DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://Aww.dit.unitn.it

FINDING 1-FACTORSIN BIPARTITE REGULAR GRAPHS,
AND EDGE-COLORING BIPARTITE GRAPHS

Romeo Rizzi

April 2002

Technical Report # DIT-02-0038

Finding 1-factors in bipartite regular graphs, and edge-coloring
bipartite graphs

Romeo Rizzi*

April 25, 2002

Dipartimento di Informatica e Telecomunicazioni, Universita di Trento
via Sommarive 14, 38050 Povo, Italy
romeo@science.unitn.it

Abstract

This paper gives a new and faster algorithm to find a 1-factor in a bipartite A-regular
graph. The time complexity of this algorithm is O(nA + nlognlogA), where n is the
number of nodes. This implies an O(nlognlogA + mlogA) algorithm to edge-color a
bipartite graph with n nodes, m edges and maximum degree A.

Key words: time-tabling, edge-coloring, perfect matching, regular bipartite graphs.

1 Introduction

Let G be a bipartite regular graph. A celebrated result of K&nig [5] (see [6] for a compact
proof) states that G can be factorized, that is, E(G) can be decomposed as the union of edge-
disjoint 1-factors. (A 1-factor is simply another way to say perfect matching). Any bipartite
matching algorithm can thus be employed to find a 1-factor in G and hence to factorize G.
However, there exist faster methods exploiting the regularity of G. Cole and Hopcroft [1]
gave an O(nA + nlognlog? A) algorithm to find a 1-factor in a A-regular bipartite graph
with n nodes. Schrijver [7] gave an O(nA?) algorithm for the same problem. Depending
on the relative values of A and n, either algorithm gives the best-so-far proven worst-case
asymptotic bound. We do not know of any randomized algorithm with better bounds.

In Section 2, we give an O(nA + nlognlog A) deterministic algorithm, thus improving
the bound on the side of Cole and Hopcroft’s.

Let G be a bipartite graph (possibly not regular) with n nodes, m edges and maximum
degree A. An edge-coloring of G assigns to each edge of G one of A possible colors so that
no two adjacent edges receive the same color. By a simple reduction, the above cited result
of Kénig [5] implies that every bipartite graph admits an edge-coloring. Kapoor and Rizzi [4]
gave an algorithm to edge-color G in T, ,, A + O(mlog A) time, where T}, ;, A is the time
needed to find a 1-factor in a d-regular bipartite graph with O(m) edges, O(n) nodes and

*Research carried out with financial support of the project TMR-DONET nr. ERB FMRX-CT98-0202 of
the European Community and partially supported by a post-doc fellowship by the “Dipartimento di Matem-
atica Pura ed Applicata” of the University of Padova

d < A. Motivated by this result, we investigated Cole and Hopcroft’s 1-factor algorithm for
possible improvements. This effort culminated in the new and faster 1-factor procedure given
in this paper. Combining this 1-factor procedure with the edge-coloring algorithm given in [4]
we can edge-color G in O(nlognlog A + mlogA) time.

2 The Algorithm

Our graphs have no loops but possibly have parallel edges. A graph without parallel edges
is said to be simple. The support of a graph G is a simple graph G with V(G) = V(G) and
such that two nodes are adjacent in G if and only if they are adjacent in G. The input of our
algorithm is a bipartite A-regular graph Gy with n nodes and m = SA edges. We encode a
graph G by giving its support G and by specifying for every edge uv of G the number g[uv]
of edges in G having u and v as endnodes. The number g[uv] is a positive integer, called
the multiplicity of edge uv in G. Throughout the following, we should keep in mind that the
proposed algorithms deal with graphs by actually manipulating supports and multiplicities.

In general, whenever X’ denotes a graph, then X stands for the support of X and z for the
multiplicities’ vector of X. Even if no value z[uv] = 0 is stored explicitly by the algorithm,
we will consider z[uv] to be 0 when u and v are not adjacent in X'. All graphs considered are
restricted to have the same node set V', namely V = V(Gy). The sum G + H of two graphs
G and H is the graph S with s = g + h (componentwise). The maximum degree of a node in
a graph H is denoted by A(#). Throughout the whole algorithm the value A will also be a
constant and stands for A(Gp).

We say that graph G contains graph H when E(H) C E(G). When G contains H (in
short # C G) and H contains a 1-factor then G also contains a 1-factor. Our algorithm will
modify the input graph Gy thus determining a sequence Gy, Gy, ... of graphs. Each graph
in the sequence will be contained in the previous one and all graphs will be regular. The
support of the last graph in the sequence will be a 1-factor.

A graph G is said to be sparse if |[E(G)| < 2nlog A. For our manipulations to be performed
efficiently it will be crucial to assume we are working on sparse graphs. Thus a first phase of
our algorithm will have to make Gy sparse. Subsection 2.1 describes a preprocessing algorithm
to sparsify Gy. This preprocessing algorithm was first proposed by Cole and Hopcroft in [1].
Here we prefer to describe it in some more detail.

2.1 Why we assume G, to be sparse: the preprocessing phase

Cole and Hopcroft [1] proposed the following method to obtain a sparse A-regular graph H
contained in a A-regular graph G. The method takes O(m) time.

Obviously gle] < A for every e € E(G). Let k = [log A|+1 and let g[e]y, - - - , gle]), glelo
be the binary encoding of g[e]. This means that gle] = Y, glelp - 2!, Fori=0,1,...,k
define the edge-set

Ei(G) ={e € E(G) : glel; =1}
For example, Ey(G) is the set of edges having odd multiplicity in G.

Start with H = G. When each E;(H) is acyclic, then |E;(H)| < nfori=1,...,k, hence H
is sparse. The idea is to first make Ey(H) acyclic, then F;(#), and so on, until Ex(#). Let C

be a cycle contained in E;(#H) with 7 as small as possible. Let M7, M, be two matchings such
that C = M;UMy. Then by setting h[e] < h[e] —2 for every edge e in M; and hle] < hle]+2°
for every edge e in My we do not affect any of Ey(H), E1(H), ..., Er—1(H) but reduce |E;(H)|
by |C|. Note that this manipulation preserves the A-regularity of . Moreover the graph
produced by the manipulation will be contained in the one it has been obtained from. This
preprocessing algorithm can be implemented to run in time O (m+ 2+ +...) = O(m).
We close this subsection with two more implementational subtleties.

1. After setting hle] < hle] — 2" we check if hle] < 2'. If this is the case then e ¢ Ej
for any 7 > 7 and edge e is removed from the “working input graph” and is placed in the
“definitive graph”. The “definitive graph” is output when the procedure terminates.

2. The search for circuit C' is done as follows. Starting from a node v, construct a depth-
first search tree T' and when a circuit C' is detected, then all nodes of the tree but not in C
which have a node of C' as ancestor are guaranteed not to belong to any circuit in E;(#), so we
discard them and free the nodes in V(C) after performing the above described manipulation.
All the other nodes remain in the tree. When T is completed then we can discard all nodes
in V(T) and construct a new depth-first search tree starting from any (not-yet-discarded)
node. When no node is left, then FE; is acyclic.

2.2 Why we assume A to be odd: Procedure EulerSplit

The reduction given in this subsection dates back to Gabow [2].

A graph G is called Fulerian when every node has even degree in G. We first describe
a basic procedure, called FulerSplit, which, given as input an Eulerian graph G, returns a
graph H with h < g (componentwise) and such that for every node v € V' the degree of v in
G is twice the degree of v in H. From the following description, Procedure FulerSplit can be
implemented as to take O(nlog A) time, when G is sparse.

Decompose G as G, + G,, where GG, contains precisely those edges of G which have odd
multiplicity in G. Since G is Eulerian, then G, is Eulerian. By orienting the edges of G, in
the direction they are traversed by an Euler tour we find an orientation of G, such that the
i_r>1-degree equals the out-degree for every node. Now we decompose G, as 50 + 80, where

G, contains precisely those edges of G, which have been oriented as to go from, let say, the
“left” side of the bipartition to the “right” side. Consider the graph # contained in G and
such that

hle] = [%J if e is an edge of (C_,‘o
hle] = 99 if e is an edge of G,

hle] = [%-‘ if e is an edge of a*o

Note that h < g and for every node v € V the degree of v in G is twice the degree of v in H.
The reason why we can always assume A to be odd is the following procedure.

Procedure 1 MAKEODD (G) (precondition: G is regular)
1. if A(G) is odd then return G;
2. else return MakeOdd(EulerSplit(G)).

2.3 Procedure Split and taking complements

Our algorithm calls Procedure Split, an important operation due to Cole and Hopcroft [1].

A graph S is a slice of a graph G when s < g. Slice § is big when |E(G)| < 2|E(S)|-
For k > 1, slice S is a (k,k + 1)-slice if each node v € V has degree either k or k£ + 1 in
S. We denote by odd(S) the set of those nodes having odd degree in S. The complement
of a (k,k + 1)-slice S in G is the unique graph 7 such that S +7 = G. Note that 7 is a
(A —k—1,A — k)-slice. Moreover, when A is odd, then odd(T) = V' \ 0odd(S). When G is
sparse, the complement can be computed in O(nlogA) time.

Procedure Split takes as input a (k,k + 1)-slice S of G and returns an (h,h + 1)-slice
S’ of G with |odd(S")| < w. The computation of &' = Split(S;G) is accomplished as
follows. Decompose S as S, + S,, where S, contains precisely those edges of S which have
odd multiplicity in S. Orient the edges of S, so that for every node the in-degree differs from
the out-degree by at most 1. When G is sparse, this can be done in O(nlog A) time by for
example adding some artificial edges to S, as to make it Fulerian and then proceeding as in
Subsection 2.2. Decompose S, as §,, + §,, as explained in Subsectlon 2. 2 Let w be the odd
value in {k,k + 1}. If w = k then let S,"? be a big slice of S, 1n {SO, SO} and let S,%°vn

be the other slice. Otherwise let S,%“™ be a big slice of S, in { So, o} and let S,*P be the
other slice. Consider the graph P contained in § and such that

ple] = [%-I if e is an edge of S,“P

ple] = 19 if e is an edge of S
2) ple] = [#J if e is an edge of S,%°v"

Ifw=%k+1then Pis a (%,% + 1)-slice where at most w nodes have degree % + 1.

Therefore, if E + 1 is odd then &' = P will work and otherwise we will take as S’ the
complement of P. If w =k then P isa (’H'1 , k+1) slice where at most M nodes have
degree k"'l Therefore, if k42—1 is odd then &' = P will work and otherwise we w111 take as &’

the complement of P. Note that, when G is sparse, then Split requires O(nlog A) time.

2.4 The algorithm of Cole and Hopcroft

The following pseudo-code describes a simplified version! of Cole and Hopcroft’s algorithm [1].

Algorithm 2 COLE_HOPCROFT (Gy) (precondition: G is A-regular)
1. G+ MakeOdd(Gy);
2. while G is not a 1-factor invariant: G C Gy is regular with A(G) odd
3. S+ G;
4. do S« Split(S;G);
5. while odd(S) is not empty; invariant®: S is a (k, k4 1)-slice of G
6. G <+ MakeOdd(S);
7. return G.

'in the original version step 6. assigns to G the complement of S in G, in case S is a big slice of G.

Loop 4-5, when entered, cycles O(logn) times, since odd(S) is at least halved each time.
Loop 2-6, when entered, cycles O(log A) times, since A(G) is at least halved each time. All
operations involved in loop 2-6, except MakeOdd, cost O(nlogA), since by Section 2.1 we
can assume that Gy is sparse. Since FulerSplit is executed O(log A) times, the total time
spent in MakeOdd over the whole execution of the algorithm is O(nlog? A). Hence Cole and
Hopcroft’s algorithm is O(nA + nlognlog? A).

2.5 Our starting point: Procedure Starter

Our starting point is essentially the inner loop in Cole and Hopcroft’s algorithm. We have
just shown its cost to be O(nlognlog A) for sparse input graphs. Here we assume A to be
odd.

Procedure 3 STARTER (G) (precondition: G is A-regular and A is odd)
1. S« G;
2. do 8§« Split(S;G);
3. while o0dd(S) is not empty; invariant’: S is a (k, k + 1)-slice of G
4. return S.

The output S of Procedure Starter is a d-regular graph contained in G. A crucial property
about § and G is that § and A are coprime, that is, the only integer which divides both is 1.
Indeed, regarding G as a (A — 1, A)-slice of G, then § = Split(G;G) is a (%, %)—slice of
G, that is, a (k, k + 1)-slice where both k and k + 1 are coprime with A. A second invariant?
of loop 2-3 in Procedure Starter is that the even value among k and k + 1 is coprime with
A. In fact, g.c.d.(a,b) = g.c.d.(a,a — b) (taking complement) and g.c.d.(a,2b) = g.c.d.(a,b),
assuming that a is odd.

The next subsection describes an algorithm, which given as input a A-regular graph G
and a d-regular graph S, returns a regular graph F with f < g+ s and A(F) = g.c.d.(A;6)
in O((|E(G)| + |E(S)|)log® A) time. In our case s < g and g.c.d.(A,§) = 1, hence a 1-factor
of G is returned. Moreover |E(S)| < |E(G)| = O(nlog A) and the time bound is O(nlog® A).
This term is dominated by the O(m) cost of the preprocessing phase.

2.6 Computing the g.c.d. by sums and shiftings

When a and b are two positive integers we denote by g.c.d.(a,b) the greatest common divisor

of a and b. When both a and b are even then g.c.d.(a,b) = 2g.c.d. (%, %) This section
considers an algorithm to compute g.c.d.(a,b) when at least one of a and b is odd. The
procedure is allowed to use the following operations: dividing an even by 2 (this corresponds
to EulerSplit and costs O(nlog A)), testing evenness, summing two integers (the sum of two
graphs also costs O(nlogA)), and comparing two integers (greater, less, or equal?). The
procedure goes as follows: When one of the two numbers is even then we divide it by 2

and the g.c.d. does not change since the other number is odd. So both numbers are odd.

2second invariant: A is coprime with the even value among k and k + 1.

Therefore their sum o is even and if we substitute the biggest of the two numbers by & the
g.c.d. does not change. Eventually the two numbers will be equal. But now g.c.d.(a,a) = a.

We now show that the above procedure® uses O(log?(a + b)) operations. This is because
each time J is even then o actually decreases at least by a factor of %, and when £ is odd

2
then |b — a| decreases at least by a factor of 2, while o is never increased.

Here is the algorithm promised in the end of the previous subsection:

Algorithm 4 G.C.D. (G, S) (precondition: G and S are regular)

1. G+ MakeOdd(G); S+ MakeOdd(S);

2. while A(G) # A(S)

3. by eventually exchanging G and S, assume A(G) > A(S);
4 G < MakeOdd(G + S).

Acknowledgments

I thank the referee for the detailed feedback he has given.

References

[1] R. Cole, J. Hopcroft, On edge coloring bipartite graphs, SIAM Journal on Computing
11 (1982) 540-546.

[2] H.N. Gabow, Using Euler partitions to edge color bipartite multigraphs, International
J. Computer and Information Sciences 5 (1976) 345-355.

[3] H.N. Gabow, O. Kariv, Algorithms for edge coloring bipartite graphs and multigraphs,
SIAM Journal on Computing 11 (1982) 117-129.

[4] A. Kapoor and R. Rizzi, Edge-coloring bipartite graphs, Journal of Algorithms 34 (2)
(2000) 390-396.

[5] D. Kénig, Graphok és alkalmazisuk a determindnsok és a halmazok elméletére [Hungar-
ian], Mathematikai és Természettudomdnyi Ertesito 34 (1916) 104-119.

[6] R. Rizzi, Kénig’s Edge Coloring Theorem without augmenting paths, Journal of Graph
Theory 29 (1998) 87.

[7] A. Schrijver, Bipartite edge-colouring in O(Am) time, STAM Journal on Computing 28
(3) (1999) 841-848.

3a deeper analysis of a related and similar procedure is given in [4]

