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Abstract

Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first
polynomial-time approximation algorithm for this problem that has a good (polylogarithmic)
approximation guarantee. We improve the approximation guarantee of their work, and present
further improvements for some important NP-hard special cases of this problem (e.g., in the
preemptive case where machines can suspend work on operations and later resume). Some
of these improvements represent the first constant-factor approximation algorithms. We also
present NC algorithms with improved approximation guarantees for some NP-hard special cases.

1 Introduction

Job-shop scheduling is a classical NP-hard minimisation problem [7]. We improve the approximation
guarantees for this problem and for some of its important special cases, both in the sequential and
parallel algorithmic domains; the improvements are over the current-best algorithms of Leighton,
Maggs & Rao [8] and Shmoys, Stein & Wein [14]. In job-shop scheduling, we have n jobs and m
machines. A job consists of a sequence of operations, each of which is to be processed on a specific
machine for a specified integral amount of time; a job can have more than one operation on a given
machine. The operations of a job must be processed in the given sequence, and a machine can
process at most one operation at any given time. The problem is to schedule the jobs so that the
makespan, the time when all jobs have been completed, is minimised. An important special case of
this problem is preemptive scheduling, wherein machines can suspend work on operations, switch
to other operations, and later resume the suspended operations (if this is not allowed, we have the
non-preemptive scenario, which we take as the default); in such a case, all operation lengths may be
taken to be one. Even this special case with n = m = 3 is NP-hard! We present further improved
approximation factors for preemptive scheduling and related special cases of job-shop scheduling;
in particular, we present the first sequential and parallel constant-factor approximation algorithms
for the case where m is fixed and the maximum length of any operation is bounded.

Formally, a job-shop scheduling instance consists of jobs Ji,J2,...,Jn, machines My, My, ...,
M,,, and for each job J;, a sequence of u; operations (Mj1,t51), (Mja,t52)5 s (ijllj7tj»ﬂj)‘
Each operation is a (machine, processing time) pair: each M represents some machine M;, and
the pair (M;;,t;;) signifies that the corresponding operation of job J; must be processed on machine
M;; for an uninterrupted integral amount of time of ¢;;. The problem that we focus on throughout
is to come up with a schedule that has a small makespan, for general job-shop scheduling and for
some of its important special cases.
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1.1 Earlier work

As described earlier, even very restricted special cases of job-shop scheduling are NP-hard. Fur-
thermore, the problem seems quite intractable in practice, even for relatively small instances. Call
a job-shop instance acyclic if no job has more than one operation that needs to run on any given
machine. A single instance of acyclic job-shop scheduling consisting of 10 jobs, 10 machines and 100
operations resisted attempts at exact solution for 22 years, until its resolution by Carlier & Pinson
[4]. More such exact solutions for certain instances (with no more than 20 jobs or machines) were
computationally provided by Applegate & Cook, who also left open the exact solution of certain
acyclic problems, e.g., some with 15 jobs, 15 machines, and 225 operations [2].

Thus, efficient exact solution of all instances with, say, 30 jobs, 30 machines, and 900 operations,
seems quite out of our reach at this point; an obvious next question is to look at efficient approx-
imability. Define a p-approximation algorithm as a polynomial-time algorithm that always outputs
a feasible schedule with a makespan of at most p times optimal; p is called the approximation guar-
antee. A negative result is known: if there is a p-approximation algorithm for job-shop scheduling
with p < 5/4, then P = NP [15].

There are two simple lower bounds on the makespan of any feasible schedule: P, the maximum
total processing time needed for any job, and Il ,x, the maximum total amount of time for which
any machine has to process operations. For the NP-hard special case of acyclic job-shop scheduling
wherein all operations have unit length, a breakthrough was achieved in 8], showing that a schedule
of makespan O(Ppax + Hmax) always exists! Such a schedule can also be computed in polynomial
time [9]. However, if we drop any one of the two above assumptions (unit operation lengths and
acyclicity), it is not known whether such a good bound holds.

What about upper bounds for general job-shop scheduling? It is not hard to see that a simple
greedy algorithm, which always schedules available operations on machines, delivers a schedule of
makespan at most Ppax - IImax; one would however like to aim for much better. Let p = max; pu;
denote the maximum number of operations per job, and let py.x be the maximum processing time
of any operation. By invoking ideas from {8, 12, 13] and by introducing some new techniques, good
approximation algorithms were developed in [14]. Their deterministic approximation bounds were
slightly improved in [11] to yield the following proposition.!

Proposition 1.1 ([14, 11]) There is a deterministic polynomial-time algorithm that delivers a

schedule of makespan O((Pmax+Hmax)-% Jog(min{mu, pmax})) for general job-shop schedul-
ing. If we replace m by n in this bound, then such a schedule can also be computed in RNC.

This is a p-approximation algorithm with p = O(log(mu)log(min{mu, pmax})/ loglog{mu)). See
(14, 6] for further results on approximating some special cases of shop scheduling that are not

discussed here.

1.2 Our results

Our first result improves Proposition 1.1 by a doubly logarithmic factor and provides further im-
provements for important special cases.

Theorem 1 There are the following deterministic algorithms for general job-shop scheduling, de-
livering schedules of makespan O(( Pmax + IImax) - p)-

(a) _ 10g(mﬂ) . {log(mln{mﬂa pmax})
log log(m) log log(mpu)

If we replace m by n in this bound, then such a schedule can also be computed in NC.

] (polynomial-time algorithm).

'To avoid problems with small positive numbers, henceforth let logz and loglogz denote log,(z + 2) and
log, log,(z + 4) respectively, for z > 0.



(b) log m

p= W -log(min{m, Pmax}) (polynomial-time algorithm).
c I
(c) p = ﬁgo_lgogla -log(min{ny, pmax}) (NC algorithm).

Thus, part (a) improves on the previous approximation bound by a doubly logarithmic factor.
The impact of parts (b) and (c) is best seen for preemptive scheduling, wherein pmax = 1, and
for the related situations where pmax is “small”. Our motivations for focusing on these cases are
twofold. First, preemptability is known to be a powerful primitive in various scheduling models, see,
e.g., [3]. Second, the above result of [8] shows that preemptability is powerful for acyclic job-shops.
It is a major open question whether there is a schedule of makespan O(Pmax + Hmax) for general
job-shop scheduling and if so, in what cases it can be found efficiently. In view of the above result
of [8], one way to attack this question is to study (algorithmically) the problem parametrised by
Pmax, focusing on the case of “small” pmax. Recall that even the case of n = m = 3 with pmax = 11s
NP-hard. Thus, parts (b) and (c) above present the first constant-factor approximation algorithms
in such situations. In general, these two parts show that, as long as the number of machines is
small or fixed, we get very good approximations. Note that for the case in which pmax is small,
part (c) is both a derandomisation and an improvement of the previous-best parallel algorithm for
job-shop scheduling (see Proposition 1.1).

We further explore the issue of when good approximations are possible, once again with a view
to generalise the above key result of [8]; this is done by the somewhat-technical Theorem 2. We
take high probability to mean a probability of 1 — e, where € is a fixed positive constant as small
as we please. This can be amplified by repetition to give any € which tends to zero polynomially
in the size of the problem instance. Theorem 2 shows that if (a) no job requires too much of
any given machine for processing, or if (b) repeated uses of the same machine by a given job are
well-separated in time, then good approximations are possible. Say that a job-shop instance is
w-separated if every distinct pair ((Mje,tje),(Mjr,t;r)) of operations of the same job with the
same machine (i.e., M;¢ = M;,) has [{ — 7| > w.

Theorem 2 There is a randomised polynomial-time algorithm for job-shop scheduling that, with
high probability, delivers a schedule of makespan O(( Pmax + Imax) - p), where

(a) if every job needs at most u time units on each machine then

p=

10g U [log(mln{m#, pmax})] .
" loglogu '

loglog u
(b) if the job-shop instance is w-separated and pmax = 1 then

p= 1 ’I,f w > ]-Og(Pmax + Hmax)/2;

lOg(Pmax+Hmax)

p= w log(log(Pmax-anax)/w) s otherwise.

Most of our results rely on probabilistic ideas: in particular, we exploit a “random delays” tech-
nique due to [8]. Theorem 1(a) is obtained by a better combinatorial solution to a packing problem
considered in [14], and parts (b) and (c) of Theorem 1 follow from a careful look at the approxima-
tion obtained by introducing random delays. We de-randomise the sequential formulations using a
technique of [1] and then parallelise. A simple but crucial ingredient of Theorem 1 is a new way to
structure the operations of jobs in an initial (infeasible) schedule; we call this well-structuredness,



and present it in Section 2. Theorem 2 comes about by introducing random delays and by using
the Lovdsz Local Lemma [5], which is also done in [8]; our improvements arise from a study of the
correlations involved and by using Theorem 1(a).

We have presented an improved approximation algorithm for general job-shop scheduling (The-
orem 1(a)), and have shown further improvements for certain NP-hard special cases. In particular,
parts (b) and (c) of Theorem 1 show the power of preemptability (or of small operation lengths)
when the number of machines is fixed, leading to constant-factor approximation algorithms. Theo-
rem 2 generalises the result in [8] showing the existence of an O(Ppax + max) makespan schedule.
Its part (a) quantitatively shows, for instance, the advantages of having multiple copies of each
machine; in such a case, we can try to spread out the operations of a job somewhat equitably to the
various copies. Part (b) of Theorem 2 shows that if we have some (limited) flexibility in rearranging
the operation sequence of a job, then it pays to spread out multiple usages of the same machine.
The rest of this paper is organised as follows. Section 2 sets up some preliminary notions, Section 3
presents the proof of Theorem 1, and Theorem 2 is proved in Section 4. The proofs of many of our
results are presented in the appendix, for lack of space.

2 Preliminaries

For any non-negative integer k, we let [k] denote the set {1,2,...,k}. The base of the natural
logarithm is denoted by e as usual and, for convenience, we may use ezp(z) to denote e*.

As in [14], we assume throughout that all operation lengths are powers of two. This can be
achieved by multiplying each operation length by at most two. This assumption on operation
lengths will only affect our approximation factor and running time by a constant factor. Thus,
Praxs Hmax and pmax should be replaced by some P .. < 2Phax, I« < 2l max, and play < 2Pmax
respectively, in the sequel. We have avoided using such new notation, to retain simplicity.

Reductions. It is shown in [14] that in deterministic polynomial time, we can reduce the general
shop-scheduling problem to the case where (i) pmax < np, and where (ii) n < poly(m, ), while
incurring an additive O( Ppax+1Inax) term in the makespan of the schedule produced. The reduction
(1) also works in NC. Thus, for our sequential algorithms we assume that n < poly(m, u) and that
Pmax < poly(m, p); while for our NC algorithms we assume only that pya.x < np.

Bounds. We use the following bounds on expectation and tails of distributions.
Fact 2.1 [Hoeffding] Let X;,Xs,...,X¢ € [0,1] be independent random variables with X =
>, Xi. Then for any § > 0, E[(1 + 5)X] < SEIX],

We define G(u, 6) to be G(u,6) = (€8 /(1 + 8§)'+%)#. Using Markov’s inequality and Fact 2.1, we
obtain Chernoff and Hoeffding’s bounds on the tails of the binomial distribution (see [10]).

Fact 2.2 [Chernoff, Hoeffding] Let X1,X5,...,X¢ € [0,1] be independent random variables
with X = 3., X; and E[X] = . Then for any 6§ > 0, Pr(X > u(1+ 6)) < G(i,$).
Random delays. Our algorithms use random initial delays which were developed in [8] and
used in [14]. A B-delayed schedule of a job-shop instance is constructed as follows. Each job J; is
assigned a delay d; in {0,1,..., B—1}. In the resulting B-delayed schedule, the operations of J; are
scheduled consecutively, starting at time d;. A random B-delayed schedule is a B-delayed schedule
in which the delays have been chosen independently and uniformly at random from {0,1,..., B—1}.
Our algorithms schedule a job-shop instance by choosing a random B-delayed schedule for some
suitable B, and then expanding this schedule to resolve conflicts between operations that use the
same machine at the same time.

For a B-delayed schedule S, the contention, C(M;,t), is the number of operations scheduled
on machine M; in the time interval [t,# + 1). (Recall that operation lengths are integral.) For



any job Jj, define the random variable X;;; to be 1 if some operation of J; is scheduled on
M; in the time interval [t,t + 1) by S, and 0 otherwise. Since no two operations of J; contend
for M; simultaneously, C(M;,t) = 3°; Xi ¢ If the delays are chosen uniformly at random and
B > Inax, then E[X; ;] is at most the total processing time of J; on M; divided by Ilmax.
Thus, E[C(M;,t)] = 3, E[Xijt] € Imax/IImax = 1. We also note that the random variables
{Xij: |7 € [n]} are mutually independent, for any given ¢ and t. We record all this as follows.
Fact 2.3 If B > Ilmax and S is a random B-delayed schedule then for any machine M; and
any time t, C(M;,t) = Y_; Xij¢, where the 0-1 random variables {Xijt | J € [n]} are mutually
independent. Also, E[C(M;,1)] < 1.

Well-structuredness. Recall that all operation lengths are assumed to be powers of two. We
say that a delayed schedule S is well-structured if for each £, all operations with length 2% begin
in S at a time instant that is an integral multiple of 2k We shall use the following simple way of
constructing such schedules from randomly delayed schedules. First create a new job-shop instance
by replacing each operation (Mj¢,tj¢) by the operation (Mj¢,2-t;¢). Suppose S is a random B-
delayed schedule for this modified instance, for some B; we will call S a padded random B-delayed
schedule. From 8, we can construct a well-structured delayed schedule, &', for the original job-shop
instance: simply insert (M,,t;;) with the correct boundary in the slot assigned to (M;;,2-t;;) by
S. S’ will be called a well-structured random B-delayed schedule for the original job-shop instance.

3 Proof of Theorem 1

In this section we prove Theorem 1. In Section 3.1 we give a randomised polynomial-time al-
gorithm that proves part (b) of the theorem. In Section 3.2 we improve the algorithm to prove
part (a). Finally we discuss the derandomisation and parallelisation of these algorithms in Sec-
tion 3.3. Throughout, we shall assume upper bounds on n and pmax (i.e., Pmax < np, n < poly(m, p)
and pmax < poly(m, u)) as described earlier; this explains terms such as log(min{mu, pmax}) in the
bounds of Theorem 1. Given a delayed schedule S, define C(t) = max; C(M;,1).

Lemma 3.1 There is a randomised polynomial-time algorithm that takes a job-shop instance and
produces a well-structured delayed schedule which has a makespan L < 2(Pmax + Ilmax). With high
probability, this schedule satisfies:

(a) Vi € [m] Vt € {0,1,...,L -1}, C(M;,t) < o, and
(b) S C(t) < B(Prax + max),

where a = 1 log(mp)/ loglog(mu) and B = cylogm/loglogm, for sufficiently large constants
c1,c2 > 0.

3.1 Proof of Theorem 1(b)
Assume S is a delayed schedule satisfying the conditions of Lemma 3.1 with makespan L =
O(Puax + Inax). We begin by partitioning the schedule into frames, i.e., time intervals {[iPmax, (¢ +
Dpmax)>t = 0,1,. .., [L/Pmax| —1}. By the definition of pmax and the fact that S is well-structured,
no operation straddles a frame. We construct a feasible schedule for the operations performed under
schedule S for each frame. Concatenating these schedules yields a feasible schedule for the original
problem. We give the frame-scheduling algorithm where, without loss of generality, we assume that
its input is the first frame.

Let T be a rooted complete binary tree with pyay leaves labelled, from left to right, 0,1,..., Pmax—
1. Let u be anode in T and let [(u) and r(u) be the labels, respectively, of the leftmost and rightmost
Jeaves of the subtree rooted at u. We shall associate the operations scheduled during the frame with



the nodes of T in a natural way. For i = 1,...,m we define S;(u) to be those operations O that
are scheduled on M; by S for precisely the time interval [I(u),r(u)+ 1); each O scheduled by S in
the first frame is in exactly one S;(u). Let p(u) = (r(u) — I(u) +1)-max; ||Si(u)||, ||Si()|| denoting
the cardinality of Si(u); p(u) is an upper bound on the time needed to perform the operations
U;S;(u) associated with u. Let the nodes of T' be numbered as uy, ug, ... in the preorder traversal
of T. Define f(u;) =0 and for j > 2, let f(u;) = > g<; p(ur). The algorithm simply schedules the
operations in S;(u) on machine M; consecutively beginning at time f(u) and concluding no later
than f(u)+ p(u). Let S’ be the resulting schedule. Part (b) of Theorem 1 follows from Lemma 3.1
and the following lemma.

Lemma 3.2 S’ is feasible and has makespan at most 3", c7 p(u), which is at most (14 10g, Prmax) -

?28"_1 C(j), where C(t) is the mazimum contention at time t under schedule S.

Proof. By construction, no machine performs more than one operation at a time. Suppose
01 and Oy are distinct operations of job J scheduled in the first frame. Assume O; € S;(u) and
0, € Sj(v), where possibly 7 = j. Assume O concludes before O, begins under §; thus v and v are
roots of disjoint subtrees of T and u precedes v in the preorder traversal of T'. Thus 07 concludes
before O, begins in &’ and the new schedule is feasible.

Clearly the makespan of &’ is at most Y .y p(u). Fix a node u at some height &k in 7. (We
take leaves to have height 0.) Then p(u) = 2% max;||S;(u)||. Since the maximum number of
jobs scheduled at any time t on any machine under S is C(t), we get that Vt € [{(u),...,7(u)],
max; ||Si(u)|| < C(t). Thus,

plu) < max||Siw)l| < 3T C(*).

Since each leaf of T has (1 + log, pmax) ancestors, the makespan of §’ is at most

Pmax— 1

2opwWsYy > Ct)=(1+Dogapma) Do C(t): 0

ueT u€T tefl(u),...,r(w)]

3.2 Proof of Theorem 1(a)

We give a slightly different frame-scheduling algorithm and show that the feasible schedule for
each frame has makespan O(pmax® [10g(Pmax)/ log @]). (The parameter « is from Lemma, 3.1, and
is assumed to be a power of two without loss of generality.) Thus, under the assumption that
Pmax < poly(m, 1), the final schedule satisfies the bounds of Theorem 1(a).

The difficulty with the algorithm given in the Section 3.1 is that the operations may be badly
distributed to the nodes of T by S so that &’ is inefficient. To clarify, consider the following
situation. Suppose that u has left child v, p(u) is determined by S;(u), and p(v) is determined by
S;(v). The troubling case is when ¢ # j. If, for instance, Sj(u) = ¢ and S;(v) = ¢, then M; and
M; will have idle periods of p(v) and p(u), respectively. We can reduce the idle time by pushing
some of the operations in S;(u) down to v.

We give a push-down algorithm that associates operations S/(u) for machine ¢ with node u. We
begin by partitioning T into subtrees. Mark a node u if it is at height 0 mod log o in T'. Eliminating
the edges between a marked node and its children partitions 7 into a collection of subtrees, each of
height log a, except possibly the one rooted at the root of T, which may have height less than log a.
The push-down algorithm will redistribute operations within each of these subtrees independently.

Let T’ be one of the subtrees of the partition. Initially each S/(u) is empty for all u € T'. Let
v be a node in T'. Assume v has height k£ in 7’ and that {|Si(v)|| = 2¢, padding with dummy



operations if necessary. If k > £, the algorithm distributes one operation of S;(v) to each Si(w),
where w is a descendant of v at a distance £ below v. Otherwise it distributes 2% to S/(w), for
each w that is a leaf in 7" and a descendant of v. The algorithm repeats the procedure for each
i=1,...,m and for each v in T".

Let p(u) and f(u) be defined as before but relative to S{(u), ¢ = 1,...,m. Run the scheduling
algorithm described above to produce a schedule §'.

Lemma 3.3 S is a feasible schedule with makespan at most O(Pmax{10g Pmax/ log a]).

Proof. The proof that 8’ is feasible follows exactly as before. The makespan of S’ is no more
than EuET p(u)

Consider a subtree T” of the partition. Assume the leaves of 7" are at height j in T'. Let w be a
node in 7" and let V be the subset of nodes of 7’ consisting of w and its ancestors in 7".

First suppose w is a leaf. Let v be a node in V and assume that v has height k in T' with
[|Si(v)]] = 2¢. Then v contributes at most 2°~* operations to S/(w) and each has length PXRL
The time needed to perform these operations is ot=k . 9it+k — 219f By Lemma 3.1, part (a),
Svev I18:()]] € 20 (The factor of 2 arises from the (possible) padding of Si(v) with dummy
operations.) Thus p(w) < 2/*1a.

Now suppose w is at height 7 > 0in 7'. A v € V at height r + k in T" contributes at most one
operation to §!(w) and its length is 297%¥7. Thus p(w) < YIEXTT itk < 93t

Thus, if node w is at height r + j in T and is in the layer of the partition containing T', then
p(w) < 291 q; also, there are Pmax/2" 17 nodes at this height in T'. The sum of these p(w)’s is thus at
most 2apmax/2". Each layer therefore contributes at most 4apmax, and there are [log pmax/ log o
layers. Thus Y, p(v) satisfies the bound of the lemma. a

3.3 Derandomisation and parallelisation

Note that all portions of our algorithm are deterministic (and can be implemented in NC), but
for the setting of the initial random delays. The sequential derandomisation is a simple appli-
cation of the method of conditional probabilities to the proof of Lemma 3.1. The derandomi-
sation/parallelisation of these algorithms follows from results of [1], as sketched in Appendix B.

4 Proof of Theorem 2

We just show the existence of the schedules guaranteed by Theorem 2; constructivisation is very
similar to the approach of [9] and is omitted here. For Theorem 2(a), we take S to be a padded
random 2( Prpax 4+ IImax)-delayed schedule. We let S’ be a well-structured random 2(Prpax + Mmax)-
delayed schedule that is derived from S, as described in Section 2. The makespan of 8’ will be some
L < 4Pyax + 2l max. For some ¢ that is a multiple of pmax, we partition S’ into [L/{] contiguous
frames Fy, Fy, ... of length £ each. Finally we reschedule the operations within each frame to yield
a feasible schedule for that frame and then concatenate the schedules. Since & is well-structured
and since £ is a multiple of ppax, no operation will straddle frames. For Theorem 2(b), we take §
to be a random II,.y-delayed schedule, and partition § into frames of length w each (recall that
the job-shop instance is assumed to be w-separated here).

The contention of machine M; in frame Fy, denoted Cj, is the total processing time needed
for the machine by the operations scheduled within the frame. If the contention within a frame is
sufficiently small for each machine, we give a probabilistic proof that bounds the makespan of a
feasible schedule for the frame; we use the Lovasz Local Lemma to show that for some choice of
random delays for the frame (i.e., taking the operations scheduled in the frame as a new job-shop
instance), the resulting delayed schedule is feasible. When the contention within a frame is too



large, we divide it into subframes and solve the problem recursively. Because of the conditions of
the theorem (i.e., the time a job needs a particular machine is bounded or its operations using
the machine are well-separated) we can argue that the contention in the frames (and subframes) is
adequately small so that the prescribed delays do not enlarge the schedule too much. Qur use of
the Lovdsz Local Lemma is broadly similar to that of [8]. We first recall the lemma:
Lemma 4.1 ([5]) Let Ey, E,, ..., E; be any events with Pr(E;) < p for alli. If each E; is mutually
independent of all but at most d of the other events E; and if ep(d+ 1) < 1, then Pr( le E;)>0.
First, a fairly simple application of the Lovisz Local Lemma;:
Lemma 4.2 There is a constant ¢ > 0 such that for any job-shop scheduling instance and any
B > 2(Pyax+nax), there is a well-structured B-delayed schedule for the instance with the property
that for any machine i and any time t, C(M;,t) < ¢'1og( Prmax + Imax)/ 10810g( Pmax + max)-
Replacing the use of Lemma 3.1 by Lemma 4.2 in our proof of Theorem 1(a), we get
Corollary 4.3 For general job-shop scheduling, there is always a schedule of makespan

i log(Pmax + 1—[max) . " log(mln{m/u’ pma.x}) ])
log log( Prmax + Imax) | 10glog( Pmax + Mmax)

For any positive A, let p(7,k, A) denote Pr(C;r > A) for §&’. The proof technique of Lemma 4.2
directly gives the following lemma.

0] ((Pmax + IImax)

Lemma 4.4 Suppose that
Y1 Vk, p(l, k, /\) S (86(2Pmax + Hmax)Pmameax)_l'

Then there is a 2( Pyax + max)-delayed well-structured schedule 8" of the instance such that when
8" is partitioned into frames of length { (some multiple of pmax), Cik < A for all machines M; and
frames F.
4.1 Proof of Theorem 2(a)
Lemma 4.5 Consider a job-shop instance in which every job needs at most v time units on each
machine. Let 8' be partitioned into frames of size v, where © < v < 2(Pmax + max). Then for any
machine M;, any frame Fy, and any § > 0, p(i,k,v(1+ 6)) < G(v/u, ).

From now on, let ¢ be a suitably large positive constant. We give a recursive scheme to prove
the existential version of Theorem 2(a).
Base Case: u > c¢log(Puax + Hmax)
If 4> > 2(Prax + IImax ), then by Corollary 4.3 the theorem holds. If not, partition &’ into frames
of length v, where v is the smallest multiple of pmayx that is no smaller than u?. Since % > Pmaxs
we have u? < v < u? + u. Fix a machine M; and frame Fy. By Lemma 4.5 and from the fact that

u > clog( Pmax + Imax),
p(i, k,20) < (e/4)* < (e/4)c1o8(Pmaxtilmax)

which can be made at most (8¢(2Pmax + Imax)PmaxIlmax)” " by taking c suitably large. Thus, by
Lemma. 4.4, there is a setting of the delays so that each frame has a maximum machine contention
of at most 2v. Choose such a setting. Now view each of the frames as a job-shop scheduling
problem wherein Pmax and I, have been replaced by at most u? + u and 2(u? 4 u) respec-
tively. Thus, by Corollary 4.3, each frame can independently be made a valid schedule of makespan
0 (u2 . log’lgo’;u . [log(milzglr;’;’sm“})"). Thus, since there are O((Puax + Hmax)/u?) frames, the con-
catenation of these legal schedules gives us a feasible schedule of makespan

log u [bg(min{mu, pmax})-l >
loglog u loglog u ‘

O ((Pmax + Hmax) :

8



Recursive Case: u < clog(Pnax + Dmax)

We use the following fact.

Fact 4.6 If6 € [0,1], then €/ /(1 + §)118) < ¢=8°/3,

We now partition S’ into frames of length v, where v is the smallest multiple of pmax that is no
smaller than c21og®(Pmax + Imax). We have ¢?10g®( Pmax + Imax) < v < ¢? 10g%( Prax + Mmax) +

u < 2¢210g3( Pmax + Ilmax ). Once again, fix M; and F. By Lemma 4.5 and Fact 4.6,

If ¢ is suitably large, Lemma 4.4 ensures that there is a setting of the delays so that each frame
has a maximum machine contention of at most 2¢?1og3( Pmax + Hmax)(1 + 1/1/108( Pmax + Imax))-
Choose such a setting, and view each of the frames as a job-shop problem in which Ppax and
max are replaced by 2¢?10g3( Prax + lmax) and 2¢? 10g>( Pmax + Mmax)(1 + 1/1/108( Prmax + max))
respectively. Recursively make each frame feasible, independently, and concatenate the resulting
schedules to produce a feasible schedule for the original problem.

Finally we analyse the makespan of the final schedule. Let F be a frame constructed at some
~ point in the procedure and let a be the “Ppax + II,.." value of the job-shop instance associated
with F. If F is partitioned in a recursive call and F' is a subframe of F' with “Ppax + II,." value
a, then a’ < 4c?(log® a)(1+1/y/Iog a) and so log(a’) < 3loga+co, where co is a constant depending
on c. Define a sequence ay, as, ..., where a; = 1log(Pmax + Imax), and a;41 = 3loga; + co. Let 7 be
the first index such that u > cloga,. Then the final schedule has makespan

log u log(min{m, pmax}) .
0 ((Pmax+Hmax)'loglogu : I' loglogu " ];[(1_{_0(1/\/(71))) .

Since ay,ar_1,...,a; grows exponentially fast, [[;(1 + O(1/y/a;)) < exp(3; O(1/+/ai)) = O(1),
thus yielding the bound of Theorem 2(a).

4.2 Proof of Theorem 2(b)

We first need an intuitive lemma that is a consequence of the work of [11].

Lemma 4.7 ([11]) Let Xq,..., X, € {0, 1} be random variables such that for any I C [{],
Pr(Aier(Xi = 1)) < Tlier Pr(X = 1); i.e., loosely speaking, the X; are “negatively correlated”.
Then if X = Y; X; with E[X] = p, we have for any 6§ > 0, Pr(X > pu(1+ 6)) < G(p, 6).

Now we prove Theorem 2(b). Suppose that we have a w-separated job-shop scheduling instance with
Pmax = 1. Consider partitioning the random Il ,x-delayed schedule S into frames of length w. Fix a
machine M; and a frame Fi. For each operation O that needs to be done on machine M;, introduce
an indicator variable Xg for the event that this operations is scheduled in Fj on M. Thus, the
contention for M; in Fy is Cix = Yo Xo. Note that E[Ci ] < w. If O and O' are from the same job
then the probability that they are both scheduled on M; in F is zero, due to our given assumption
on w. Furthermore, operations from different jobs are independent. Thus, the variables Xp are
negatively correlated in the sense of Lemma 4.7; hence Pr(C;x > w(1+6)) < G(w,$),for any 6 > 0.
Note that, for a suitably large constant ¢”, we can choose (i) § = ¢ if w > log( Pmax + Mmax)/2, and
(i) 6 = ¢"10g( Pmax + max)/(wlog(1og( Pmax + Mmax)/w)) if w < log(Pmax + Mnax)/2, to ensure
that G(w,8) < (8e(2Pmax + Mmax) PmaxImax)~}. Thus, by Lemma 4.4, there is a setting of the
delays so that each frame has a maximum machine contention of at most w(1 + §). Choose such
a setting, and focus on any frame. Note that every job can have at most one operation on any
machine in this frame, and that all operations are of length one. Thus, by invoking the main result
of [8], each frame can be made feasible with makespan O(w + w(1+6)) = O(w(1 + 6)). We finally
concatenate all the feasible schedules, concluding the proof.
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A Proofs of lemmas

' Convexity. Recall that function f : ® — R is convez in the interval [a, b} if and only for all ¢’ and
b such that a < a’ < b’ < b and for all ¢ € [0,1], f(ga’ + (1 — ¢)b') < ¢f(a’) + (1 - q)f(b").
Lemma A.1 If f is any convez non-decreasing function in the finite interval [a,b] and if X 15 a
random variable taking values only in [a,b] such that E[X] < u, then

BIFC0) < T2 fla) + 52 5(0).

Proof. Since f is convex in [a,b], we have f(z) < {’ﬁf(a) + £=2f(b), for any @ € [a,d]. Thus,
since X is distributed in [a, b], we have

D7 X )+ 2200, (1)

b—a b—a

f(X) <

The proof is completed by taking expectations on both sides of (1), and noting that f(b) > f(a).
O

Corollary A.2 Let f be any convez non-decreasing function in the finite interval [a,b]. Suppose
T1,T2,...,&¢ are such that for each i, z; € [a,b] and 3 ;x; < ¢, then

14

b—c c—{a
b—a

f(0).

) <

Z flzi) < 4
t

Proof.  This follows immediately from Lemma A.l by taking X to be the uniform distribution

over the the multiset {z1,z2,...,Z¢}. -

A.1 Proof of Fact 2.1

By Lemma A.1 and the convexity of f(z) = (1+ 6)%, E{[(1+ 6)X‘] <1-E[X]+(1+6EX]=
1+ 6E[X;] < ¢®ElXi] The fact then follows from the independence of X7, ..., Xe.

A.2 Proof of Lemma 3.1

Let B = 2., and let S be a padded random B-delayed schedule of the new instance. S has a
makespan of at most 2(Pmax + IImax). Let S’ be the well-structured random B-delayed schedule
for the original instance that can be constructed from &, as described in Section 2. The contention
on any machine at any time under S’ is clearly no more than under S. Thus &' satisfies (a) and
(b) with high probability since, by the following, S does.

Part (a). The following proof is based on that in [14]. For any positive integer k, and any M;,

2Hmax

Pr(C(M;,t) > k foranyt) < ( L

)(1/(2Hrm))’°‘1 < 2 max/ k.

But Mnax < MfPmax, Which by our assumptions is poly(m, 1) (recall that the reductions of Section 2
ensure that n and pmax are both at most poly(m,u)). Since [a]! > (mpu)t/? for sufficiently large
m or ju, we can satisfy (a) with high probability if we choose ¢; sufficiently large.

11



Part (b). Let v = fe¢/4, where € is the desired constant in the probability bound. Let the
constant ¢, in the definition of § be sufficiently large so that v > 1. Fix any M; and ¢, and let
A= E[C(M;,t)]. (By Fact 2.3, A < 1.) By Fact 2.1, with 1 + 6 = v,

E[yCMit)] < (r=1A < (v=1),

Hence, for any given ¢,
Ey°0W) < 37 By M) < men (2)
1€[m]

Since the function z — <% is convex, by Jensen’s inequality we get that E[fyc(‘)] > ECO)]

If we choose c, sufficiently large then v > me”™! and so, by (2), E[C(t)] < 7. By linear-
ity of expectation, E[}, C(t)] < 47(Pmax + IImax) and finally, by Markov’s inequality, we have
Pr(3, C(t) > B(Prmax + Imax)) < 47/B = €.

A.3 Proof of Lemma 4.2

As in the proof of Lemma 3.1, it will suffice for us to prove the bounds for the padded schedule S;
these will immediately extend to the well-structured schedule §&’. We will take up this approach in
proving Lemmas 4.2 and 4.5.

Assign the delays randomly and let E;; be the event

C(M;,t) > 'log( Prnax + Mmax)/ 10g10g( Pmax + Imax)s

and E; be the event that for some ¢, E;; occurs.

As in the proof of Lemma 2 part (a), we can show that the probability of E; is at most
1/(4€PmaxIlmax) by taking ¢’ as a suitably large constant. As [8] observed, the contention pat-
tern of any machine M; is independent of (any function of) the contention patterns of all the
machines My such that 3M; and My have no common job that uses both. Thus, since there are at
most 21 ,ax jobs that need M; and since each of them can use at most 2Py, — 1 other machines,
the “dependency” among the set of events {E; : ¢ € [m]}, in the sense of Lemma 4.1, is at most

2 ax(2Pmax — 1) < 4PnaxImax — 1. This shows that Pr(AZ; E;) > 0 by an invocation of the
Lovasz Local Lemma.

A.4 Proof of Lemma 4.5

Let X(4,7,k) be the random variable denoting the total amount of processing time of job J; on
machine M; in time frame F;. Let z, ; denote the total amount of processing that J; needs on M;,

in the given job-shop instance. Then
ViViVk, E[X(7,7,k)] < 2 j/2( Pmax + IImax); also, 0 < X(4,5,k) < 255 < u.

Thus, for any v > 0, Lemma A.l shows that

Lexp(vyz; ;) £ < exp(f(eXp(vxi’j) — 1)) (3)

E X(i,7,k))] < 1-—
[exp(ﬂy (Z’]’ ))] - 2(Pmax + Hmax) * 2(-Pmax + Hmax) o 2(Ijmax + Hmax)

Fix M; and Fi. Note that the random variables {X (¢,7,k): j € [j]} are mutually independent,
and that Cix = 32; X (i,7,k). Thus we have, for A = {(1 + 6) and any v > 0,

p(i,k,A)exp(yA) < Elexp(yCik)] (by Markov’s inequality)

12



I

] Elexp(vX (3, 5, ))]

J

14
2(Pma,x + Hmax)

> (exp(yziy) - 1)), (4)

J

by (3). Since 0 < z; ; < u and since ) ; z;; < 2(Pmax + IImax), Corollary A.2 shows that

S (exp(y2ij) — 1) < (2(Prmax + Mmax)/u)(exp(yu) — 1).

J

Thus, by (4), we see that

< exp(

ik, 1L+ ) < exp(=72(1 + &) + (exp(yu) ~ 1))

Choosing v = In(1 + é)/u > 0, we get the claimed bound on p(i, k,£(1+ 6)).

B Derandomisation and parallelisation

Note that all portions of our algorithm are deterministic, except for the setting of the initial random
delays, which we show how to derandomise now. The sequential derandomisation (which we omit
in this version) is a simple application of the method of conditional probabilities to the probabilistic
argument of Lemma 3.1. In any case, it will follow from the NC algorithm that we now present.
As said before, we assume without loss of generality that ppax is at most poly(m, ) and at most
poly(n, i), for our sequential and parallel algorithms respectively. We begin with a technical lemma.
Lemma B.1 Let 1, 29,...,%¢ be non-negative integers such that 3, x; = La, for some a > 1. Let
k be any positive integer such that k < a. Then,

% (1)=210)

Proof.  For real z, we define, as usual, (}) = (z(z —=1)---(z — k + 1))/k!. We first verify that
the function f(z) = ({) is non-decreasing and convex for = > k, by a simple check that the first
and second derivatives of f are non-negative for z > k. Think of minimising Y_; (%) subject to the
given constraints. If z; < (k — 1) for some i, then there should be an index j such z; > (k+1),
since }_; z; > £k. Thus, we can lessen the objective function by simultaneously setting z; := @; + 1
and z; := z; — 1. Hence we may now assume that all the integers z; are at least k. Now, by the

convexity of f for z > k, we see that the objective function is at least S () O

Define, for z = (z1,23,...,2,) € R, a family of symmetric polynomials S;(z),;7 = 0,1,...,n,

where Sp(2) = 1, and for 1 < 7 < n, S;(2) = El§i1<i2~--<ij5n Ziy Ziy - Zi;. We now recall one of the
main results of [1] (this is not explicitly presented in [1], but is an obvious corollary of the results
of Section 4 in [1]).
Proposition B.2 ([1]) Suppose we are given m independent random variables yi,...,ym, each of
which takes values uniformly in R = {0,1,...,2% — 1} where b = O(log N); N here is a parameter
that roughly stands for “input length”, and m = N O Suppose we are also given, for each j € [m],
a finite set of binary random variables {z;; : t = 1,2,...} where z; is 1 iff y; lies in some fized
subset Rj, of R. Also given are r random variables

U; = sz,f(i,j)’ i€ [r],
1=1
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where f is some arbitrary given function. Now if E[U;] < 1 for each i, then given any positive integer
k such that k = O(log N), we can find, deterministically using NOM) processors and O(logo(l) N)
time on the EREW PRAM, a setting y1 := Wy, ..., Ym ‘= Wy Such that

Z Sk(zl,f(i,l)’ ey Zm,f(i,m)) S T‘G(]., k- 1)(1 + N_C),
i€[r]

for any desired constant ¢ > 0.

In our setting, the random variables y; are the initial random choices of the machines. It is
easy to verify that each random variable C(M;,t) is of the form of some U; in the notation of
Proposition B.2. Now, by giving the initial random delays in the range {0,1,...,2ax } instead of
from {0,1,..., 2 Lax— 1}, we can ensure the condition E[U;] < 1 of Proposition B.2 (E[C(M;,t)] <
2 max/ (2l max + 1) now). Let o and § be as in Lemma 3.1, and note that both are logarithmically
bounded in the length of the input, as required for the parameter k in Proposition B.2. Let the
random variables X, ;, be as in Fact 2.3. From the proof of part (a) of Lemma 3.1, we see that
31 G(1, — 1) is smaller than 1; thus, by Proposition B.2, we can find a setting @ for the initial
delays in NC such that

3 Sa(Xine Xigr - Xing) < 1. (5)
1t

Now, if the congestion of some machine M; at some t were at least a due to the above setting of
the initial delays to @, then the left-hand-side of (5) would be at least 1, contradicting (5). Thus,

we have an NC derandomisation of Theorem 1(a).
As for Theorem 1(b), we can similarly find an NC assignment of initial delays & such that

Z S,B(Xi,l,thiJ,t’ .. -aXi,n,t) < O((Pmax + Hmax)mG(lwg - 1)) = O((Pmax + Hmax))' (6)
1t
Let C(t) be the (deterministic) maximum contention at time t, due to this setting. Note that

C(t
( é)> < ZSB(Xi,l,t,XtZ,tv"’Xiv"vt)'

Thus, by (6), we see that

Z (Cét)> = O((Pmax + Hmax))-

We now invoke Lemma B.1 to conclude that 3, C(#) = O((Pmax + IImax)8); thus, we have an NC
derandomisation of Theorem 1(b).
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