

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14 http://www.dit.unitn.it

FINDING 1-FACTORS IN BIPARTITE REGULAR GRAPHS, AND EDGE-COLORING BIPARTITE GRAPHS

Romeo Rizzi

April 2002

Technical Report # DIT-02-0038

Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite graphs

Romeo Rizzi*

April 25, 2002

Dipartimento di Informatica e Telecomunicazioni, Università di Trento via Sommarive 14, 38050 Povo, Italy romeo@science.unitn.it

Abstract

This paper gives a new and faster algorithm to find a 1-factor in a bipartite Δ -regular graph. The time complexity of this algorithm is $\mathcal{O}(n\Delta + n\log n\log \Delta)$, where n is the number of nodes. This implies an $\mathcal{O}(n\log n\log \Delta + m\log \Delta)$ algorithm to edge-color a bipartite graph with n nodes, m edges and maximum degree Δ .

Key words: time-tabling, edge-coloring, perfect matching, regular bipartite graphs.

1 Introduction

Let G be a bipartite regular graph. A celebrated result of Kőnig [5] (see [6] for a compact proof) states that G can be factorized, that is, E(G) can be decomposed as the union of edge-disjoint 1-factors. (A 1-factor is simply another way to say perfect matching). Any bipartite matching algorithm can thus be employed to find a 1-factor in G and hence to factorize G. However, there exist faster methods exploiting the regularity of G. Cole and Hopcroft [1] gave an $\mathcal{O}(n\Delta + n\log n\log^2 \Delta)$ algorithm to find a 1-factor in a Δ -regular bipartite graph with n nodes. Schrijver [7] gave an $\mathcal{O}(n\Delta^2)$ algorithm for the same problem. Depending on the relative values of Δ and n, either algorithm gives the best-so-far proven worst-case asymptotic bound. We do not know of any randomized algorithm with better bounds.

In Section 2, we give an $\mathcal{O}(n\Delta + n \log n \log \Delta)$ deterministic algorithm, thus improving the bound on the side of Cole and Hopcroft's.

Let G be a bipartite graph (possibly not regular) with n nodes, m edges and maximum degree Δ . An edge-coloring of G assigns to each edge of G one of Δ possible colors so that no two adjacent edges receive the same color. By a simple reduction, the above cited result of Kőnig [5] implies that every bipartite graph admits an edge-coloring. Kapoor and Rizzi [4] gave an algorithm to edge-color G in $T_{n,m,\Delta} + \mathcal{O}(m \log \Delta)$ time, where $T_{n,m,\Delta}$ is the time needed to find a 1-factor in a d-regular bipartite graph with $\mathcal{O}(m)$ edges, $\mathcal{O}(n)$ nodes and

^{*}Research carried out with financial support of the project TMR-DONET nr. ERB FMRX-CT98-0202 of the European Community and partially supported by a post-doc fellowship by the "Dipartimento di Matematica Pura ed Applicata" of the University of Padova

 $d \leq \Delta$. Motivated by this result, we investigated Cole and Hopcroft's 1-factor algorithm for possible improvements. This effort culminated in the new and faster 1-factor procedure given in this paper. Combining this 1-factor procedure with the edge-coloring algorithm given in [4] we can edge-color G in $\mathcal{O}(n \log n \log \Delta + m \log \Delta)$ time.

2 The Algorithm

Our graphs have no loops but possibly have parallel edges. A graph without parallel edges is said to be *simple*. The *support* of a graph \mathcal{G} is a simple graph G with $V(G) = V(\mathcal{G})$ and such that two nodes are adjacent in G if and only if they are adjacent in G. The input of our algorithm is a bipartite Δ -regular graph G0 with G0 nodes and G1 nodes. We encode a graph G2 by giving its support G3 and by specifying for every edge G2 nodes. We encode a fedges in G3 having G3 nodes. The number G3 number G4 number G5 number G6 number G6 number G6 number G7 number G8 number G9 numb

In general, whenever \mathcal{X} denotes a graph, then X stands for the support of \mathcal{X} and x for the multiplicities' vector of \mathcal{X} . Even if no value x[uv] = 0 is stored explicitly by the algorithm, we will consider x[uv] to be 0 when u and v are not adjacent in \mathcal{X} . All graphs considered are restricted to have the same node set V, namely $V = V(\mathcal{G}_0)$. The $sum \mathcal{G} + \mathcal{H}$ of two graphs \mathcal{G} and \mathcal{H} is the graph \mathcal{S} with s = g + h (componentwise). The maximum degree of a node in a graph \mathcal{H} is denoted by $\Delta(\mathcal{H})$. Throughout the whole algorithm the value Δ will also be a constant and stands for $\Delta(\mathcal{G}_0)$.

We say that graph \mathcal{G} contains graph \mathcal{H} when $E(H) \subseteq E(G)$. When \mathcal{G} contains \mathcal{H} (in short $\mathcal{H} \subseteq \mathcal{G}$) and \mathcal{H} contains a 1-factor then \mathcal{G} also contains a 1-factor. Our algorithm will modify the input graph \mathcal{G}_0 thus determining a sequence $\mathcal{G}_0, \mathcal{G}_1, \ldots$ of graphs. Each graph in the sequence will be contained in the previous one and all graphs will be regular. The support of the last graph in the sequence will be a 1-factor.

A graph \mathcal{G} is said to be sparse if $|E(G)| \leq 2n \log \Delta$. For our manipulations to be performed efficiently it will be crucial to assume we are working on sparse graphs. Thus a first phase of our algorithm will have to make \mathcal{G}_0 sparse. Subsection 2.1 describes a preprocessing algorithm to sparsify \mathcal{G}_0 . This preprocessing algorithm was first proposed by Cole and Hopcroft in [1]. Here we prefer to describe it in some more detail.

2.1 Why we assume \mathcal{G}_0 to be sparse: the preprocessing phase

Cole and Hopcroft [1] proposed the following method to obtain a sparse Δ -regular graph \mathcal{H} contained in a Δ -regular graph \mathcal{G} . The method takes $\mathcal{O}(m)$ time.

Obviously $g[e] \leq \Delta$ for every $e \in E(G)$. Let $k = \lfloor \log \Delta \rfloor + 1$ and let $g[e]_{[k]}, \ldots, g[e]_{[1]}, g[e]_{[0]}$ be the binary encoding of g[e]. This means that $g[e] = \sum_{i=0}^k g[e]_{[i]} \cdot 2^i$. For $i = 0, 1, \ldots, k$ define the edge-set

$$E_i(\mathcal{G}) = \{e \in E(G) : g[e]_{[i]} = 1\}$$

For example, $E_0(\mathcal{G})$ is the set of edges having odd multiplicity in \mathcal{G} .

Start with $\mathcal{H} = \mathcal{G}$. When each $E_i(\mathcal{H})$ is acyclic, then $|E_i(\mathcal{H})| < n$ for i = 1, ..., k, hence \mathcal{H} is sparse. The idea is to first make $E_0(\mathcal{H})$ acyclic, then $E_1(\mathcal{H})$, and so on, until $E_k(\mathcal{H})$. Let C

be a cycle contained in $E_{\bar{\imath}}(\mathcal{H})$ with $\bar{\imath}$ as small as possible. Let M_1, M_2 be two matchings such that $C = M_1 \cup M_2$. Then by setting $h[e] \leftarrow h[e] - 2^{\bar{\imath}}$ for every edge e in M_1 and $h[e] \leftarrow h[e] + 2^{\bar{\imath}}$ for every edge e in M_2 we do not affect any of $E_0(\mathcal{H}), E_1(\mathcal{H}), \ldots, E_{\bar{\imath}-1}(\mathcal{H})$ but reduce $|E_{\bar{\imath}}(\mathcal{H})|$ by |C|. Note that this manipulation preserves the Δ -regularity of \mathcal{H} . Moreover the graph produced by the manipulation will be contained in the one it has been obtained from. This preprocessing algorithm can be implemented to run in time $\mathcal{O}\left(m + \frac{m}{2} + \frac{m}{4} + \ldots\right) = \mathcal{O}(m)$. We close this subsection with two more implementational subtleties.

- 1. After setting $h[e] \leftarrow h[e] 2^{\bar{\imath}}$ we check if $h[e] < 2^{\bar{\imath}}$. If this is the case then $e \notin E_j$ for any $j > \bar{\imath}$ and edge e is removed from the "working input graph" and is placed in the "definitive graph". The "definitive graph" is output when the procedure terminates.
- 2. The search for circuit C is done as follows. Starting from a node v_o construct a depth-first search tree T and when a circuit C is detected, then all nodes of the tree but not in C which have a node of C as ancestor are guaranteed not to belong to any circuit in $E_{\bar{\imath}}(\mathcal{H})$, so we discard them and free the nodes in V(C) after performing the above described manipulation. All the other nodes remain in the tree. When T is completed then we can discard all nodes in V(T) and construct a new depth-first search tree starting from any (not-yet-discarded) node. When no node is left, then $E_{\bar{\imath}}$ is acyclic.

2.2 Why we assume Δ to be odd: Procedure *EulerSplit*

The reduction given in this subsection dates back to Gabow [2].

A graph \mathcal{G} is called *Eulerian* when every node has even degree in \mathcal{G} . We first describe a basic procedure, called *EulerSplit*, which, given as input an Eulerian graph \mathcal{G} , returns a graph \mathcal{H} with $h \leq g$ (componentwise) and such that for every node $v \in V$ the degree of v in \mathcal{G} is twice the degree of v in \mathcal{H} . From the following description, Procedure *EulerSplit* can be implemented as to take $\mathcal{O}(n \log \Delta)$ time, when \mathcal{G} is sparse.

Decompose G as $G_e + G_o$, where G_o contains precisely those edges of G which have odd multiplicity in G. Since G is Eulerian, then G_o is Eulerian. By orienting the edges of G_o in the direction they are traversed by an Euler tour we find an orientation of G_o such that the in-degree equals the out-degree for every node. Now we decompose G_o as $G_o + G_o$, where G_o contains precisely those edges of G_o which have been oriented as to go from, let say, the "left" side of the bipartition to the "right" side. Consider the graph H contained in G and such that

$$h[e] = \frac{g[e]}{2}$$
 if e is an edge of G_e
$$\begin{cases} h[e] = \left\lfloor \frac{g[e]}{2} \right\rfloor & \text{if } e \text{ is an edge of } \overrightarrow{G}_o \\ h[e] = \left\lceil \frac{g[e]}{2} \right\rceil & \text{if } e \text{ is an edge of } \overrightarrow{G}_o \end{cases}$$

Note that $h \leq g$ and for every node $v \in V$ the degree of v in \mathcal{G} is twice the degree of v in \mathcal{H} . The reason why we can always assume Δ to be odd is the following procedure.

Procedure 1 Makeodd (\mathcal{G}) (precondition: \mathcal{G} is regular)

- 1. if $\Delta(\mathcal{G})$ is odd then return \mathcal{G} ;
- 2. else return $MakeOdd(EulerSplit(\mathcal{G}))$.

2.3 Procedure Split and taking complements

Our algorithm calls Procedure Split, an important operation due to Cole and Hopcroft [1].

A graph S is a slice of a graph G when $s \leq g$. Slice S is big when $|E(G)| \leq 2|E(S)|$. For $k \geq 1$, slice S is a (k, k+1)-slice if each node $v \in V$ has degree either k or k+1 in S. We denote by odd(S) the set of those nodes having odd degree in S. The complement of a (k, k+1)-slice S in G is the unique graph T such that S + T = G. Note that T is a $(\Delta - k - 1, \Delta - k)$ -slice. Moreover, when S is odd, then $odd(T) = V \setminus odd(S)$. When S is sparse, the complement can be computed in $O(n \log \Delta)$ time.

Procedure Split takes as input a (k, k+1)-slice S of G and returns an (h, h+1)-slice S' of G with $|odd(S')| \leq \frac{|odd(S)|}{2}$. The computation of S' = Split(S; G) is accomplished as follows. Decompose S as $S_e + S_o$, where S_o contains precisely those edges of S which have odd multiplicity in S. Orient the edges of S_o so that for every node the in-degree differs from the out-degree by at most 1. When G is sparse, this can be done in $O(n \log \Delta)$ time by for example adding some artificial edges to S_o as to make it Eulerian and then proceeding as in Subsection 2.2. Decompose S_o as $S_o + S_o$ as explained in Subsection 2.2. Let $S_o = S_o + S_o = S_o + S_o + S_o = S_o + S_o +$

$$p[e] = \frac{s[e]}{2} \quad \text{if } e \text{ is an edge of } S_e \qquad \left\{ \begin{array}{l} p[e] = \left\lceil \frac{s[e]}{2} \right\rceil & \text{if } e \text{ is an edge of } S_o{}^{up} \\ p[e] = \left\lceil \frac{s[e]}{2} \right\rceil & \text{if } e \text{ is an edge of } S_o{}^{down} \end{array} \right.$$

If w=k+1 then \mathcal{P} is a $(\frac{k}{2},\frac{k}{2}+1)$ -slice where at most $\frac{|odd(\mathcal{S})|}{2}$ nodes have degree $\frac{k}{2}+1$. Therefore, if $\frac{k}{2}+1$ is odd then $\mathcal{S}'=\mathcal{P}$ will work and otherwise we will take as \mathcal{S}' the complement of \mathcal{P} . If w=k then \mathcal{P} is a $(\frac{k+1}{2}-1,\frac{k+1}{2})$ -slice where at most $\frac{|odd(\mathcal{S})|}{2}$ nodes have degree $\frac{k+1}{2}$. Therefore, if $\frac{k+1}{2}$ is odd then $\mathcal{S}'=\mathcal{P}$ will work and otherwise we will take as \mathcal{S}' the complement of \mathcal{P} . Note that, when \mathcal{G} is sparse, then Split requires $\mathcal{O}(n\log \Delta)$ time.

2.4 The algorithm of Cole and Hopcroft

The following pseudo-code describes a simplified version of Cole and Hopcroft's algorithm [1].

Algorithm 2 Cole_Hopcroft (\mathcal{G}_0) (precondition: \mathcal{G}_0 is Δ -regular)

- 1. $\mathcal{G} \leftarrow MakeOdd(\mathcal{G}_0)$;
- 2. while G is not a 1-factor invariant: $\mathcal{G} \subseteq \mathcal{G}_0$ is regular with $\Delta(\mathcal{G})$ odd
- 3. $\mathcal{S} \leftarrow \mathcal{G}$;
- 4. do $\mathcal{S} \leftarrow Split(\mathcal{S}; \mathcal{G});$
- 5. while odd(S) is not empty; $invariant^2 : S$ is a (k, k+1)-slice of G
- 6. $\mathcal{G} \leftarrow MakeOdd(\mathcal{S});$
- 7. return G.

¹ in the original version step 6. assigns to \mathcal{G} the complement of \mathcal{S} in \mathcal{G} , in case \mathcal{S} is a big slice of \mathcal{G} .

Loop 4–5, when entered, cycles $\mathcal{O}(\log n)$ times, since $odd(\mathcal{S})$ is at least halved each time. Loop 2–6, when entered, cycles $\mathcal{O}(\log \Delta)$ times, since $\Delta(\mathcal{G})$ is at least halved each time. All operations involved in loop 2–6, except MakeOdd, cost $\mathcal{O}(n\log \Delta)$, since by Section 2.1 we can assume that \mathcal{G}_0 is sparse. Since EulerSplit is executed $\mathcal{O}(\log \Delta)$ times, the total time spent in MakeOdd over the whole execution of the algorithm is $\mathcal{O}(n\log^2 \Delta)$. Hence Cole and Hopcroft's algorithm is $\mathcal{O}(n\Delta + n\log n\log^2 \Delta)$.

2.5 Our starting point: Procedure Starter

Our starting point is essentially the inner loop in Cole and Hopcroft's algorithm. We have just shown its cost to be $\mathcal{O}(n \log n \log \Delta)$ for sparse input graphs. Here we assume Δ to be odd.

Procedure 3 STARTER (\mathcal{G}) (precondition: \mathcal{G} is Δ -regular and Δ is odd) 1. $\mathcal{S} \leftarrow \mathcal{G}$; 2. do $\mathcal{S} \leftarrow Split(\mathcal{S}; \mathcal{G})$; 3. while $odd(\mathcal{S})$ is not empty; $invariant^2 \colon \mathcal{S}$ is a (k, k+1)-slice of \mathcal{G}

4. return S.

The output S of Procedure Starter is a δ -regular graph contained in G. A crucial property about S and G is that δ and Δ are coprime, that is, the only integer which divides both is 1. Indeed, regarding G as a $(\Delta - 1, \Delta)$ -slice of G, then S = Split(G; G) is a $(\frac{\Delta - 1}{2}, \frac{\Delta + 1}{2})$ -slice of G, that is, a (k, k + 1)-slice where both K and K + 1 are coprime with K + 1 is coprime with K + 1 of loop 2-3 in Procedure K is that the even value among K and K is coprime with K in fact, K is odd.

The next subsection describes an algorithm, which given as input a Δ -regular graph \mathcal{G} and a δ -regular graph \mathcal{S} , returns a regular graph \mathcal{F} with $f \leq g + s$ and $\Delta(\mathcal{F}) = g.c.d.(\Delta; \delta)$ in $\mathcal{O}((|E(G)| + |E(S)|) \log^2 \Delta)$ time. In our case $s \leq g$ and $g.c.d.(\Delta, \delta) = 1$, hence a 1-factor of \mathcal{G} is returned. Moreover $|E(S)| < |E(G)| = \mathcal{O}(n \log \Delta)$ and the time bound is $\mathcal{O}(n \log^3 \Delta)$. This term is dominated by the $\mathcal{O}(m)$ cost of the preprocessing phase.

2.6 Computing the q.c.d. by sums and shiftings

When a and b are two positive integers we denote by g.c.d.(a, b) the greatest common divisor of a and b. When both a and b are even then $g.c.d.(a, b) = 2 g.c.d.(\frac{a}{2}, \frac{b}{2})$. This section considers an algorithm to compute g.c.d.(a, b) when at least one of a and b is odd. The procedure is allowed to use the following operations: dividing an even by 2 (this corresponds to EulerSplit and costs $\mathcal{O}(n \log \Delta)$), testing evenness, summing two integers (the sum of two graphs also costs $\mathcal{O}(n \log \Delta)$), and comparing two integers (greater, less, or equal?). The procedure goes as follows: When one of the two numbers is even then we divide it by 2 and the g.c.d. does not change since the other number is odd. So both numbers are odd.

² second invariant: Δ is coprime with the even value among k and k+1.

Therefore their sum σ is even and if we substitute the biggest of the two numbers by $\frac{\sigma}{2}$ the g.c.d. does not change. Eventually the two numbers will be equal. But now g.c.d.(a, a) = a.

We now show that the above procedure³ uses $\mathcal{O}(\log^2(a+b))$ operations. This is because each time $\frac{\sigma}{2}$ is even then σ actually decreases at least by a factor of $\frac{3}{4}$, and when $\frac{\sigma}{2}$ is odd then |b-a| decreases at least by a factor of 2, while σ is never increased.

Here is the algorithm promised in the end of the previous subsection:

Algorithm 4 G.C.D. (\mathcal{G}, S)

(precondition: \mathcal{G} and \mathcal{S} are regular)

- 1. $\mathcal{G} \leftarrow MakeOdd(\mathcal{G}); \ \mathcal{S} \leftarrow MakeOdd(\mathcal{S});$
- 2. while $\Delta(\mathcal{G}) \neq \Delta(\mathcal{S})$
- 3. by eventually exchanging \mathcal{G} and \mathcal{S} , assume $\Delta(\mathcal{G}) \geq \Delta(\mathcal{S})$;
- 4. $\mathcal{G} \leftarrow MakeOdd(\mathcal{G} + \mathcal{S}).$

Acknowledgments

I thank the referee for the detailed feedback he has given.

References

- [1] R. Cole, J. Hopcroft, On edge coloring bipartite graphs, SIAM Journal on Computing 11 (1982) 540-546.
- [2] H.N. Gabow, Using Euler partitions to edge color bipartite multigraphs, *International J. Computer and Information Sciences* 5 (1976) 345-355.
- [3] H.N. Gabow, O. Kariv, Algorithms for edge coloring bipartite graphs and multigraphs, SIAM Journal on Computing 11 (1982) 117-129.
- [4] A. Kapoor and R. Rizzi, Edge-coloring bipartite graphs, *Journal of Algorithms* 34 (2) (2000) 390–396.
- [5] D. Kőnig, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére [Hungarian], Mathematikai és Természettudományi Értesito 34 (1916) 104-119.
- [6] R. Rizzi, Kőnig's Edge Coloring Theorem without augmenting paths, *Journal of Graph Theory* 29 (1998) 87.
- [7] A. Schrijver, Bipartite edge-colouring in $\mathcal{O}(\Delta m)$ time, SIAM Journal on Computing 28 (3) (1999) 841-846.

³a deeper analysis of a related and similar procedure is given in [4]