23 and [G4]%3 contains a badKy.

It follows from this lemma that given a graph G we can construct a polynomial-

sized list £'(G) of graphs with no splits such that G has a bad-K; if and only if at

least one member of the list has a bad-Kj. Therefore, we may restrict ourselves to

graphs with no split. It is easy to see that a graph with no split can be obtained from
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a 3-connected graph H by replacing some edges in H by a path of length 2 or 3 or by
a circuit of length 3 or 5. More precisely, a graph G has no split if and only if there
exists a 3-connected graph H and five sets P1, Py, P3, Cs, and Cj partitioning E(H),
such that G can be obtained from H as follows: for each edge uv € P,UC3UC5s add
a path from u to v with 2 edges; moreover, for each edge uv € P; UCs add a path
from u to v with 3 edges; finally, remove all the edges in P, U P; U Cs. We denote
G by H(Py, P, P3,Cs,Cs). Note that, given G, it is easy to find H and the proper
partition of its edge set.

So we see that a graph with no split only fails to be weakly 3-connected because
it may have pairs of “parallel” legs. Clearly, from each such pair of legs a bad-K can
use at most one leg. So if we would consider the list of graphs obtainable by dropping
a leg from each pair of parallel ones, we do not gain or lose bad-K4’s. The nice thing
about the graphs on this list is that they are weakly 3-connected; the bad thing is
that there may be exponentially many of them. Fortunately there is an easy way out
of this; we do not need to create the whole list.

LemMMmA 10. Let G = H(Py, Py, P3,C3,Cs) be a graph with no split. Then G
contains a bad-Ky if and only if there exists a T3 C C3 and a Ty C Cs with |Ts|+|T5| <
6, such that the graph H(P; UT3, P, U (C3\ T3) U (Cs \ Ts), P UTs,0,0) contains a
bad-K4,

(In fact, this lemma remains correct if we replace |T3| +|T5| < 6 with [T3| +|T5| <
3.)

3. T-perfection. The main goal of this section is to prove Theorem 1, but we
first show that bad-K,’s are not t-perfect. In the remainder of the paper, for a subset
S C V(G), we use xg to denote the incidence vector of S in RV(%),

LeMMA 11. No bad-Ky is t-perfect.

Proof. First, note that K is not t-perfect, as the vector [1, 1,1, 3] is in P(K4),
but obviously not the convex combination of characteristic vectors of stable sets in
K,. Next, note that each bad-K; can be reduced to K4 by repeated application
of the following operation: take a node u and contract all the edges incident with
u. However, this operation preserves t-perfection, which we easily obtain from the
following:

(14)  Let G be a graph, u € V(G), and z € RV(®) such that z, = 1 — x, for each
neighbor v of u. Moreover, let G be obtained from G by contracting all the
edges in §(u) into a new node %, and let T € RV (%) be defined by Z, := z, if
ve V(G)\ T and T~:=1—z, Then z is a vertex of P(G) if and only if z

is a vertex of P(G).

Hence no bad-K, is t-perfect. 0 ,

The proof of Theorem 1 uses the following lemma (the graphs [G.],, , are defined
in section 2.3).

LEMMA 12. Let G be a graph with induced subgraphs G1 and Gz such that V(G) =
V(G1) U V(G2) and E(G) = E(G1) U E(G2). . ’ ’

(a) If V(G1) N V(Gs) induces a clique in G, then G is t-perfect if and only if Gy
and Gy are t-perfect (Chvdtal [4]). '

(b) If G is 2-connected, Gy is bipartite, and V(G1) N V(G2) = {u,v} with uwv §Z
E(G), then if u and v are on the same side of the bipartition of Gz,. G is
t-perfect if and only if [G1]2, is t-perfect; otherwise, G is t-perfect if and
only if (G1]3 ,, is t-perfect (Sbihi and Uhry [10]).
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(¢) If G is 2-connected, both Gy and Go are nonbipartite, and V(G1) NV (Gs) =
{u,v} withuv ¢ E(G), then G is t-perfect if and only if [G1]2 ,,, [G1]2 ., [G2]2 .,
and [G,]3 , are t-perfect (Boulala and Uhry [2], Gerards [6]).

In fact, the lemma above can be generalized beyond t-perfection: It has been
proved by Chvétal [4]—for case (a)—and Barahona and Mahjoub [1]—for cases (b)
and (c)—that one can obtain linear descriptions for the stable set polyhedron recur-
sively through decompositions as in Lemma 12. _

Proof of Theorem 1. Let G be a counterexample to the theorem with |E(G)|
minimal. By Lemma 12

(15) G is weakly 3-connected and each of its legs has at most 3 edges.

Let Z be a fractional vertex of P(G). An edge uwv € E(G) is tight if Ty + 3y = 1;
an odd circuit C is tight if 3, cy(c) Tv = $(JV(C)| = 1). We denote the collection of
tight edges by 7 and the collection of tight odd circuits by C.

(16) 0 < &, < 1 for each v € V(G).

Indeed, if Z,, = 0, then (E\ {u} would be a smaller counterexample, and if T, = 1, u
has a neighbor v with Z,, = 0.

(17)  Z is the unique solution of the system
Tu+z, = 1 (wv € T),
Yoo = (V(O)-1) (Ceo),

ueV(C)

N =

as otherwise 7 would not be a vertex of P(G). For V, C V(G), we define T(W) =
{wv € Tlu € Vo} and C(Vy) := {C € C|V(C) NV, # 0}

(18) For each VoG V(G): [T(Vo)| + (V)| > [Val-

If this were not true, the restriction of 7 to V(G) \ Vp would be a unique solution of
the system

Ty +z, = . 1 (ww € T\ T(Vo)),
> w o= S(VO)-1) (Cec\c(V).
ueV(C)

So G\ Vp would be a smaller counterexample to Theorem 1. From (14), it also follows
that

(19) §(v) € T foreachv € V.

Cramv 15. If C is an odd circuit, then E(C)N'T contains no matching of size
LV(©)| - 1) IFC reud ‘ '

5 f C is an even circuit and E(C)NT contains a perfect matching,
then E(C) C T.

Proof of.Claz'm 15. Leth C E(C)NT be a matching with at least L(ve)-1)
(idges. If C is even, then §|V(C')| = Y wver (Tu + Ty) = > wenopm @u + Ty) <
5 lVgC )|; thus, we have equality throughout,which implies that also edges in E(C)\ M
are in 7. If C is odd, then there is exactly one node v/ € V(C) that is incident
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with none of the edges in M, so we have T,/ = Zvev(c) Ty = D upen (Tu + Ty) <
ve)n-1) - $([V(C)| = 1) = 0, which contradicts (16). 0

CLAIM 16. Let u and v be two nodes on a circuit C € C and P be o uv-path that
1s internally node disjoint from C. If T NE(P) contains a matching M covering each
node in V(P) \ {u, v}, then the unique odd circuit in C U P using P is tight.

Proof of Claim 16. Let Q; and Q2 be the two uv-paths in C, and assume that
PUQ; is an odd circuit—C’, say. Let N be the largest matching in E(Q2) with
V(N)Mu, v} = V(M) {u,v}. Then 37 oy o) Tr = X eviovan) Trt Lrsenr (Tt
Ts) = Lrevienwvn) Tr T IM| 2 3reviopvvy Tr + Lrsen (@ + %) = [N + [ M| =
Srevic) Tr — NI+ M| = 3(IV(O)| - 1) = IN| + M| = 3(IV(C")| = 1). Thus
C'eCc. O

A circuit C in a graph G is called separating if G has subgraphs G1 and G», each
properly containing C, such that V(G) = V(G1) UV (G2), E(G) = E(G1) U E(G2),
V(C) = V(Gl) N V(Gg), and E(C) = E(Gl) N E(Gg)

CLAIM 17. No circuit in C is separating.

Proof of Claim 17. Let C € C be separating, and let G; and G be as indicated
just above this claim (with G = G). For i = 1,2, let Z' be the restriction of Z to
V(G;). As both G; and G2 have no bad-Ksand fewer edges than é, they are t-
perfect. Therefore, there exists a K € N, stable sets S7,..., S} in G1, and stable sets
S%,...,8% in G2 (with possible repetitions) such that

~ 1 ~ 1
(20) ! =E(XS}+"'+XS}<)andx2=E(XS?"’"""XS?{)'
Consequently,
. 1
(21) IS; NV (C)| = —2—(|V(C’)I —1)fori =1,2andj =1,..., K.

For i = 1,2 and uv € E(C), we denote the number of stable sets S;- with u,v ¢ Sj— by
oi(uv). As, o;(wv) = Z;il(l—]S;ﬂ{u, v}|) = K—Zle X{Tu,v}XSJi = K—-Kx%ru’v}fi =
K(1 -7z -3)=K(1 - 7%, — T,), we have that

(22) o1(uv) = og(uv) for each uv € E(C).
By (21) and (22), we can renumber the sets 5%,..., 5%, such that
(23) forall j=1,...,K,SinV(C)=8:nV(C).

Hence, each S} U sz is a stable set in G and

~ 1
(24) z= 2 (xstusp + F Xs1.US2 )
but this contradicts that T is a fractional vertex of ’P(@). a

As G is not t-perfect, it contains an odd-Ky. So, by (15) and Theorem 2, G is an
odd-Fy, a book or a clean pad. We will deal with these cases separately.

CASE 1. G is an odd-Py.

By (15), G is in fact the Petersen graph with a node removed; see Figure 13. Let
Sz 6 = {us, ug, ur4, ugs }. By (17), there exists an edge uv € 7 with Sz N {u,v} =0
or a C € C such that |[S36NV(C)| < (|[V(C)| —1)/2. It is easy to check that the only
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Tup

(a)

F1G. 14. Dotted curves indicated internally node disjoint even paths; they may have length zero.

possibility for this to hold is that either uyus € T or usug € 7. By symmetry, we also
have uous € T or ugus € 7 and uzug € 7 or uguy € 7. Again by symmetry, we may
assume that ujus € 7. Hence by Claim 15, ugus € 7 and uzus € 7. So ugu; € 7
and uyuz € 7. However, that contradicts Claim 15.

CAsE 2. G is a book.

Let hy, hy be the hinges of the book and ¢ be the center. Let Li,..., L, be the
trims of the book. By (15), the spine of G is a circuit of length 5—h; k;ckoho, say—
and the legs of each L; have length two. Let hisip! be the first leg of L; and phsbho
be the last leg of L; (going from hy to hg; see Figure 14a). It is straightforward to
check that

(25)  each nonseparating odd circuit in G is one of hyhy UL;; h1sipicky or hyshphcks
for somei=1,...,n.

CLam 18. Ifp € L; and cp € E(G), then |C(p)| > 2. Hence p € {p},ps}.

Proof of Claim 18. Assume |C(p)| < 1. Let s;rp and prgss be the two legs of
L adjacent to p; see Figure 14b. By (18), |7 (r1,p,m2)| > 4 — |C(r1, D, re)] = 3. By
(18) and (19), |T(r1)| = |T(r2)| = 1. Hence ¢p € T. By (19), we may assume that
pry € T; hence r;s; € 7. But now the circuit cprisy or, if 81 = hi, the circuit
cprisiky violates Claim 15. 0

CramM 19. For eachi=1,...,n, pi = p} =: p' (see Figure 14d).

Proof of Claim 19. If not, L; has three legs; see Figure l4c. By (19), (18), and
(25), |T(s") = 1, so, by symmetry, we may assume that s'pb € 7. By Claim 18, the
circuit ckihysip s tight, so by Claim 16, ckihy sipisipl is tight as well. But it has a
chord, contradicting Claim 17. o

CLAM 20. cky,cky € 7.

Proof of Claim 20. Suppose cky ¢ T. Let § := {k1,ho} U {p[1 = 4,...,n}.
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By (17), there exists an edge uv € T with SN {u,v} = 0 or an odd circuit ¢ € C
with [S N V(C)| < 3(IV(C)| — 1). Using (25), it is easy to check that this implies
that hlsl € T for some i = 1,...,n. Fix such an . By (19) and Claim 15, none of
syp',p'e,pt sb, and 52h2 is in T By (18), lC(sl,p sb)| > 4 — |T(sl,p s)| = 3, so,
Ckzhgsgp € C and s hihoshp® € C. Hence T + Zx, = 7, i ++ Zp,, contradicting that
sl hq is tight and cks is not. 0

Now, by (19), we may assume that cp' ¢ 7. By Claims 20 and 15, T(s}) =
T(s?) = @ Hence |7 (s1,p", s3)| + |C(s],p', s3)| < 3, contradicting (18).

Cask 3. G is a clean pad.

A priori, the tight odd circuits might run qulte wildly through G. However,
this is not the case, as is shown by the following lemma, which can be understood
independently of the present proof.

LEMMA 13. Let C be a nonseparating odd circuit in a clean pad G. Then |E(C)N
K@) =1.

Proof. Let G be a counterexample with | E(G)| minimal. Let C be a nonseparating
odd circuit in G with |E(C) N K(G)| # 1. As contracting all edges on E(C) N R(G)
yields another counterexample, E(C) € K(G). Moreover, if e € K(G) \ E(C), then
its end nodes lie in different components of R(G)\ V(C), as otherwise, G\ {e} would
be a smaller counterexample. We first prove that

(26) E(C) contains no pair of parallel chords.

Indeed, suppose that it is false. Choose parallel chords f,g € E(C) that are distant
in the pad G\ (K(G) \ E(C)). As C is nonseparating, there exist edges e;, e, €
K(G)\ E(C) with no end node in V(C) such that e; x f and eg x g. If ef||g and
egllf, then G is not clean. Thus, we may assume e; x g. As C is odd, not all edges
on C can cross ey, so there exists an hllef, but then, as f and g are distant in the
pad G\ (K(G) \ E(C)), the chords ey, f, g, and h form a mesh.

Let cq, ..., cor be the nodes of C, numbered in the order in which they lie around
R(G). From (26) it then follows that the edges of C are c;ciyx (indices modulo
2k +1). Let P; be the ¢;c;+1-path on R(G) that contains no nodes of C' other than
¢; and ¢;41, see Figure 14a. Let K; := {uv € K(G) \ E(C)|u € V(F;)}; note that for
each i = 0,...,2k, K; # 0. For each e € K(G) \ E(C) let C, be the odd circuit in
R(G) U {e} that uses the fewest nodes of V(C).

(27) If e, f € K;, then V(Ce) n {Ci, Ci+1} = V(Cf) n {Ci,Ci.H}.

Indeed, if not, ¢;¢iy k41, Cit1Citk+1, €, and f show that G is nonnesting or has a mesh,
and hence is not clean.

From (27), it is easy to see that there exists an =0, ..., 2k, such that V(C.) 3 ¢
for all e € K; U K;_;. By circular symmetry, we may assume that £+ 1 is such an
i. Let f € Ky. By the symmetry i « 2k + 2 —¢ (mod 2k + 1), we may assume
that ¢; € V(Cy); hence fllcock+1 and f X c1cgr2. Let e € Kii1. Then efcice42 and
e X cocp+1. Hence coCri1,C1Ck+2, €, and f form a mesh (see Figure 14b) ]

For each C € C, we denote the unique edge in E(C) N K(G) by k[C]. Our
next task is to study the structure of the collection of tight edges and odd cir-
cuits as a whole. The outcome will be summarized in (35), (36), and (37); for
proving those we need to derive some claims. We define, for each £ = 0,1,.

Ky :={e € K(G)le is in £ tight odd circuits}, Ktlght = K,NT, and Kiree := Kz\T
By Lemma 13, Ky = 0 for £ > 3. Moreover,

(28) Kfee =,
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Fic. 15. Dashed curves indicate internally node disjoint even paths of positive length. The
closed curve on the outside is the rim.

as deleting an edge in Kgree form G would yield a smaller non-t-perfect graph.

Cram 21. Ifuv € K(G)NT, then wv is the only chord with end node u.

Proof of Claim 21. Let ww be a second chord. Let P := v'...w'w be the
vw-path on R(G) not containing u. If there exists a tight odd c1rcu1t using both v
and w, then by Claim 16, there exists a tight odd circuit using vu and uw, but this
contradicts Claim 17 or Lemma 13. Let C,, € C(v’) and C, € C(v'). By Claim 17,
u & V(Cy) U V(Cy), so k[Cy,)] crosses uw and k[C,| crosses uv. Hence, uw, uv, k[Cu],
and k[C,] show that G has a mesh or is nonnesting—a contradiction! a

CramM 22. Ifuv € K(G) N7, then uv is not a universal chord of G.

Proof of Claim 22. Suppose that the claim is false. ‘We construct a new gra.ph
G from G as follows. For each neighbor w of u, we introduce a new node w* and
two new edges uw* and w*w and remove the orlgmal edge uw. Moreover, we define
2 € RV by 2 =3, if w € V(G) \ {u}, Ty := Ty if w is a neighbor of u in G,
and x, := 1 — Z,. Then, by (14), z is a vertex of P(G).

Let G’ be obtained from G by contracting uv* and v*v into one new node, called
v again. AS Ty + &y =1 = Zy» + 2y, we get from (14) that G’ is not t-perfect. On the
other hand, as uv is universal in G, each odd circuit in G’ goes through v. However,
Fonlupt and Uhry [5] have proved that graphs containing a node that lies on each odd
circuit are t-perfect—a contradiction. g

As tight odd circuits have no chords, we have by Claim 21 and (28) that

(29) 16(u) NK(G)| < 2 for all u € V(G)
and
(30) if e € Ky, then all other chords cross e.

By (30) and Claim 22,
(31) Ktlght 0.

For each e € K (@) define . to be the total number of tight odd circuits and edges
containing e. From Claims 21 and 22 and by (29) and (30), we see that

(32) Z Ye <2 for each u € U(C:').
e€8(uINK(G)
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Moreover, by (19),

(33) |7 (u)] <1 for each uw € W(G),
and thus, by (17),

VG| = llU(G)| +|W(G)|
> 3 Z Sowet+ Y ITw)
€UG)  ecs(wnK () uew (&)
(34) = Z Ye + Z |7 (u
eEK(G) uEW(G)
= [CI+ 7]
= [V(G)l.

Thus, we have equality throughout, which implies that we have equality in (32) and
(33). So we get

(35) |7 (u)| = 1 for each u € W(G);

(36)  each chord in K7 tight U Kfr®® is node disjoint from all other chords; moreover,
the edges in K} free form node disjoint circuits;

and, by Claim 22,
(37) Kieht — g

As W(C~¥) is a stable set, by (17), there exists an equation in (17) that does not hold
for Xy (& . Case checking yields that this means that

(38) KUEht £ g

Cram 23. Kiree £ g,

Proof of Claim 23. Suppose that ki€ = @, Then, by (36), no two chords touch.
By (38), there exists at least one tight chord, so, by Claim 22, there exists a pair
of parallel chords. Choose e, f € K(G) parallel, such that the shortest path—Q,
say—on R(G) that connects an end node of e with an end node of f is as short as
possible. Let C. € C(e) and Cf € C(f) (as e and f are parallel, these two odd circuits
are unique). Let u € W(G)NV(Q) and C € C(u). (C exists by (18) and (35).) As
u & V(C.) UV (Cy), e, f # k[C], and by the choice of e and f, k[C] is not parallel
to e nor to f. Therefore, as there are no touching chords, k[C] crosses both e and f.
As k[C] is tight, there exists an edge h||k[C]. As h is not a chord of C. nor of Cy,
k[Cl,e, f, and h form a mesh—a contradiction! 0

For each e € K let Cle] be the unique tight odd circuit using e.

CramM 24. K7 free contains no pair of parallel chords.

Proof of Clazm 24. Let fi = ujug and fz = v109 be two parallel chords in K f‘ee;
see Figure 15. Let P be the ugv;-path on R(G) containing vz By symmetry we may
assume that P is nesting. Let uow be the second edge in KT incident with ug. As
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P is nesting, w & P\ {v:}, but then either ujus or vyv; is a chord of Clusw], or upw
is a chord of Cfu;us]—a contradiction! O

Let T be a circuit in K free. Let ug,...,un be the nodes of I in the order in which
they lie around R(G). From Claim 24, it follows that N is even (2k, say) and that
the edges in I are of the form u;u;+x+1 (indices modulo 2k + 1); see Figure 17a. All

chords not in I' are parallel with at least one edge in I'. Thus, by (28), (30), and
Claim 24, we have that

(39) K> =0and Kiree = E(I).

For i = 0,...,2k, let P; be the w;u;1-path on R(é) that is internally node disjoint

from I. By (38), there exists an edge uv in K fight. By symmetry we may assume
that ue PLandve PLU---UPgi. As Clujuk+1] has no chords, we have that

(40) v E Pk+1.

CrLaM 25. Each chord in K}ig}ft has one end node in P; and one in Pii1.
Proof of Claim 25. Let zy € K flght \ {uv}. As we proved for uv, we may assume
that z € P; and y € P, . Hence, wv|ujusso and 2y||uiugpisr1. If i were different

from 1, then zy, uv,ujurs and UiUk+ir1 would form a mesh or show that G is
nonnesting. Hence ¢ = 1 and the claim follows. 0

CramM 26. |KUER) = 1,

Proof of Claim 26. Suppose not; then there are chords v1vg and wiwg in K 'fight,
such that u; and w; are both on P; and share a common neighbor w on Pj, see
Figure 17b. From (35) we may assume that v;w € 7, but now the path vev;wwwe
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and the circuit Clugugyo] satisfy the assumptions in Claim 16. Hence there exists a
tight odd circuit using both vjve and wyws, contradicting Claim 17 or Lemma
13. 0

Hence P, and Py are paths of length 4. Let P, = wjwiuwoug and P, =
Uk 41 Wh+1 VWh+2Uk+2; See Figure 17c.

We have that weug ¢ 7, as otherwise the path vuwsusugt2 and the circuit
C'lupuk+1] would satisfy the assumptions of Claim 16 and thus yield a tight odd circuit
using three chords of G. By symmetry also ujw; € 7. Hence, by (35), vw;,vws € 7.
But as uv € T this contradicts (19). This completes the proof of Case 3 and thus of
Theorem 1. 0
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