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Abstract
Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first

polynomial-time approximation algorithm for this problem that has a good (polylogarithmic)

approximation guarantee. We improve the approximation guarantee of their work, and preseut

further improvements for some important NP-hard special cases of this problem (e.g.' in the

preempliue case where machines can suspend work on operations and later resume). Some

of these improvements represent the first constant-factor approximation algorithms. We also

present NC algorithms with improved approximation guarantees for some NP-hard special cases.

1 Introduction

Job-shop scheduling is a classical NP-hard minimisation problem IZ]. We improve the approxiutatiou

guarantees for this problem and for some of its important special cases' both in the sequential and

parallel algorithmic domains; the improvements ate over the current-best algorithrns of Leigirtou,
^l,nugg, 

& Ruo [8] and Shmoys, Stein & Wein [14]. In job-shop scheduling, we have n jobs and ttz

machines. A job consists of a sequence of operations, each of which is to be processed on a spccific

machine for a specified integral amount of time; a job can have more than one operation on a given

machine. The operations of a job must be processed in the given sequence, and a machine can

process at most one operation at any given time. The problem is to schedule the jobs so that the

makesTnn,the time *huo ull jobs have been completed, is minimised. An important special case of

this problemis preempfioe scheduling, wherein machines can suspend work on operations, switch

to other operations, u,od lut", resume the suspend.ed operations (if this is not allowed, we have the

non-pree,rnptiuescenatio, which we take as the default); in such a case' all operation lengths may be

taken to be one. Bven this special case with n : nt: 3 is NP-hard! We present further improved

approximation factors for preemptive scheduling and related special cases of job-shop scheduling;

in particular, we present the fi.rst sequential and parallel constant-facfor approximation algorithms

for the case where m is fixed and the ma.ximum length of any operation is bounded.

Formally, a job-shop scheduling instance consists of jobs Jr, Jz, . . ., Jn, machines Mt, Mz, " ',
M*, and for each job J1, a sequence of 1ti operations (Mi,r,ti1), (Mi,z,ti,z),"', (Mi,r!,,tj'rt)'

Each operation is u. (ma.hine, processing time) pair: each Mi3 represents some machine M', and

the pair (M1,;,t7,;) signifies that the corresponding operation of job "Ii must be processed on machine

Mi,;for an uninterruptedintegral amount of time of ti,;.The problem that we focus on throughout

is i'o come up with a schedule that has a small makespan, for general job-shop scheduling and for

some of its important special cases.
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1.1 Earlier work

As described earlier, even very restricted special cases of job-shop scheduling are NP-hard. Fur,
thermore, the problem seems quite intractable in practice, even for relatively small instances. Call
a job-shop instance acyclic if no job has more than one operation that needs to run on auy givr.u
machine. A singie instance of acyclic job-shop scheduling consisting of 10 jobs, 10 machines and 100

operations resisted attempts at exact solution for 22 years, until its resolution by Carlier & Pinson

[4]. More such exact solutions for certain instances (with no more than 20 jobs or machines) rvere

computationally provided by Applegate & Cook, who also left open the exact solution of certain
acyclic problems, e.g., some with 15 jobs, 15 machines, and 225 operations [2].

Thus, ef,frcient exact solution of all instances with, say, 30 jobs, 30 machines, and 900 operations.
seems quite out of our reach at this point; an obvious next question is to look at eff.cient approx-
imability. Define a p-approximation algorithm as a polynomial-time algorithm that always outputs
a feasible schedule with a makespan of at most p times optimal; p is cal1ed the approximation guar-
antee. A negative result is known: if there is a p-approximation algorithm for job-shop schedulirrg
with p <514, then P: NP [15].

There are two simple lower bounds on the makespan of any feasible schedule: P-.*, the nraximunr
total processing time needed for any job, and II-.,,, the maximum total amount of time for which
any machine has to process operations. For the NP-hard special case of acyclicjob-shop scheduling
wherein all operations have unit length, a breakthrough rvas achieved in [8], showing that a schedulc

of makespan O(P*.* * II*.*) always exists! Such a schedule can also be computed in polvnomial
time [9]. However, if we drop any one of the two above assumptions (unit operation lengths and

acyclicity), it is not known whether such a good bound holds.
What about upper bounds for general job-shop scheduling? It is not hard to see that a simple

greedy algorithm, which always schedules available operations on machines, delivers a schedule of
makespan at most P-.* . II-.*i one would however like to aim for much better. Let p - maxj I,Lj

denote the maximum number of operations per job, and let p-.* be the maximum processing time
of any operation. By invoking ideas from [8, 72, 13] and by introducing some new techniques, goocl

approximation algorithms were developed in [1a]. Their deterministic approximation bounds were

slightly improved in [11] to yield the following proposition.l
Proposition l.L ([14, 11]) There is a deterministic polynom'ial-time algorithm that deliuers a

sched.ule of makespan O((P*.*+II*,*).ffi.log(min{rn!,p^.*})) for general job-shop schedu.l-

ing. If we replace m by n in this bound,lhdn such a schedule can also be computed in RNC.

This is a p-approximation algorithm with p : O(log(mp)log(min{mF,p^u*})lloglog(mp)). See

[14, 6] for further results on approximating some special cases of shop scheduling that are not
discussed here.

1.2 Our results

Our first result improves Proposition 1.1 by a doubly logarithmic factor and provides further irn-

provements for important special cases.

Theorem I There are tlte following deterministi,c algorithms for general job-shop scheduling, de-

Ii,ueri.ng schedules of makespan O((P*.,. * II-"*) .p);

(") log(mp) [iog(min{rn!, p-"*} )l ,o: iftffirl l6Uffi | (nola"o*iat-time atsorithm)'

If we replace m by n in this bound, then such a schedule can also be computed, in NC.

rTo avoid problems with small positive numbers, henceforth let logr and loglogz denote logr(z * 2) and

log, logr(z f 4) respectively, for z ) 0.



IoA m
O = #ffi 

.log(min{m P,P^u*}) (polynomial-time algorithm)'

Iogm
o = ffi;'log(min{z F,P^u*}) (NC alsorithm)'

Thus, part (a) improves on the previous approximation bound by a doubly logarithmic factor'

The impact of parts (b) and (c) is best seen for preemptive scheduling, wherein ?max : 1, and

for the related situations where p-.* is "smal.I". Our motivations for focusing on these cases are

twofold. First, preemptability is known to be a powerful primitive in various scheduling models, see,

e.g., [3]. Second., the above result of [8] shows that preemptability is powerful for acyclic job-shops'

It is a major open question whether there is a scheduie of makespan O(P-.* t [-.*) for general

job-shop ,.h"doliog and if so, in what cases it can be found efficiently' In view of the above resuit

oi 1a1, one way to attack this question is to study (algorithmically) the problem parametrised by

p*r*, fo.oring on the case of ttsmalltt p-r*. Recall that even the case of n: m = 3 with 2,n.* = 1 is

Np-hard. Thus, parts (b) and (c) above present the first constant-factor approximation algorithms

in such situations. In general, these two parts show that, as long as the number of machines is

small or fixed, we get ',rery good approximations. Note that for the case in rvhich ?'*'* is small'

part (c) is both a derandomisation and an improvement of the previous-best parallel algorithm for

job-shop scheduling (see Proposition L.1).

We further explore tire issue of rvhen good approximations are possible' once again with a vierv

to generalise the above key result of iB]; this is done by the somewhat-technical Theorem 2' We

take high probability to mean a probability of L - e, whete e is a fixed positive constant as small

as we please. This ca1 be amplified by repetition to give any e which tends to zero polynomially

in the size of the problem instance. Theorem 2 shows that if (a) no job requires too much of

any given machine for processing, or if (b) repeated uses of the same machine bv a given job are

well-separated in time, then good approximations are possible' Say that a job-shop instance is

w-separated if every distinct p"o 11twp,ti,t),(M7,,,ti,)) of operations of the same iob with the

same machine (i.e., Mt,t = Mi,') hut l( - rl> w'

Theorem 2 There is a rand,ornised, polynomial-time algorithm for job-shop scheduli'ng that, with

high probability, d'eliuers a schedule of makespon O((P-"* * II-.*) 'P), where

(") ,f euery job needs at rnost u time units on each machine then

flog(min{mp,P-^*})l .'l@l'

(b)

(")

Iog up-
loglog z

(b) ,f the job-shop instance is w-separated and Prnax: L then

if w > Iog(P-.* + II*"*)/2;

p=ffi, othenttise'

Most of our results rely on probabilistic id.eas: in particular' we exploit a "tandom delays" tech-

nique due to [B]. Theorem 1(a)is obtained by a better combinatorial solution to a packing problem

considered in'[i+], and parts (f) and (c) of Theorem l foilow from a carefullook at the approxima-

tion obtained by introducing rand.om delays. we de-randomise the sequential formulations using a

technique of [1] and then parallelise. A simple but crucial ingredient of Theorem 1 is a new wav to

structure the operations of jobs in an initial (infeasible) schedule; we call this ue'II-structuredness'



and present it in Section 2. Theorem 2 comes about by introducing random delays and by using
the Lov6sz Local Lemma [5], which is also done in [8]; our improvements arise from a study of the
correlations involved and by using Theorem 1(a).

We have presented an improved approximation algorithm for general job-shop scheduling (The,
orem 1(a)), and have shown further improvements for certain NP-hard special cases. In particular,
parts (b) and (c) of Theorem 1 show the power of preemptability (or of small operation lengths)
when the number of machines is fixed, leading to constant-factor approximation algorithms. Theo-
rem 2 generalises the result in [B] showing the existence of an O(P,r,.* * [-.*) makespan schedule.
Its part (a) quantitatively shows, for instance, the advantages of having multiple copies of each
machine; in such a case, we can try to spread out the operations of a job somewhat equitably to the
various copies. Part (b) of Theorem 2 shows that if we have some (limited) flexibility in rearranging
the operation sequence of a job, then it pays to spread out multiple usages of the same machine.
The rest of this paper is organised as follows. Section 2 sets up some preliminary notions, Section 3

presentstheproof of Theoreml,andTheorem2isprovedinSection4. Theproofsof manyof orrr
results are presented in the appendix, for lack of space.

2 Preliminaries
For any non-negative integer &, we let [,t] denote the set {I,2,...,k}. The base of the natural
Iogarithm is denoted by e as usual and, for convenience, we may use erp(r) to denote e'.

As in [14], we assume throughout that all operation lengths are powers of two. This can be

achieved by multiplying each operation length by at most two. This assumption on operation
lengths will only affect our approximation factor and running time by a constant factor. Thus,
P-.*, II-.* and p-.* should be replaced by some Plr.* ( 2P^u*, [1or* ( 2II-.*, andpl^* ( 2p,.o,
respectively, in the sequel. We have avoided using such new notation, to retain simplicity.

Reductions. It is shown in [1a] that in deterministic polynomial time, we can reduce the general
shop-scheduling problem to the case where (i) p*"* 1n11, and where (ii) n 5! poly(m,p), whiie
incurring ar additiue O(P*.*+IIrr,.") term in the makespan of the schedule produced. The reduction
(i) also works in NC. Thus, for our sequential algorithms we assume that n ( poly(m,p) and that
pr..u*l poly(m,p); while for our NC algorithms we assume only that pr'.u*1nH.

Bounds. We use the following bounds on expectation and tails of distributions.

Fact 2.1 [Hoeffding] Let X1,X2,...,Xt e [0,1] 6e independent random uariables uith X :
D; X;. Then for any 6 > 0, E[(1 + 6)*] < e6Blx).

Wedefine G(p,6) tobeG(pr,6)=(e6lQ*d)1+o;a.UsingMarkov'sinequalityandFact2.l,we
obtain Chernoff and Hoeffding's bounds on the tails of the binomial distribution (see [10]).

Faci 2.2 [Chernoff, Iloeffding;] Let Xt,Xz,...,Xt € [0,1] be independett random uariabl,es

with X :L;X; andElXl- p,. Then for any 6 ) 0, Pr(X >_ p(I+ 6)) < G(p,6).
Random delays. Our algorithms use random ini,tial delays which were developed in [8] and
used in [14]. A B-delayed schedule of a job-shop instance is constructed as follows. Each job .Iy is

assigned a delay d; in {0, 1, . . ., B -I}. In the resulting B-delayed schedule, the operations of Ji are

scheduled consecutively, starting at time di. A random B-delayed schedule is a B-delayed schedule

in which the delays have been chosen independently and uniformly at random from {0, 1, . . . , B - I} .

Our algorithms scheduie a job-shop instance by choosing a random B-delayed schedule for some

suitable B, and then expanding this schedule to resolve conflicts between operations that use the

same machine at the same time.
For a B-delayed schedule 5, the contention, C(M;,t), is the number of operations scheduled

on machine M; h the time interval [t,t + f). (Recall that operation lengths are integral.) Ibr



any job ./y, define the random variable X;,ip to be 1 if some operation of ,/i is scheduled on

M; in the time interval ]t,t + 1) by 5, and 0 otherwise. Since no two operations of ./; contend

for M; simultaneou,sly, C(M;,t) : DiX;,j,r. If the delays are chosen uniformly at random and

B ) [-.*, then E[X;;,r] is at most the total processing time of Ji on M; divided by II*.*.
Thus, E[C(Mi,t)] : Di EIX;,i,rl ( II-.*/[m.* : 1. We also note that the random variables

{X;,i,,lj e 1"11 are mutually independent, for any given i andt. We record all this as follows.

Fact 2.8 If B > lL''u* and 3 is a rand,om B-delayed schedule then for any machine IttI; and

any time t, C(M;,r) = Di X;,j,r, where the 0-1' random uariables {X;,i,, I j e 1"11 are mutually

ind,ependent. Also, EIC(Mi,t)] S i.
Well-structuredness. Recall that all operation lengths are assumed to be powels of two. We

say that a delayed schedule S is well-stntctured, if for each k, all operations with length 2r' begin

in 5 at a time instant that is an integral multiple of 2k. We shall use the following simple wav of

constructing such schedules from randomly delayed schedules. First create a new job-shop iustancc

by replacing each operation (Mil,t1,1) by the operation (Mi1,Z't1X). Suppose S is a random B-

delayed schedule for this modified instance, for some B; we will call S a padded, random B-delayed

schetl,ule. From 5, we can construct a well-structured delayed schedule, 5', for the original job-shop

instance: simply insert (Mi,t,t;,r) with the correct boundary in the slot assigned to (,4f7,r,2'fr,r) bV

5. ^9'will be called awell-structuredrandom B-delayed schedule for the original job-shop instalce.

3 Proof of Theorem 1

11 this section we prove Theorem 1. In Section 3.1- lve give a randomised polylornial-tirnc al-

gorithm that proves part (b) of the theorem. In Section 3.2 we improve the algorithm to prove

part (a). Finally we discuss the derandomisation and parallelisation of these algorithms in Sec-

tion 3.3. Throughout, we shall assume uppel bounds on n and ?,',.* (i.e., P^.* ( np, n l poIV(nz' p)

a16p*." < poty(nz,p)) 
"s 

described earlier; this explains terms such as 1og(min{rnP,-P'o..})in the

bounds of Theorem 1. Given a delayed scheduie 5, define C(t) - max.; C(M;,t).

Lemma 8.L There is a rand.omised, polynomi,al-ti,me algorith'm that takes a job-shop instance and

produces a well-structued. d.elayed, sched,ule which has a rnakespan L ( 2(P-'* * II-.*)' Witlt' hi'gh

probability, th.is schedule sati,sfies:

(a) Yi e [nz] Vt € {0,1, ...,L - 1}, C(M;,t) 1a, and

@ D?:o'c(t) < o(P^ ** II-'*),
where a -- crlog(mp)lloglog(rnpr) and B : czlogmf loglogm, for sufficiently large constants

c1,c2 ) 0.

3.L Proof of Theorem 1(b)
Assume 5 is a delayed schedule satisfying the conditions of Lemma 3.1 witir makespa'n 't :
O(P-.**II,',.*).Webeginbypartitioningtheschedule trrtoframeli.e.,timeintervals {[ip-"*,(i*
1)p-.*), i:0,1,...,1L/p^^*j-1).Bythedefinitionof p-.*andthefactthatSiswell-structured,
no operation straddles a frame. We construct a feasible schedule for the operations performed under

schedule 5 for each frame. Concatenating these schedules yields a feasible schedule for the original

problem. We give the frame-scheduling aigorithm whete, without loss of generality, we assume that

its input is the first frame.
Let T be a rooted complete binary tree with p-.* Ieaves labelled, from left to right' 0, 1, . . ', Pr..'-

1. Let u be a node in ? and let /(u) and r(u ) be the labels, respectively, of the leftmost and rightmost

leaves of the subtree rooted at u. We shall associate the operations scheduled during the frarne with



the nodes of ? in a natura^l rvay. For i: l,... jm we defi.ne ,9;(z) to be those operations O that
are scheduled on M;by 5 for precisely the time interva"l [(u), r(u)t 1); each O scheduled by S in
the first frame is in exactly one 5;(u). Let p(u): (r(z) -l(")f 1).max; ll^9;(u)ll, ll5;(r)ll denotirrg
the cardinality of 5;(u); p(u) is an upper bound on the time needed to perform the operations
U;,5;(z) associated with z. Let the nodes of 7 be numbered z,s 't11,'ttr2t... in the preorder traversal
of ?. Define f (ur) :0 and for j ) 2,let f (ui) = Dr<, p(u*).The algorithm simply schedules the
operations in 5;(u) on machine M; consecutively beginning at time /(u) and concluding no later
than /(z) + p(u). Let 5' be the resulting schedule. Part (b) of Theorem 1 follows from Lemma 3.1

and the following lemma.

Lemma 3.2 St isfeasibleandhasmakespanatmostDueTp(u),whichisatrnost (1+logzp^.*).
Dl:6.-t C(j), where C(t) is the marimum content'ion at timet under schedule S.

Proof. By construction, no machine performs more than one operation at a time. Suppose
01 and 02 are distinct operations of job "I scheduled in the f.rst frame. Assume Or € 5;(u) and
Oz e Si@), where possibly 2: j. Assume O1 concludes before 02 begins under 5; thus z and o are
roots of disjoint subtrees of T and z precedes o in the preorder traversal of ?. Thus O1 concludes

before 02 begins in 5/ and the new schedule is feasible.
Clearly the makespan of 5'is at most D,erp(u). Fix a node u at some height & in ?. (W"

take leaves to have height 0.) Then p(u) = 2rmaxill5;(")ll. Since the ma-ximum nrrmber of
jobs scheduled at any time f on any machine under 5 is C(f), we get that Vl € [/(u),...,"(r)],
max; ll,9;(")ll < CQ).Thus,

p(u) < ,o -,u* ll^9;(u)ll <

Since each ieaf of T has (1 llogrp*.*) ancestors, the makespan of 5'is at most

c(t).

Pmax - I

C1t1 =(i*logrp*.*). I CQ\.
t -n

fp(rr)<t t
/J" '- /-J /-/

ueT ue T te p(u),...,r(u)l

3.2 Proof of Theorem 1(a)

We give a slightly different frame-scheduling algorithm and show that the feasible schedule for
each frame has makespan O(p-.*a flog(p-"*)/logal). (The parameter a is from Lemma 3.1, and

is assumed to be a power of two without loss of generality.) Thus, under the assumption that

?-.* ( poly(m,pr), the final schedule satisfies the bounds of Theorem 1(a).
The difficulty with the algorithm given in the Section 3.1 is that the operations may be badly

distributed to the nodes of ? by 5 so that 5/ is inefficient. To clarify, consider the following
situation. Suppose that u has left child z, p(z) is determined by 5;(u), and p(T.') is determined bv

S;(r). The troubling case is rvhen i I j. If, for instance, Si@): / and 5;(t') : /, then M; a:nd

Mi w1l7 have idle periods of p(u) and p(z), respectively. We can reduce the idle time by pushing

some of the operations in 5;(z) down to u.

We give a push-down algorithm that associates operations 5j(u) for machine i with node z. We

begin by partitioning ? into subtrees. Mark a node z if it is at height 0 mod log a in ?. Eliminating
the edges between a marked node and its children partitions ? into a collection of subtrees, each of
height log cr, except possibly the one rooted at the root of ?, which may have height less than log a.

The push-down algorithm will redistribute operations within each of these subtrees independently.
Let Tt be one of the subtrees of the partition. Initially each .9j(z) is empty for all u € T'' Let

u be a node in ?'. Assume o has height k in T' and that llS;(r)ll = 2t, padding with dummv



operations if necessary. If k ) (.,the algorithm distributes one operation of 5;(o_) 1o each .9j(u.'),

where ur is a descendant of u at a distance I below o. Otherwise it distributes 2/-e to Sj(ur), for

each u.r that is a leaf in ?' and a descendant of o. The algorithm repeats the procedure for each

i : Ir... rffi and for each o in T'.
Let p(u) and /(z) be defined as before but relative to S!(u), i: I,...)'trl. Run the scheduling

algorithm described above to produce a schedule 5'.

Lemma 3.3 .9/ is a feasible schedule with makespan at most O(P-.*a logp^u*liog al).

Proof. The proof that 5/ is feasible follows exactly as before. The makespan of 5' is no more

than !,.7p(z).
Consider a subtree ?/ of the partition. Assume the leaves of T' are at height j h T. Let tu be a

node in Tt and let V be the subset of nodes of ?/ consisting of u-r and its ancestors in 7'.
First suppose u is a leaf. Let u be a node in V and assume that T.r has height b in T/ with

ll5;(r)ll : 2t. Then o contributes at most 2t-k operations to Si@) and each has length 2r+1.

The time needed to perform these operations is zt-k '2i+k - 2i2t. By Lemma 3.1, part (a),

Iueyll,9;(r)ll < 2o. (The factor of 2 arises from the (possible) padding of S;(tr) with dummy

operations.) Thus p(w) 3 2r*r a.
Nowsupposeuisatheightr)0inTt.AueVatheigltrfkin?/contributesatmostone

operation to S!(w) and its length ft 2i+k+r. Thus p(w) 3 DlTo"-'2i+k+' .--2i+1cv.

Tlrus, if node .u is at height r I j in ? and is in the layer of the partition contaiuiug T', thetL

p(w)32i+ro,;also,there areprnu*f2'*rnodesatthisheightin?. Thesumof thesep(ur)'sisthusat
most 2ap,,.,u"|2'.Each layer therefore contributes at most 4(tp^u', and there are flogp,""*/logal
layers. Thus f,.7p('u) satisfies the bound of the lemma. fl

3.3 Derandomisation and parallelisation

Note that ali portions of our algorithm are deterministic (and can be implemented in NC), but

for the setting of the initial random delays. The sequential derandomisation is a simple appli-

cation of the method of conditional probabilities to the proof of Lemma 3.1. The derandomi-

sation/parallelisation of these algorithms follows from results of [1], as sketched in Appendix B.

4 Proof of Theorem 2

We just show the existence of the schedules guaranteed by Theorem 2; constructivisation is very

similar to the approach of [9] and is omitted here. For Theorem 2(a), we take 5 to be a padded

random 2(P^u*f Il*"*)-deiayed schedule. We let 5/ be a well-structuredrandom 2(P'..* f II-^*)'
delayed schedule that is derived from 5, as described in Section 2. The makespan of 5/ willbe some

L < 4Pr.u*-l2fI-.*. For some (. that is a multiple of p-.*, we partition 5/ into lLl('l cottiguous

frames Ft, Fz,. . . of length I each. Finally we reschedule the operations within each frame to yield

a feasible schedule for that frame and then concatenate the schedules. Since 5' is well-structuled

and since I is a multiple of p-.x, ro operation will straddle frames. For Theorem 2(b), we take 5
to be a random l[-."-delayed schedule, and partition 5 into frames of length u each (recall that

the job-shop instance is assumed to be tl-separated here).

The contention of rnachine M; in frame F6, denoted Ci,*, is the total processing time needed

for the machine by the operations scheduled within the frame. If the contention within a frame is

sufficiently small for each machine, we give a probabilistic proof that bounds the makespan of a'

feasible schedule for the frame; we use the Lov6sz Local Lemma to show that for some choice of

rand.om delays for the frame (i.e., taking the operations scheduled in the frame as a new job-shop

instance), the resulting delayed schedule is feasible. When the contention within a frame is tocr



large, we divide it into subframes and solve the problem recursively. Because of the conditions of
the theorem (i.e., the time a job needs a particular machine is bounded or its operations using
the machine are well-separated) we can argue that the contention in the frames (and subframes) is

adequately small so that the prescribed delays do not enlarge the schedule too mucir. Our use of
the Lov6sz Local Lemma is broadly similar to that of [8]. We first recal.l the lemma:

Lemma 4.1 ([5]) Let 81, E2,. . ., El be any euents withPr(E;) I p for aII i. If each E; is mutually
independent of all but at most d of the other euents Ei and if ep(d + 1) < I, then Pt(Af=, Er) > 0

First, a fairly simple application of the Lovdsz Local Lemma:
Lernrna 4.2 There is a constant ct > 0 such that for any job-shop scheduling instance and any
B > 2(Po,^**II-.*), there is a well-structwed B-delayed schedule for the instance with the property
that for any machine i and, any time t, C(M;,t) 1"' log(P,,,.* * II*"*)/loglog(P-.* f II*.*).

Replacing the use of Lemma 3.1 by Lemma 4.2 in our proof of Theorem 1(a), we get

Corollary 4.3 For general job-shop scheduling, there is always a schedule of makespan

/ n , n , log(P-.**[-,*) f log(min{rnl,p-"*}) l\o((P-".*rI-.*t ffi|ffi|j
For any positive ), let p(i, k, )) denote Pr(C,,6 > )) for 5'. The proof technique of Lenma 4.2

directly gives the following iemma.

Lemma 4.4 Suppose that

Vi Vk, p(i,k,)) 5. (8e(2P-.* * [-.*)P*.*[^.*)-1.
Thenthere is a2(P^u*f II-.*)-delayedwel)-structured schedule S" of the instance such that uthen

3" is partitioned into frames of length {. (some multiple of p^u*), C;,* 1 ) for all rnachines tr[; and

frames Fp.

4.1 Proof of Theorem 2(a)
Lemma 4.5 Cons'ider a job-shop instance in which euery job needs at most u time ur,its on each

machine. Let 3t be partitioned into frames of size u , where u I a 1 2(Prnu* * II-.* ) . Then f or any

machine M;, an! frame Fp and any 6 > 0, p(i,k,a(I* 6)) < G(ulu,6).
From now on, let c be a suitably large positive constant. We give a recursive scheme to prove

the existential version of Theorem 2(a).
Base Case: u) clog(P-.* * II-.")
If. u2 ) 2(P^u* * If-.*), then by Corollary 4.3 the theorem holds. If not, partition 5/ into frames

of length t,, where r.' is the smallest multiple of p-.* that is no sma.ller than u2. Since z 2 P-.*,
we have u2 < u 1u2 + z. Fix a machine M; and frame Fr.By Lemma 4.5 and from the fact that
z)clog(P-.,*[*.*),

p(i, k,2u) ! (e I !" < G I 4)'ros(P'""+rl-"*),

which can be made at most (Be(2P,..* * II-.*)P-.*II-.*)-t by taking c suitably large. Thus, by

Lemma 4.4, there is a setting of the delays so that each frame has a maximum machine contention

of at most 2'u. Choose such a setting. Now view each of the frames as a job-shop scheduling

problem wherein P-.* and fI-.* have been replaced by at most u2 * u and 2(u2 * u) respec-

tively. Thus, by Corollary 4.3, each frame can independently be made a valid schedule of rnakespau

o (u2., lof ' . Ilos(min{?p'p"-})']). 'Inor, since there are o((P-.* * tr-"*)/22) frames, the co.-" \* loglosu I loglogu ll'
catenation of these legal schedules gives us a feasible schedule of makespan

r logu f log(min{mp,p-".} )l \O ((P-.**fI-,*). 
- 

| 

-r 

| .

\ Ioglogu I loglogu l/



Recursive Case: z < clog(P-.* * fI^.*)
We use the following fact.

Fact 4.6 If 6 e[0,t], then e6lQ* 6)(1+6) 1e-6'/3.
We now partition 5/ into frames of length o, whete u is the smallest multiple of P-'* that is no

smaller than c2log3(P-.* * II-,*). We have c2log3(P-.* * II-.*) 1 u 1"2log3(P*.* * II-.*) *
u <2c2 iog3(P*.* * II-.*). Once again, fix M; and ft. By Lemma 4.5 and Fact 4.6,

p(i,k,u(t+ tlJtog(P*u.* + tI-,,.))) ( exp(-clog2(P-.* + rI-..)/(3log(P-.* * II*"*))).

If c is suitably large, Lemma 4.4 ensures that there is a setting of the delays so that each frame

has a maximum machine contention of at most 2c2log3(P,.,* * II-,*)(t + t/yio[@.. 1 n-".11.
Choose such a setting, and view each of the frames as a job-shop problem in which P-.* and

fI-,* are replaced by 2c2log3(P,,..* * II-.*) and.2c2log3(P-.* * rI*.*)(1 + t/rlos(4;T-n;Jt
respectively. Recursively make each frame feasible, independently, and concatenate the resulting

schedules to produce a feasible schedule for the original problem.

Finally we analyse the makespan of the final scltedule. Let F be a frame constructed at some

point in the procedure and let a be the "P*.* * I[r.,.*" value of the job-shop instance associatecl

with F. If F is partitioned in a recursive call and F/ is a subframe of F with "P*.* f II-.*" value

a', then a' < 4c2(Iogt o)(1 + l l \169 a) and so log(o') < 3 log a l co, where cs is a constaut depending

on c. Define a sequenc€. cL1,&2,..., where ar : log(P-.* * II-.*), and o;11 - 3log a;I co.Let r be

the first index such that u) clogo,. Then the final schedule has makespan

o (tr^, Tr \ logz [log(min{mP'p-".})l fltt + o(1/v/6r,)))
\ '*t'maxj'r"*"s, I t"*t*, I T /

Since tr,, ar-rt...,o1 grows exponentially fast, ll;(1 + O(llJtt)) < exP(D, O(IlJc|): O(1),

thus yielding the bound of Theorem 2(a).

4.2 Proof of Theorem 2(b)
We first need an intuitive lemmi that is a consequence of the work of [11].

Lemma4.7 ([11]) LetX1,...,Xt€{0,1} berandomuariablessuchthatforanylgll),
Pr(71;.;(X;:1)) ( fl;erPr(X; = L); i.e., loosely speak'ing, the X; are "negat'iuely correlated"'

Thenif X:D;X; with b1x1 = Ft we haue, for any 6 > 0, Pr(X 2 p(.L+6)) < G(p,6).

Now we prove Theorem 2(b). Suppose that we have a ?r-separated job-shop scheduling instance with

pmax : 1. Consider partitioning the random Il-.*-delayed schedule 5 into frames of length tu. Fix a

machine M; a11d. a frame F1,. For each operation O that needs to be done on machine M;, introduce

an indicator variable Xs for the event that this operations is scheduled in Fl ot M;. Thus, the

contention for M; in f'6 is C;,t :Do Xo.Note that E[C,,6J ( to. If O and O' are from the same job

then the probability that they are both scheduled on M; in r'6 is zero, due to our given assumptiou

on u. Furthermore, operations from different jobs are independent. Thus, the variables Xo are

negatively correlated in the sense of Lemma 4.7; hence Pr(C;,n > u(1+6)) < G(w,6),for any 6 > 0'

Notethat,forasuitablylargeconstant c",wecanchoose(i) 6: c"if w )log(P-.*f II*.*)/2,and
(ii) 6: c"log(P*.*+II*"*)/(a;log(log(P^.**II-.*) lu))if ru < log(P-.**[-.*)f2,to ensure

that G(w,6) < (Be(2P-.* * [-^*)P,..*II-.*)-r. Thus, by Lemma 4.4, there is a setting of the

delays so that each frame has a maximum machine contention of at most ru(1* 6). Choose suclr

a setting, and focus on any frame. Note that every job can have at most one operation on any

machine in this frame, and that all operations are of length one. Thus, by invoking the main result

of [B], each frame can be made feasible with makespan O(tl; + u(1 * 6)) = O(u(1+ 6)). We finally

concatenate all the feasible schedules, concluding the proof.
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A Proofs of lemmas

Convexity. Recall that function /: ft -' ft is conuerin the interval fa,b)if and only for all a' and

6/suchthatalatlb'<bandforallq€lO,t),f(qa'+(1-s)b')<qf(a')+(1 -q)f(b')'
Lemma L.l If f is any conuernon-decreasing function in the fi'nite interualla,b) and if X is a

rand.om uariable talcing ualues only inla,bl such that EIXIS 11, then

Elf(x))t*ta) + ffitot
Proof. Since / is convex in [o,b], we have f(r) S *f @)+ #f (b), for anv r e fa,bl. Thus,

since X is distributed in [a,b], we have

f(x)s0fit,",*fjrc (1)

The proof is completed by taking expectations on both sides of (1"), and noting that /(b) > f (")'

Corollary A.2 Let f be any conuer non-decreasing functi.on 'in the fi'nite interual la,b). Su'Ttpose

xjt,x2,...,tt are such that for each i, t; €fa,b) andDi'i { c, ttt'en

t
1

r(,;)s?ltat+ffirc
proof. This follows immediately from Lemma A.1 by taking X to be the uniforn distribution

over the the multiset {*'t,rz,...,rt}. Ll

A.L Proof of Fact 2.1-

ByLemmaA.landtheconvexityof/(r) =(1 +d)",E[(1+6)x'] <1-E[X;] +(1+6)E[Xt] :
1+ 6E[X,] S s6tr[xiJ. The fact then follows from the independence of X1, ...,Xr.

A.2 Proof of Lemma 3.1

Let B: 2flmax and let 5 be a pad.d.ed, random B-d.elayed. schedule of the new instance' 5 has a

makespan of at most 2(P^u** IIrr,.*). Let 5/ be the well-structured random B-delayed schedule

for the original instance that can be constructed from 5, as described in Section 2. The contention

on any machine at any time und.er 5/ is clearly no more than under 5. Thus 5/ satisfies (a) and

(b) with high probability since, by the following, 5 does'

itart (a). th" fol]o*ing proof is based on that in [1a]. For any positive integer,k, and a.ny M;,

Pr(c(M;,t) >- k for any , I < Pn:'.) irTirn-.*))*-t < 2II''^*/k!''-\ k )'

But II-.* S nltp^u*,which by our assumptions is poly(rn, pr) (recall that the r"edrrctions of section 2

ensure that n and p-,* are both at most poly(m,p)). Since ["'l! > lmp\"tz for sufficiently large

m or tL, we can satisfy (a) with high probability if we choose c1 sufficiently large'

11



Hence, for any given l,

Part (b). Let 1 : Be f 4, where e is the desired constant in the probabiiity bound. Let the
constant c2 in the definition of p be sufrciently large so that 7 ) 1. Fix any M; and f , and iet
):E[C(M;,t)]. (Bv Fact 2.3, ) < 1.) By Fact 2.1, with 7*6 =1,

Ellc(tr;,t)1< e(7-1)^ < 
"(r-t).

E[1c(tl1 < t Ellc(M;'t\15^rr-'L, r 
- ZJ

rtlml

Since the function r a j' is convex, by Jensen's inequality we get that E[7c(')] > 7E[c(t)].
If we choose c2 suflficiently large then 7a 2 *"'-t and so, by (2), n[C(t)] 5= 7. By linear-
ity of expectation, E[L C(t)] S 4j(P^u* * II-.*) and finally, by Markov's inequality, we have

Pr(D, C(t) > p(P,..u" * II-"*)) S 4l l0 = e.

A.3 Proof of Lemma 4.2

As in the proof of Lemma 3.1, it will sufice for us to prove the borinds for the padded schedule 5;
these will immediately extend to the well-structured schedule 5/. We will take up this approach in
proving Lemmas 4.2 and 4.5.

Assign the delays randomly and let E;3 be the event

C(M;,t) > 
"' 

log(P-.* * fl*^*)/ 1oglog(P-"* * II-,*),

and .O; be the event that for some t, E;,t occurs.
As in the proof of Lemma 2 part (a), we can show that the probability of E; is at most

7f(4ePr,^*Il-.*) by taking c'as a suitably large constant. As [B] observed, the contention pat-
tern of any machine M; is independent of (any function of) the contention patterns of all the

machines M; such that M; and Mr have no common job that uses both. Thus, since there are at

most 2fI-." jobs that need M; ar.d since each of them can use at most 2P^u* - 1 other machines,

the "dependency" among the set of events {E;: i e l*)}, in the sense of Lemma 4.1, is at most

2fI^u*(2Po,^* - 1) < 4P-.*fI,,'.* - 1. This shows that Pr(fiprf.) > 0 by an invocation of the

Lov*sz Local Lemma.

A.4 Proof of Lemma 4.5

Let X(i, j,k) be the random variable denoting the total amount of processing time of job Ji on

machine M; in time frame .F1. Let r;,, denote the total amount of processing that "Iy needs on M;,
in the given job-shop instance. Then

ViV jVk, E[X(r, j,k)) < r;,r(.f 2(P*,"* * II-.*)i also, 0 < X(i, j,k) < x;,i I u.

Thus, for any ? > 0, Lemma A.1 shows that

(2)

E[exp(1 X (i , j, fr))] <
( exp(1r;,,)

2(P^u* * II*.*) 2( P*u* * II-,* )

Fix M; and r'r. Note that the random variables {X(i, j,k) t j e Ul} are mutually independeut,
and that C;.k : Dn X(i,7,&). Thus we have, for ) : (.(1 + 6) and any 7 > 0,

p(i,k,A)exp(7)) S E[exp(7C;,6)] (by Markov's inequality)

+1- (exp(ffiS}#) (3)

t2



: f[ E[exp(7 X(i, j,k))]
j

S "*p( - 
j -.)-(exp(rr;.,)-1)),"'-t\2(P*^*f [*.*) \ t-'"r'

bV (3). Since 0 < ri,t ( u and since !; ,;,j 12(P*u" * fI^.*), Corollary A.2 shows that

(4)

f(""n(rrr,j) - 1) ( (2(P-,* 1-lr^^*)lu)(exp(7z) - 1).

J

Thus, by (a), we see that

p(i,k,/(1+ d)) < exp(_1t(1 + 6) + !G*vOu) - 1))
&

Choosing 7 : ln(1 + 6)lu) 0, we get the claimed bound on p(i,k,(.(t + 6)).

B Derandomisation and parallelisation

Note that all portions of our algorithm are deterministic, except for the setting of the initial random

delays, which we show how to derandomise now. The sequential derandomisation (which rve ourit
in this version) is a simple application of the method of conditional probabilities to the probabilistic

argument of Lemma 3.1. In any case) it will follow from the NC algorithm that we ltow present.

As said before, we assume without loss of generality that p-.* is at most poly(m, p) and at most

poly(n, p), for our sequential and parallel algorithms respectively. We begin witir a technical lernma.

Lemma B.L Letrr;r2t...,rt benon-negat'iueintegers suchtltatl;ri: {a, for some ct} \. Let

k be any positiae integer such that k I a. Then,

> (..

Proof. Forrealr,wedefine,asusual, (i)=@(r-1)...(r-k+L))lkl. Wefirstverifythat
the function f(r): ([) is non-decreasing and convex for z ) k, by a simple check that tire fi-rst

and second derivatives of / are non-negative for r > ,t. Think of minimising D; (f ) subject to the

given constraints. If r; 1(h - 1) for some i, then there should be an index j such ri > (k * I),
since !; r; )_ (.k. Thus, we can lessen the objective function by simultaneously setting r; :: r; | 1

and ci := rj - 1. Hence we may now assume that all the integers ri are at least k. Now, by the

convexity of ; fot r ) k,we see that the objective function is at least tf=t (;). E

Define, for z : ("r,"r,...,2n) € ft', a family of symmetric polynomials 5r(z), j : 0,7,...,7t,
where^90(r) :1,andfor1( iSn,SiQ):Ir<,r<;r...i;lnzitziz z;r.Wenowrecalloneof the

main results of [1] (this is not explicitly presented in [1],"bnt is an obvious corollary of the results

of Section + in [1]).
Proposition B.2 ([L]) Suppose ue are giuenm independent random aariables Ar,...,y^, each of
whichtakesualue.suniformly inR: {0,1,...,2b_ 7} where b: O(logN); lf hereis aparameter
th"atroughly stand,sfor "inputlength", andm: y'\ro(l) . Supposewe are also giaen, for each j €lm),
a fi,nite set of binary random aariables {zi1 : t : 1,2,. . .} where zit is 1 iff y1 lies in some fited,
subset Rit of R. AIso giuen are r random uariables

m

U; =Dzj,f (,,j), i e [r],

:(;) (;)

r.t



where f is some arbitrary giuenfunction. NowrfE[U;) 1I foreachi, thengiuenanypositiueinteger
k such that k = O(iog N), we can fi,nd,, detenninistically using 1/o(1) processors ond O(logo(1)I/)
time on the EREW PRAM, a setting yr :: wt,. . .,A^ :: 11)m such th'at

I S*(a;1i,1),. . ., z*,11;,^1) I rG(1',k - 1X1 * 1/-'),
r€[r]

for any desired constant c ) 0.

In our setting, the random variables yi arc the initial random choices of the machines. It is

easy to verify that each random variable C(Mt,/) is of the form of some Ui in the notation of
PropositionB.2. Now,bygivingtheinitialrandomdelaysintherange{0,1,...,2[-.*]insteadof
from {0, 1, . . ., 2[-,* - 1], we can ensure the condition E[[] ( 1 of Proposition 8.2 (E[C(Mi, f )] <

2TI^^*f(2II-.**1) now). LetaandBbeasinLemma3.l,andnotethatbotharelogarithmically
bounded in the length of the input, as required for the parameter k in Proposition B.2. Let tiie
random variables X;,i1be as in Fact 2.3. From the proof of part (a) of Lemma 3.1, wc see that

I;,rG(1,ci - 1) is smaller than 1; thus, by Proposition B.2, we can find a setting td for the initial
delays in NC such that

f 5.(xr,t, t, Xi,2,t,. . . , X;,,,1) ( 1.

I,t

Now, if the congestion of some machine M; at some I rvere at least a due to the above setting of

the initial delays to ri, then the left-hand-side of (5) would be at least 1, contradicting (5). Thr.is,

we have an NC derandomisation of Theorem 1(a).

As for Theorem 1(b), we can similarly find an NC assignment of initial delays ti such that

DSo(xr,r,t,Xi,2,t,...,Xi,,,t) ( O((P*"* f II-.*)mG(1,13 - 1)) : O((P-.* * [*'*))' (6)

z,t

Let C(t) be the (deterministic) maximum contention at time f, due to this setting. Note that

(5)

Thus, by (6), we see that

< I Su(xi,r,tt Xi,2,t, . . ., X;,n,r).
t

(t':' ,| 
= o((P-"* * II-.*)).

\p /

('f ')

t
We now invoke Lemma 8.1 to conclude'that Dt C(t): O((P*"" + II-.*),6); thus, we have an NC

derandomisation of Theorem 1(b).
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