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Abstract. We study a smoothing Newton method for solving a nonsmooth matrix equation that
includes semidefinite programming and the semidefinite complementarity problem as special cases.
This method, if specialized for solving semidefinite programs, needs to solve only one linear system
per iteration and achieves quadratic convergence under strict complementarity and nondegeneracy.
We also establish quadratic convergence of this method applied to the semidefinite complementarity
problem under the assumption that the Jacobian of the problem is positive definite on the affine
hull of the critical cone at the solution. These results are based on the strong semismoothness
and complete characterization of the B-subdifferential of a corresponding squared smoothing matrix
function, which are of general theoretical interest.

Key words. matrix equations, Newton’s method, nonsmooth optimization, semidefinite com-
plementarity problem, semidefinite programming

AMS subject classifications. 65K05, 90C25, 90C33

DOI. 10.1137/S1052623400379620

1. Introduction.

1.1. Motivation. Let S(n1, . . . , nm) be the linear space of symmetric block-
diagonal matrices with m blocks of sizes nk × nk, k = 1, . . . ,m, respectively, and let
Ψ be a mapping from S(n1, . . . , nm) to S(n1, . . . , nm) itself. We consider the problem
of finding a root of Ψ(X) = 0. This symmetric block-diagonal-matrix-valued equation
problem (matrix equation problem for short) has many applications in optimization.
For example, arising from Lyapunov stability analysis of systems under uncertainty
[4, 23], we desire to know whether there exists an n × n symmetric matrix X such
that the following system is feasible:{

λX − (LiX + XLi) � 0, i = 1, . . . , k,
X − I � 0 ,

(1.1)

where λ is a given constant, I, Li, i = 1, . . . , k are given n × n symmetric matrices,
and for an arbitrary symmetric matrix Y we write Y � 0 and Y � 0 if Y is positive
definite and positive semidefinite, respectively. It is easy to convert (1.1) into a
matrix equation problem. For X � 0 we denote its symmetric square root by X1/2.
Let |X| := (X2 )1/2 and X+ := (X + |X|)/2 for any X ∈ S(n1, . . . , nm). Note that
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|X| −X = 0 if and only if X is positive semidefinite. Let

Ψ(X) : =
k∑

i=1

[ |λX − LiX −XLi | − λX + LiX + XLi ] + [ |X − I | −X + I ] .

Then solving problem (1.1) is equivalent to solving the matrix equation Ψ(X) = 0.
Note that this equation is not differentiable (in the sense of Fréchet), but is strongly
semismooth [5, 32]. For the definition of semismooth matrix functions and some
related topics see section 2 or references [5, 32] for more details.

Another application of matrix equations refers to semidefinite programming
(SDP). As a modeling tool of optimization and a powerful relaxation form of some
combinatorial optimization problems, SDP has received much attention in the research
community in recent years. The website of semidefinite programming1 contains a nice
categorized list of papers in this area. Assuming strict feasibility of both primal and
dual problems, a semidefinite program is equivalent to finding X � 0, S � 0, and
y ∈ R

m such that

Ai • X = bi, i = 1, . . . ,m,

m∑
i=1

yiAi + S = C, X • S = 0,(1.2)

where • denotes the matrix Frobenius inner product. It is shown by Tseng [35] that

X � 0, S � 0, X • S = 0 ⇐⇒ X − [X − S]+ = 0.(1.3)

Thus, system (1.2) can be rewritten as

Ai • X = bi, i = 1, . . . ,m,

m∑
i=1

yiAi + S = C, X − [X − S]+ = 0,(1.4)

which has the form of Ψ(W ) = 0 with W := diag (y1, . . . , ym, S,X) being a block-
diagonal matrix.

A generalization of SDP—the semidefinite complementarity problem (SDCP)—
can also be reformulated as a matrix equation. The SDCP is to find, for a given
continuously differentiable mapping F : S(n1, . . . , nm) → S(n1, . . . , nm), an X ∈
S(n1, . . . , nm) such that

X � 0, F (X) � 0, X • F (X) = 0.(1.5)

By (1.3) this problem is equivalent to

X − [X − F (X)]+ = 0.(1.6)

A special case of the SDCP, where F is linear, was introduced by Kojima, Shindo,
and Hara [19] and further studied in, e.g., [12, 13, 17, 18]. For the general (nonlinear)
SDCP, Monteiro and Pang [21, 22] treated it as a constrained equation and introduced
interior-point methods for solving the constrained equation. Tseng [35] introduced
merit functions to reformulate the SDCP as an optimization problem. Chen and
Tseng [6] studied noninterior continuation methods for solving the SDCP. Kanzow and
Nagel [15] analyzed smoothing paths for the Karush–Kuhn–Tucker (KKT) system of

1http://www.zib.de/helmberg/semidef.html
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the SDP and proposed smoothing-type methods for solving the KKT system. Pang,
Sun, and Sun [24] studied semismooth homeomorphisms and strong stability of the
SDCP.

The interest in the nonlinear SDCP stems from the research on nonlinear semidef-
inite optimization problems. Shapiro [29] studied first- and second-order perturbation
analysis of nonlinear semidefinite optimization problems. Jarre [14] gave an interior-
point method for solving nonconvex semidefinite programs. Fares, Noll, and Apkar-
ian [7] investigated a sequential SDP approach for a variety of problems in optimal
control, which can be cast as minimizing a linear objective function subject to linear
matrix inequality constraints and nonlinear matrix equality constraints. Leibfritz and
Mostafa [20] proposed an interior-point constrained trust-region method for a special
class of nonlinear SDP problems. Tseng [36] conducted a convergence analysis for an
infeasible interior-point trust-region method for nonlinear semidefinite programs.

In this paper we study a smoothing Newton method for solving a nonsmooth
matrix equation that includes the SDP and the SDCP as special cases. In particular,
for the SDP, this method achieves quadratic convergence under strict complementar-
ity and nondegeneracy. For the SDCP, quadratic convergence is proved under the
condition that the Jacobian of the problem is positive definite on the affine hull of
the critical cone at the solution. The strict complementarity condition is not as-
sumed here. To establish these results, we investigate the strong semismoothness and
the Bouligand-subdifferential (B-subdifferential) of the so-called squared smoothing
matrix function, which are of their own theoretical interest.

The study on smoothing Newton methods can be traced back to a nonsmooth ver-
sion of Newton’s method by Qi and Sun [27] for solving nonsmooth vector valued equa-
tions. It was later found that smoothing techniques could be applied to the nonsmooth
Newton method to improve its computational performance. Many researchers have
contributed to this area, see, for example, [11] and the references therein. The basic
idea of the smoothing Newton method is to replace the nonsmooth equation Ψ(X) = 0
by a smoothing equation G(ε,X) = 0, where G : R×S(n1, . . . , nm) → S(n1, . . . , nm),
such that

G(ε, Y ) → Ψ(X) as (ε, Y ) → (0, X).

Here the function G is required to be continuously differentiable at (ε,X) unless ε = 0.
The classical damped Newton method can then be used to solve G(ε,X) = 0 as ε ↓ 0
to get a solution of Ψ(X) = 0. Computational results show that this type of method
is quite efficient in solving vector complementarity problems [37].

For ε ∈ R and X ∈ S(n1, . . . , nm), the squared smoothing function Φ : R ×
S(n1, . . . , nm) → S(n1, . . . , nm) is defined by

Φ(ε,X) : = ( ε2I + X2 )1/2 , (ε,X) ∈ R × S(n1, . . . , nm).(1.7)

Then, Φ is continuously differentiable at (ε,X) unless ε = 0, and for any X ∈
S(n1, . . . , nm),

[Y + Φ(ε, Y ) ]/2 → X+ as (ε, Y ) → (0, X).

Thus we can use Φ to construct smoothing functions for nonsmooth systems (1.4) and
(1.6). We show that the smoothing function

G(ε,X) : = X − [X − F (X) + Φ(ε,X − F (X))] /2(1.8)
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can be used to design a quadratically convergent algorithm for (1.4) and (1.6). We
note that Chen and Tseng [6] have developed a nice smoothing Newton method for
the SDCP and reported promising computational results. The difference between our
paper and theirs is that we show the strong semismoothness of the smoothing function,
which can be utilized to establish quadratic convergence, whereas paper [6] did not
prove the strong semismoothness of the smoothing function. As a result, paper [6]
needs the strict complementarity assumption and the convergence rate proved there
is only superlinear, whereas we obtain quadratic rate of convergence without this
assumption for the SDCP.

1.2. Notation and organization of the paper. The notation used is fairly
standard. Generally, we use calligraphic letters for sets, capital letters for matrices
and matrix functions, lowercase letters for vectors, and Greek letters for scalars and
index sets, respectively. A diagonal matrix is denoted by diag (λ1, . . . , λn), where
λ1, . . . , λn are the diagonal entries. Similarly, a block-diagonal matrix is written as
diag (B1, . . . , Bm) with B1, . . . , Bm being the block matrices.

Let α and β be two sets of indices. We designate by Aαβ the submatrix of A whose
row indices belong to α and whose column indices belong to β. In particular, Aij stands
for the (i, j)th entry of A. For matrices A,B ∈ S(n1, . . . , nm), the Frobenius inner
product is defined as

A • B : = Trace (ATB) = Trace (AB).

Consequently, the Frobenius norm of A ∈ S(n1, . . . , nm) is

‖A‖ : = (A • A )1/2 .

The Hadamard product of A and B is denoted by A ◦B, namely, (A ◦B)ij := AijBij

for all i and j. The 2-norm of a vector x is denoted by ‖x‖. Let I be the identity
matrix of appropriate dimension.

This paper is organized as follows. In section 2 we review some results on nons-
mooth matrix functions and prove the strong semismoothness of Φ defined in (1.7).
Section 3 is devoted to characterizing the B-subdifferential of Φ, which will be used
in the sequel. We describe the squared smoothing Newton method in section 4. Ap-
plications of the smoothing Newton method to the SDP and SDCP are discussed in
sections 5 and 6, respectively. Some final remarks are given in section 7.

2. Strong semismoothness of Φ(ε, X). This section is devoted to proving
the strong semismoothness of the squared smoothing function Φ defined by (1.7). As
a preparation we introduce some basic definitions and results on a general matrix
function Ψ : S(n1, . . . , nm) → S1, where S1 is also a symmetric block-diagonal matrix
space, but could be of different shape and size from S(n1, . . . , nm).

Suppose that Ψ : S(n1, . . . , nm) → S1 is a locally Lipschitz matrix function.
According to [32], Ψ is differentiable almost everywhere. Denote the set of points at
which Ψ is differentiable by DΨ and for any X ∈ DΨ, let JΨ(X) denote the Jacobian
of Ψ at X. Let ∂BΨ(X) be the B-subdifferential of Ψ at X defined by

∂BΨ(X) =

{
lim

Xk→X
Xk∈DΨ

JΨ(Xk)

}
,(2.1)

and let ∂Ψ(X) denote the convex hull of ∂BΨ(X).
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Definition 2.1. Suppose that Ψ : S(n1, . . . , nm) → S1 is a locally Lipschitz
matrix function. Ψ is said to be semismooth at X ∈ S(n1, . . . , nm) if Ψ is directionally
differentiable at X and for any V ∈ ∂Ψ(X + H) and H ∈ S(n1, . . . , nm),

Ψ(X + H) − Ψ(X) − V (H) = o(‖H ‖) .

Ψ is said to be strongly semismooth at X if Ψ is semismooth at X and

Ψ(X + H) − Ψ(X) − V (H) = O(‖H ‖2) .(2.2)

Instead of showing the strong semismoothness by definition, we will use the fol-
lowing result [32, Theorem 3.6].

Theorem 2.2. Suppose that Ψ : S(n1, . . . , nm) → S1 is locally Lipschitz and
directionally differentiable in a neighborhood of X. Then Ψ is strongly semismooth at
X if and only if for any X + H ∈ DΨ,

Ψ(X + H) − Ψ(X) − JΨ(X + H)(H) = O(‖H ‖2).(2.3)

In order to show that Φ(ε,X) satisfies (2.3), we will first identify the differentiable
points of Φ. We shall show that Φ is differentiable at (ε,X) if and only if ε2I + X2

is nonsingular. Here we view Φ as a function from S(1, n) to S ≡ S(n). This result
easily can be extended to the general block-diagonal case. Unless stated otherwise, S
is assumed to be of this simple structure here and below.

For any X ∈ S, let LX be the Lyapunov operator

LX(Y ) : = XY + Y X ∀ Y ∈ S

with L−1
X being its inverse (if it exists at all).

For X ∈ S, there exist an orthogonal matrix P and a diagonal matrix Λ =
diag (λ1, . . . , λn) of eigenvalues of X such that

X = PΛPT .(2.4)

Define three index sets associated with the eigenvalues of matrix X:

α : = { i : λi > 0 }, β : = { i : λi = 0 }, and γ : = { i : λi < 0 }.

By permuting the rows and columns of X if necessary, we assume that Λ can be
written as

Λ =

⎡⎢⎣ Λα 0 0

0 Λγ 0

0 0 0

⎤⎥⎦ ,

where Λα and Λγ are diagonal matrices with diagonal elements λi, i ∈ α and λi, i ∈ γ,
respectively. Let κ := α ∪ γ. Define two diagonal matrices of order |κ |:

D : =

[
Λα 0

0 Λγ

]
and |D| = (D2 )1/2, i.e.,

|D | =

[
Λα 0

0 |Λγ |

]
.

Lemma 2.3. For (ε,X) ∈ R × S, the following statements hold.
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(a) If ε2I+X2 is nonsingular, then Φ is continuously differentiable at (ε,X) and
JΦ(ε,X) satisfies the following equation:

JΦ(ε,X)(τ,H) = L−1
Φ(ε,X)(LX(H) + 2ετI) ∀ (τ,H) ∈ R × S.(2.5)

In particular, in this case,

‖ JΦ(ε,X)(τ,H) ‖ ≤
√
n | τ | + ‖H ‖ .(2.6)

(b) Φ is globally Lipschitz continuous and for any (ε,X), (τ, Y ) ∈ R × S,

‖Φ(ε,X) − Φ(τ, Y ) ‖ ≤
√
n | ε− τ | + ‖X − Y ‖ .(2.7)

(c) Φ is directionally differentiable at (0, X) and for (τ,H) ∈ R × S,

Φ′((0, X); (τ,H)) = P

[
L−1
|D|[DH̃κκ + H̃κκD] |D|−1DH̃κβ

H̃T
κβD|D|−1 ( τ2I + H̃2

ββ )1/2

]
PT ,

where H̃ := PTHP .
(d) Φ is differentiable at (ε,X) if and only if ε2I + X2 is nonsingular.
Proof. (a) For any C � 0, we have, by applying [35, Lemma 6.2] or direct

calculation, that (C2 + W )1/2 − C = L−1
C (W ) + o(‖W‖) for all W ∈ S sufficiently

small. Then, for ε2I + X2 nonsingular (and hence positive definite), we have that

Φ(ε + τ,X + H) − Φ(ε,H) = (C2 + W )1/2 − C

= L−1
C (LX(H) + 2ετI) + O

(
τ2 + ‖H‖2

)
+ o(‖W‖),

where (τ,H) ∈ R ×S, C := Φ(ε,X), and W := LX(H) + 2ετI + τ2I +H2. Thus, Φ
is differentiable at (ε,X) and

JΦ(ε,X)(τ,H) = L−1
C (LX(H) + 2ετI) .

By noting the fact that for all (ε+τ,X+H) sufficiently close to (ε,X), Φ(ε+τ,X+H)
is positive definite, from the definition of L−1

Φ we know that L−1
Φ is continuous at

(ε,X). Hence, Φ is continuously differentiable at (ε,X).
Let P and Λ be defined as in (2.4). To prove (2.6), we first note that

LX(H) + 2ετI = P
(
LΛ(PTHP ) + 2ετI

)
PT ,

and for any Y ∈ S,

L−1
C (Y ) = PL−1

Φ(ε,Λ)(P
TY P )PT .

Thus, we have

PTJΦ(ε,X)(τ,H)P = L−1
Φ(ε,Λ)

(
LΛ(PTHP ) + 2ετI

)
.

Hence, by direct calculation, for i, j = 1, . . . , n,

(PTJΦ(ε,X)(τ,H)P )ij =

⎧⎨⎩(PTHP )ij(λi+λj)
(√

ε2+λ2
i +

√
ε2+λ2

j

)−1

if i �= j,(
λi(P

THP )ii+ετ
) (

ε2+λ2
i

)−1/2
otherwise,
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which implies that

n∑
i,j=1

((
PTJΦ(ε,X)(τ,H)P

)
ij

)2

≤ nτ2 +

n∑
i,j=1

(
(PTHP )ij

)2
.

Hence,

‖ JΦ(ε,X)(τ,H) ‖2 = ‖PTJΦ(ε,X)(τ,H)P ‖2

≤ nτ2 + ‖PTHP ‖2 = nτ2 + ‖H ‖2 .

This completes the proof of part (a).
(b) By part (a) of this lemma, for ε �= 0 and τ �= 0 we have that

‖Φ(ε,X) − Φ(τ, Y ) ‖
= ‖Φ(| ε |, X) − Φ(| τ |, Y ) ‖

=

∥∥∥∥∫ 1

0

JΦ(| τ | + t(| ε | − | τ |), Y + t(X − Y ))(| ε | − | τ |, X − Y )dt

∥∥∥∥
≤

√
n | (| ε | − | τ |) | + ‖X − Y ‖

≤
√
n | ε− τ | + ‖X − Y ‖ .

By a limiting process the above inequality is also true for ετ = 0. Hence, (2.7) holds.
(c) Let P and Λ be defined as in (2.4). For any τ ∈ R, H ∈ S, and t ∈ [0,∞), let

∆(t) : = Φ(tτ,X + tH) − Φ(0, X)

and

∆̃(t) : = PT∆(t)P .

Then,

∆̃(t) = PTΦ(tτ,X + tH)P − PTΦ(0, X)P

=
(
t2τ2I + (PT (X + tH)P )2

)1/2 − |PTXP |

=
(
t2τ2I + (PTXP + tPTHP )2

)1/2 − |PTXP |

=
(
t2τ2I + (Λ + tH̃)2

)1/2

− |Λ | ,

where H̃ := PTHP . Thus,

∆̃(t) =
(
|Λ|2 + W̃

)1/2

− |Λ | ,

where

W̃ : = t2τ2I + tΛH̃ + tH̃Λ + t2H̃2

and

|Λ| =

[
|D| 0

0 0

]
.
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After simple computations we have that

W̃ = t

[
DH̃κκ + H̃κκD DH̃κβ

H̃T
κβD 0

]

+

[
O(t2) O(t2)

O(t2) t2τ2I + t2[H̃T
κβH̃κβ + H̃2

ββ ]

]
.

(2.8)

By Lemma 6.2 in Tseng [35], we have that

∆̃(t)κκ = L−1
|D|(W̃κκ) + o(‖W̃‖),(2.9)

∆̃(t)κβ = |D|−1W̃κβ + o(‖W̃‖),(2.10)

and

W̃ββ = ∆̃(t)Tκβ∆̃(t)κβ + ∆̃(t)2ββ .(2.11)

Hence,

∆̃(t)κβ = t|D|−1DH̃κβ + o(t) ,(2.12)

which implies that

∆̃(t)Tκβ∆̃(t)κβ = t2H̃T
κβ(|D|−1D)

2
H̃κβ + o(t2) = t2H̃T

κβH̃κβ + o(t2) .(2.13)

According to (2.9) and (2.8),

∆̃(t)κκ = tL−1
|D|(DH̃κκ + H̃κκD) + o(t) .(2.14)

Since

W̃ββ = t2τ2I + t2[H̃T
κβH̃κβ + H̃2

ββ ] ,

from (2.11) and (2.13), we obtain that

∆̃(t)2ββ = t2τ2I + t2H̃2
ββ + o(t2) .(2.15)

Furthermore, since ∆̃(τ)ββ is positive semidefinite (see the definition of ∆̃(t)), we

know from (2.15) that ∆̃(t)ββ is well defined and

∆̃(t)ββ = t
(
τ2I + H̃2

ββ + o(1)
)1/2

.(2.16)

Hence, from (2.14), (2.12), (2.16), and the continuity of (·)1/2,

lim
t↓0

∆̃(t)

t
=

[
L−1
|D|[DH̃κκ + H̃κκD] |D|−1DH̃κβ

H̃T
κβD|D|−1 ( τ2I + H̃2

ββ )1/2

]
,

which completes the proof of part(c).



A SQUARED SMOOTHING NEWTON METHOD 791

(d) Only the “only if” part needs a proof. Obviously ε2I + X2 is nonsingular
at ε �= 0. If Φ is differentiable at (0, X), then part (c) of this lemma shows that
Φ′((0, X); (τ,H)) is a linear function of (τ,H) only if β = ∅; i.e., only if X is nonsin-
gular.

Lemma 2.3 shows that the squared smoothing matrix function Φ is directionally
differentiable everywhere and globally Lipschitz continuous. It also shows that it is
differentiable at (ε,X) ∈ R × S if and only if ε2I + X2 is nonsingular.

The next result is vital in order to prove the strong semismoothness of Φ. By
noting the fact that I and X can be simultaneously diagonalized, we may extend the
proof used in [32, Lemma 4.12] from |X| to Φ. Here we follow the outline of a simpler
proof given in [5, Proposition 4.10].

Lemma 2.4. Let X ∈ S. Then, for any τ ∈ R and H ∈ S such that τ2I+(X+H)2

is nonsingular, Φ is differentiable at (τ,X + H) and

Φ(τ,X + H) − Φ(0, X) − JΦ(τ,X + H)(τ,H) = O(‖∆Z ‖2) ,(2.17)

where ∆Z := (τ,H).
Proof. Let D denote the space of n×n real diagonal matrices with nonincreasing

diagonal entries. For each Y ∈ S, define

OY : = {P ∈ O : PTY P ∈ D },

where O := {P ∈ R
n×n : PTP = I }.

Let λ1 ≥ · · · ≥ λn denote the eigenvalues of X. By [6, Lemma 3] or [33, Proposi-
tion 4.4], there exist scalars η > 0 and ρ > 0 such that

min
P ∈OX

‖P −Q ‖ ≤ η ‖Y −X ‖ whenever Y ∈ S, ‖Y −X ‖ ≤ ρ, Q ∈ OY .

If τ = 0, then the left-hand side of (2.17) reduces to Ψ(X +H)−Ψ(X)−JΨ(X +
H)(H), where for each Y ∈ S, Ψ(Y ) := |Y |. Then, it follows from [32, Lemma 4.12]
that (2.17) holds.

Suppose τ �= 0. Let µ1 ≥ · · · ≥ µn denote the eigenvalues of X + H, and choose
any Q ∈ OX+H . Then, by (2.18), there exists P ∈ OX satisfying

‖P −Q ‖ ≤ η‖H ‖ .

For simplicity, let R denote the left-hand side of (2.17), i.e.,

R : = Φ(τ,X + H) − Φ(0, X) − JΦ(τ,X + H)(τ,H) .

Letting C := Φ(τ,X+H) = ( τ2I+(X+H)2 )1/2 and noting that Q ∈ OC , we obtain
from Lemma 2.3 and the formula for L−1

C given in [35, Page 171] that

JΦ(τ,X + H)(τ,H) = L−1
C [(X + H)H + H(X + H) + 2τ2I]

= Q[Ξ ◦ (QT ((X + H)H + H(X + H))Q + 2τ2I)]QT ,

where the matrix Ξ ∈ S has entries

Ξij = 1/(θi + θj)

and θi =
√
τ2 + µ2

i is the ith eigenvalue of C. Then, letting R̃ := QTRQ and

H̃ := QTHQ, we have that

R̃ = Σ − STΛS − Ξ ◦ (U + 2τ2I) ,(2.18)
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where Σ := diag (
√
τ2 + µ2

1, . . . ,
√
τ2 + µ2

n), Λ := diag (λ1, . . . , λn), S := PTQ, and

Uij := (µi + µj)H̃ij for all i, j.

Since diag (µ1, . . . , µn) = QT (X+H)Q = ST diag (λ1, . . . , λn)S+H̃, we have that

n∑
k=1

SkiSkjλk + H̃ij =

{
µi if i = j

0 else,
i, j = 1, . . . , n .(2.19)

Since S = PTQ = (P −Q)TQ + I and ‖P −Q‖ ≤ η‖H‖, it follows that

Sij = O(‖H ‖) ∀ i �= j .(2.20)

Since P,Q ∈ O, we have S ∈ O so that STS = I. This implies

1 = S2
ii +

∑
k �=i

S2
ki = S2

ii + O(‖H ‖2), i = 1, . . . , n,(2.21)

and

0 = SiiSij + SijSjj +
∑
k �=i,j

SkiSkj

= SiiSij + SjiSjj + O(‖H ‖2) ∀ i �= j .

(2.22)

We now show that R̃ = O(‖∆Z ‖2), which, by ‖R‖ = ‖R̃‖, would prove (2.17).
For any i ∈ {1, . . . , n}, we have from (2.18) and (2.19) that

R̃ii =
√
τ2 + µ2

i −
n∑

k=1

S2
ki|λk| −

1

2θi
(2τ2 + 2µiH̃ii)

=
√
τ2 + µ2

i −
n∑

k=1

S2
ki|λk| −

τ2

θi
− µi

θi

(
µi −

n∑
k=1

S2
kiλk

)
=

√
τ2 + µ2

i − S2
ii|λi| −

τ2

θi
− µi

θi
(µi − S2

iiλi) + O(‖H‖2)

=
√
τ2 + µ2

i − (1 + O(‖H‖2))|λi| −
τ2

θi
− µi

θi
(µi − (1 + O(‖H‖2))λi) + O(‖H‖2)

=
√
τ2 + µ2

i − |λi| −
τ2

θi
− µi

θi
(µi − λi) + O(‖H‖2)

= f(τ, µi) − f(0, λi) − Jf(τ, µi)(τ, µi − λi) + O(‖H‖2),

(2.23)

where the third and fifth equalities use (2.20), (2.21), and the fact that |µi/θi| ≤ 1.

The last equality follows by defining f(τ, µ) :=
√
τ2 + µ2. Since f is known to be

strongly semismooth and, by a result of Weyl [2, page 63],

|µi − λi | ≤ ‖H ‖ ∀ i,(2.24)

the right-hand side of (2.23) is O(‖∆Z‖)2. For any i, j ∈ {1, . . . , n} with i �= j, we
have from (2.18) and (2.19) that

R̃ij = −
n∑

k=1

SkiSkj |λk| − Ξij(µi + µj)H̃ij
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= −
n∑

k=1

SkiSkj |λk| + Ξij(µi + µj)

n∑
k=1

SkiSkjλk

= −(SiiSij |λi| + SjiSjj |λj |) + Ξij(µi + µj)(SiiSijλi + SjiSjjλj) + O(‖H‖2)

= − ((SiiSij + SjiSjj |λi|) + SjiSjj(|λj | − |λi|))

+ Ξij(µi + µj) ((SiiSij + SjiSjj)λi + SjiSjj(λj − λi)) + O(‖H‖2)

= −SjiSjj (|λj | − |λi| − Ξij(µi + µj)(λj − λi)) + O(‖H‖2)

= −SjiSjj

(
|λj | − |λi| −

µj + µi

θj + θi
(λj − λi)

)
+ O(‖H‖2),(2.25)

where the third and fifth equalities use (2.20), (2.22), and Ξij |µi + µj | ≤ 1. We have
that

|λj | − |λi | −
µj + µi

θj + θi
(λj − λi)

= |λj | − |λi | −
µj + µi

θj + θi
(µj − µi) −

µj + µi

θj + θi
(λj − µj + µi − λi)

= |λj | − |λi | −
(τ2 + µ2

j ) − (τ2 + µ2
i )√

τ2 + µ2
j +

√
τ2 + µ2

i

− µj + µi

θj + θi
(λj − µj + µi − λi)

= |λj | − |λi | −
(√

τ2 + µ2
j −

√
τ2 + µ2

i

)
− µj + µi

θj + θi
(λj − µj + µi − λi).(2.26)

Since |µj + µi|/(θj + θi) ≤ 1 and | |λk | −
√
τ2 + µ2

k | = | ‖(0, λk)‖ − ‖(τ, µk)‖ | ≤
| (0, λk) − (τ, µk) | ≤ |τ | + |λk − µk| for k ∈ {i, j}, we see from (2.24) that the right-
hand side of (2.26) is O(|τ |+‖H‖). This, together with (2.20), implies the right-hand
side of (2.25) is O(‖H‖(|τ | + ‖H‖)). The proof is completed.

According to Theorem 2.2 and Lemmas 2.3 and 2.4, we obtain the following main
result of this section.

Theorem 2.5. The squared smoothing matrix function Φ is strongly semismooth
at (0, X) ∈ R × S.

The theorem above provides a basis for quadratic convergence of the squared
smoothing Newton method for the SDCP, which is to be discussed in section 5.

3. Properties of the B-subdifferential of Φ. In this section, we shall dis-
cuss some properties of the B-subdifferential of the squared smoothing function Φ
at (0, X) ∈ R × S. These properties play a key role in the proof of nonsingular-
ity of the Jacobians arising from the SDP and the SDCP. Assume that X has the
eigen-decomposition as in (2.4), i.e.,

X = PΛPT ,

where P is an orthogonal matrix and Λ is the diagonal matrix of eigenvalues of X
and has the form

Λ =

⎡⎢⎣ Λα 0 0

0 Λγ 0

0 0 0

⎤⎥⎦ .
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Partition the orthogonal matrix P according to

P = [Wα Wγ Wβ ] ,

with Wα ∈ R
n×|α|, Wγ ∈ R

n×|γ|, and Wβ ∈ R
n×|β|.

Recall that the critical cone of S+ := {X � 0 : X ∈ S } at X ∈ S is defined as

C(X;S+) := T (X+;S+) ∩ (X+ −X )⊥ ,

where T (X+;S+) is the tangent cone of S+ at X+ and (X+ −X)⊥ is the subset of
matrices in S that are orthogonal to (X+ − X) under the matrix Frobenius inner
product. The critical cone can be completely described [3, 9] by

C(X;S+) = {Y ∈ S : WT
γ YWγ = 0, WT

γ YWβ = 0, WT
β YWβ � 0 } .(3.1)

Consequently, the affine hull of C(X;S+), which we denote by L(X;S+), is the linear
subspace

{Y ∈ S : WT
γ YWγ = 0, WT

γ YWβ = 0 } .

Proposition 3.1. For any (0, H) ∈ R × S and V ∈ ∂BΦ(0, X), it holds that

V (0, H) = P (Ω ◦ PTHP )PT ,(3.2)

H + V (0, H) ∈ L(X;S+),(3.3)

and

[H − V (0, H)] • [H + V (0, H)] ≥ 0 ,(3.4)

where the matrix Ω ∈ S has entries

Ωij =

⎧⎪⎨⎪⎩
t ∈ [−1, 1] if (i, j) ∈ β × β,

λi + λj

|λi| + |λj |
otherwise.

Proof. Let V ∈ ∂BΦ(0, X). By Lemma 2.3 and the definition of the elements
in ∂BΦ(0, X), it follows that there exists a sequence {(εk, Xk)} converging to (0, X)
with (εk)2I + (Xk)2 being nonsingular such that

V (0, H) = lim
k→∞

JΦ(εk, Xk)(0, H) = lim
k→∞

L−1
Ck (LXk(H)) ,

where Ck := Φ(εk, Xk). Let Xk = P k Λk (P k)T be the orthogonal decomposition of
Xk, where Λk is the diagonal matrix of eigenvalues of Xk and P k is a corresponding
orthogonal matrix. Without loss of generality, by taking subsequences if necessary,
we may assume that {P k} is a convergent sequence with limit P = limk→∞ P k and
Λ = limk→∞ Λk (clearly X = PΛPT ). Then,

lim
k→∞

Λk
β = 0 .

For any H ∈ S with H̃k := (P k)THP k, we have that

LCk

(
JΦ(εk, Xk)(0, H)

)
= LXk(H) ;
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i.e.,

(
(εk)2I + (Λk)2

)1/2
Ũk + Ũk

(
(εk)2I + (Λk)2

)1/2
= ΛkH̃k + H̃kΛk ,

where Ũk := (P k)T
[
JΦ(εk, Xk)(0, H)

]
P k. By denoting C̃k := ( (εk)2I + (Λk)2 )1/2,

we have that⎡⎢⎢⎢⎣
C̃k

ααŨ
k
αα + Ũk

ααC̃
k
αα C̃k

ααŨ
k
αγ + Ũk

αγC̃
k
γγ C̃k

ααŨ
k
αβ + Ũk

αβC̃
k
ββ

C̃k
γγŨ

k
γα + Ũk

γαC̃
k
αα C̃k

γγŨ
k
γγ + Ũk

γγC̃
k
γγ C̃k

γγŨ
k
γβ + Ũk

γβC̃
k
ββ

C̃k
ββŨ

k
βα + Ũk

βαC̃
k
αα C̃k

ββŨ
k
βγ + Ũk

βγC̃
k
γγ C̃k

ββŨ
k
ββ + Ũk

ββC̃
k
ββ

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Λk
αH̃

k
αα + H̃k

ααΛk
α Λk

αH̃
k
αγ + H̃k

αγΛk
γ Λk

αH̃
k
αβ + H̃k

αβΛk
β

Λk
γH̃

k
γα + H̃k

γαΛk
α Λk

γH̃
k
γγ + H̃k

γγΛk
γ Λk

γH̃
k
γβ + H̃k

γβΛk
β

Λk
βH̃

k
βα + H̃k

βαΛk
α Λk

βH̃
k
βγ + H̃k

βγΛk
γ Λk

βH̃
k
ββ + H̃k

ββΛk
β

⎤⎥⎥⎥⎦ .

For each k, define the matrix Ωk ∈ S with entries

Ωk
ij =

(√
(εk)2 + (λk

i )
2 +

√
(εk)2 + (λk

j )
2

)−1

(λk
i + λk

j ), i, j = 1, . . . , n .

Since {Ωk} is bounded, by taking a subsequence if necessary, we assume that {Ωk} is
a convergent sequence and that

lim
k→∞

Ωk = Ω .

Hence, it follows that

lim
k→∞

Ũk = lim
k→∞

Ωk ◦ H̃k = Ω ◦ PTHP ,

which proves (3.2). Let H̃ := PTHP . Then, we obtain that

PTV (0, H)P =

⎡⎢⎢⎢⎣
H̃αα Ωαγ ◦ H̃αγ H̃αβ

H̃T
αγ ◦ ΩT

αγ −H̃γγ −H̃γβ

H̃T
αβ −H̃T

γβ Ωββ ◦ H̃ββ

⎤⎥⎥⎥⎦ .

Let E ∈ S be the matrix whose entries are all ones. Thus,

PT [H + V (0, H)]P

=

⎡⎢⎢⎢⎣
2H̃αα (Ωαγ + Eαγ) ◦ H̃αγ 2H̃αβ

H̃T
αγ ◦ (Ωαγ + Eαγ)T 0 0

2H̃T
αβ 0 (Ωββ + Eββ) ◦ H̃ββ

⎤⎥⎥⎥⎦(3.5)
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and

PT [H − V (0, H)]P

=

⎡⎢⎢⎢⎣
0 (Eαγ − Ωαγ) ◦ H̃αγ 0

H̃T
αγ ◦ (Eαγ − Ωαγ)T 2H̃γγ 2H̃γβ

0 2H̃T
γβ (Eββ − Ωββ) ◦ H̃ββ

⎤⎥⎥⎥⎦ .(3.6)

Hence, from (3.5), we get that

WT
γ [H + V (0, H)]Wγ = 0 and WT

γ [H + V (0, H)]Wβ = 0 ,

which proves (3.3).
By noting the fact that Ωij ∈ [−1, 1] for all i, j = 1, . . . , n, from (3.5) and (3.6)

we obtain that

[H − V (0, H)] • [H + V (0, H)]

=
(
PT [H − V (0, H)]P

)
•

(
PT [H + V (0, H)]P

)
=

∑
i∈α, j∈γ

2(1 − Ωij)(1 + Ωij)H̃
2
ij +

∑
i∈β, j∈β

(1 − Ωij)(1 + Ωij)H̃
2
ij

≥ 0 ,

which proves (3.4). This completes the proof.

4. The squared smoothing Newton method. Let Ψ : S(n1, . . . , nm) →
S(n1, . . . , nm) be locally Lipschitz continuous. Let G : R×S(n1, . . . , nm) → S(n1, . . . ,
nm) be an approximate function of Ψ such that G is continuously differentiable at
(ε,X) ∈ R × S(n1, . . . , nm) unless ε = 0 and

lim
(ε,Y )→(0,X)

G(ε, Y ) = Ψ(X) .

The existence of such a G was proved in [31] for vector-valued functions. It can be
easily extended to matrix-valued functions by making use of the isometry between R

n

and S(n1, . . . , nm). For the SDP and the SDCP, there are many choices for G. In
particular, a computationally efficient form for the SDCP is

G(ε,X) : = X − [X − F (X) + Φ(ε,X − F (X))] /2 .(4.1)

The squared smoothing Newton method, in particular, solves the auxiliary equation

E(ε,X) :=

[
ε

G(ε,X)

]
= 0(4.2)

and uses the merit function φ(Z) := ε2 + ‖G(Z)‖2
for the line search, where Z :=

(ε,X).
Let ε̄ ∈ R++ and η ∈ (0, 1) be such that ηε̄ < 1. Define an auxiliary point Z̄ by

Z̄ : = (ε̄, 0) ∈ R × S(n1, . . . , nm)

and θ : R × S(n1, . . . , nm) �→ R+ by

θ(Z) : = ηmin{1, φ(Z)} .
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Let

N : = {Z = (ε,X) ∈ R × S(n1, . . . , nm) : ε ≥ θ(Z)ε̄ } .
Algorithm 4.1.

Step 0. Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, X0 ∈ S(n1, . . . , nm)
be an arbitrary point and k := 0.

Step 1. If E(Zk) = 0, then stop. Otherwise, let θk := θ(Zk).
Step 2. Compute ∆Zk := (∆εk,∆Xk) ∈ R × S(n1, . . . , nm) by

E(Zk) + JE(Zk)(∆Zk) = θkZ̄ .(4.3)

Step 3. Let lk be the smallest nonnegative integer l satisfying

φ(Zk + δl∆Zk) ≤ [ 1 − 2σ(1 − ηε̄)δl ]φ(Zk) .(4.4)

Define Zk+1 := Zk + δlk∆Zk.
Step 4. Replace k by k + 1 and go to Step 1.

Theorem 4.2. Assume that
(i) for every k ≥ 0, if εk ∈ R++ and Zk ∈ N , then JE(Zk) is nonsingular; and
(ii) for any accumulation point Z∗ = (ε∗, X∗) of {Zk}, if ε∗ > 0 and Z∗ ∈ N ,

then JE(Z∗) is nonsingular.
Then an infinite sequence {Zk} ⊂ N is generated by Algorithm 4.1 and each

accumulation point Z∗ of {Zk} is a solution of E(Z) = 0. Moreover, if E is strongly
semismooth at Z∗ and if all V ∈ ∂BE(Z∗) are nonsingular, then the whole sequence
{Zk} converges to Z∗,

‖Zk+1 − Z∗ ‖ = O(‖Zk − Z∗ ‖2),(4.5)

and

εk+1 = O((εk)2) .(4.6)

The vector version of the above convergence result is proved in [26], where the
smoothing parameter is a vector rather than a scalar. However, the proof was inde-
pendent of the dimension of the parameter vector. Therefore, with a slight revision
if necessary, its matrix version can be established similarly. For brevity we omit the
proof.

The key conditions for quadratic convergence of Algorithm 4.1 are: (a) the
strong semismoothness of the smoothing function E and (b) the nonsingularity of
all V ∈ ∂BE(Z∗). (In [26], ∂E(Z∗), rather than ∂BE(Z∗), was used. However, it is
easy to check whether the convergence properties are still valid if we replace ∂E(Z∗)
by ∂BE(Z∗) in the analysis.) In the subsequent sections we will provide sufficient con-
ditions for (b) to hold in the cases of SDP and SDCP where (a) is naturally implied
by the strong semismoothness of Φ.

5. Application to the SDP. In this section we shall show how to use Algorithm
4.1 to solve (1.4), which constitutes the optimality conditions of the SDP. For this
purpose, we assume that {Ai}mi=1 are linearly independent, i.e., any α ∈ R

m satisfying∑m
i=1 αiAi = 0 implies αi = 0, i = 1, . . . ,m.

Define A : S → R
m as

A(X) : =

⎡⎢⎢⎣
A1 • X

...

Am • X

⎤⎥⎥⎦ , X ∈ S .
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Then solving (1.4) is equivalent to finding a solution to

Ψ(X, y, S) : =

⎡⎢⎢⎢⎣
A(X) − b

m∑
i=1

yiAi + S − C

X − [X − S]+

⎤⎥⎥⎥⎦ = 0, (X, y, S) ∈ S × R
m × S .(5.1)

Define G : R × S × R
m × S → R

m × S × S as

G(ε,X, y, S) : =

⎡⎢⎢⎢⎣
A(X) − b

m∑
i=1

yiAi + S − C

X − [X − S + Φ(ε,X − S)] /2

⎤⎥⎥⎥⎦ .(5.2)

Then G is continuously differentiable at (ε,X, y, S) with ε �= 0. Let

E(ε,X, y, S) : =

[
ε

G(ε,X, y, S)

]
.(5.3)

Hence, finding a solution of Ψ(X, y, S) = 0 is equivalent to finding a solution of
E(ε,X, y, S) = 0.

Similar smoothing functions for the SDP were first used in [6] and very recently
in [15]. Based on these smoothing functions, smoothing Newton methods were also
designed in [6, 15]. The major differences between our method and those in [6, 15]
in the context of SDP are (i) our algorithm needs to solve only one linear system per
iteration while the methods in [6, 15] need to solve two; (ii) quadratic convergence
has been established for our algorithm while only superlinear convergence has been
established for methods in [6, 15]; and (iii) numerical results are reported in [6, 15]
while our paper is focused on theoretical analysis.

The next result shows that JE(ε,X, Y, S) is nonsingular at (ε,X, y, S) ∈ R×S ×
R

m × S with ε �= 0. Similar proofs can be found in [6, 15, 34].
Proposition 5.1. For any (ε,X, y, S) ∈ R×S×R

m×S with ε �= 0, JE(ε,X, Y, S)
is nonsingular.

Proof. By Lemma 2.3, we know that JE(ε,X, Y, S) exists. Suppose that there
exists (τ,H, z, T ) ∈ R × S × R

m × S such that

JE(ε,X, Y, S)(τ,H, z, T ) = 0 ;

i.e., ⎡⎢⎢⎢⎢⎢⎢⎢⎣

τ

A(H)

m∑
i=1

ziAi + T

H − [H − T + JΦ(ε,X − S)(τ,H − T )] /2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0,(5.4)

which implies that

τ = 0 and 2H − [H − T + JΦ(ε,X − S)(0, H − T )] = 0 .
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Hence, by Lemma 2.3,

2H −
[
H − T + L−1

Φ(ε,X−S)L(X−S)(H − T )
]

= 0 ,

which implies that

LΦ(ε,X−S)(H + T ) = L(X−S)(H − T ) ;

i.e., (
ε2I + (X − S)2

)1/2
(H + T ) + (H + T )

(
ε2I + (X − S)2

)1/2

= (X − S)(H − T ) + (H − T )(X − S) .

Since X − S ∈ S, there exist an orthogonal matrix P and a diagonal matrix Λ of
eigenvalues of X − S such that

X − S = PΛPT .

By denoting H̃ := PTHP and T̃ := PTTP , we have that

( ε2I + Λ2 )1/2 (H̃ + T̃ ) + (H̃ + T̃ )( ε2I + Λ2 )1/2 = Λ(H̃ − T̃ ) + (H̃ − T̃ )Λ .

Hence,

H̃ + T̃ = Ω ◦ (H̃ − T̃ ) ,

where the matrix Ω ∈ S has entries

Ωij =

(√
ε2 + λ2

i +
√
ε2 + λ2

j

)−1

(λi + λj), i, j = 1, . . . , n.

Thus,

H̃ = Ω̃ ◦ T̃ ,

where the matrix Ω̃ ∈ S has entries

Ω̃ij =

(
λi + λj −

√
ε2 + λ2

i −
√
ε2 + λ2

j

)−1 (
λi + λj +

√
ε2 + λ2

i +
√
ε2 + λ2

j

)
,

where i, j = 1, . . . , n. From (5.4), we know that

Ai • H = 0, i = 1, . . . ,m, and

m∑
i=1

ziAi + T = 0 ,

which implies that

T • H =

m∑
i=1

ziAi • H + T • H =

(
m∑
i=1

ziAi + T

)
• H = 0 .

Hence,

0 = T • H = T̃ • H̃ = T̃ • (Ω̃ ◦ T̃ ) ,
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which, together with the fact that Ω̃ij < 0 for all i and j, implies that T̃ = 0. Thus,

H̃ = Ω̃ • T̃ = 0 and T = H = 0 .

From the linear independence of {Ai}mi=1 and that fact
∑m

i=1 ziAi + T = 0, we can
conclude that z = 0. This shows that JE(ε,X, y, S) is nonsingular.

Proposition 5.1 shows that Algorithm 4.1 is well defined when it is applied to the
SDP. We state it formally in the following theorem. Its proof is a direct application
of Theorem 4.2 and Proposition 5.1.

Theorem 5.2. If Algorithm 4.1 is applied to the SDP, then an infinite sequence
{Zk} is generated and each accumulation point Z∗ of {Zk} is a solution of E(Z) = 0.

For local convergence analysis of Algorithm 4.1 for the SDP, we need the non-
singularity of ∂BE(Z∗) at a solution Z∗ of E(Z) = 0. Next, we discuss a sufficient
condition to guarantee the nonsingularity of ∂BE(Z∗) at a strict complementary and
nondegenerate solution Z∗ = (0, X∗, y∗, S∗) of E(Z) = 0; i.e., Z∗ satisfies the follow-
ing two conditions: (a) X∗ +S∗ � 0 and (b) for any (H, z, T ) ∈ S×R

m×S satisfying

A(H) = 0,
m∑
i=1

ziAi + T = 0, and X∗T + HS∗ = 0 ,

it holds that H = T = 0. Condition (a) is called the strict complementarity, under
which E is continuously differentiable at Z∗. Condition (b) was first introduced by
Kojima, Shida, and Shindoh [16] for local analysis of interior-point methods. Condi-
tions (a) and (b) are also used in noninterior-point methods for solving the SDP [6, 15].
See [1] for a discussion on strict complementarity and nondegeneracy conditions in
the SDP.

Proposition 5.3. Let Z∗ = (0, X∗, y∗, S∗) ∈ R × S × R
m × S be a strict com-

plementary and nondegenerate solution of E(Z) = 0. Then JE(Z∗) is nonsingular.
Proof. Since (X∗, y∗, S∗) is a solution to the SDP, we have that

X∗ � 0, S∗ � 0, X∗S∗ = S∗X∗ = 0 ,

which implies that there exists an orthogonal matrix P such that

X∗ = P ∆PT and S∗ = P ΣPT ,

where ∆ = diag (δ1, . . . , δn) and Σ = diag (σ1, . . . , σn) are two positive semidefinite
diagonal matrices and δiσi = 0, i = 1, . . . , n, where δ1, . . . , δn and σ1, . . . , σn are
eigenvalues of X∗ and S∗, respectively. By using the fact that X∗ + S∗ � 0, we also
have that

δi + σi > 0, i = 1, . . . , n .

Denote Λ := ∆ − Σ. Then, Λ = diag (λ1, . . . , λn) is nonsingular and

X∗ − S∗ = P ΛPT ,

where λi = δi − σi, i = 1, . . . , n.
Suppose that there exists (τ,H, z, T ) ∈ R × S × R

m × S such that

JE(0, X∗, y∗, S∗)(τ,H, z, T ) = 0 .
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We have that τ = 0 and⎡⎢⎢⎢⎢⎣
A(H)

m∑
i=1

ziAi + T

H + T − JΦ(0, X∗ − S∗)(0, H − T )

⎤⎥⎥⎥⎥⎦ = 0 .(5.5)

In particular, from the third equality of (5.5), we obtain that

PT (H + T )P − PT JΦ(0, X∗ − S∗)(0, H − T )P = 0 ,

which, together with Proposition 3.1, implies that

H̃ + T̃ = PT JΦ(0, X∗ − S∗)(0, H − T )P = Ω ◦ (H̃ − T̃ ) ,

where H̃ := PTHP , T̃ = PTTP , and Ω ∈ S has entries

Ωij =
λi + λj

|λi | + |λj |
, i, j = 1, . . . , n .

Hence,

(E − Ω) ◦ H̃ + T̃ ◦ (E + Ω) = 0 ,(5.6)

where E ∈ S denotes the matrix whose entries are all ones. Denote two index sets

α : = {λi : λi > 0 } and γ : = {λi : λi < 0 } .

By noting the fact that λi = δi if λi > 0 and λi = −σi if λi < 0 and α∪γ = {1, . . . , n},
from (5.6) we have that

T̃ij = 0 ∀ (i, j) ∈ α× α;

H̃ijσj + T̃ijδi = 0 ∀ (i, j) ∈ α× γ

and

H̃ij = 0 ∀ (i, j) ∈ γ × γ .

Thus,

∆T̃ + H̃Σ = 0 ;

i.e.,

X∗T + HS∗ = 0,

which, together with the first and second equalities of (5.5) and the nondegeneracy
assumption at Z∗, shows that

H = T = 0.

The linear independence of {Ai}mi=1 and the fact that T = 0 imply z = 0. Hence,
JE(Z∗) is nonsingular.
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We can now state quadratic convergence of Algorithm 4.1 for solving the SDP,
which does not require a proof.

Theorem 5.4. If an accumulation point Z∗ of {Zk} generated by Algorithm 4.1
for solving the SDP is a strict complementary and nondegenerate solution of E(Z) =
0, then the whole sequence {Zk} converges to Z∗ with

‖Zk+1 − Z∗ ‖ = O(‖Zk − Z∗ ‖2)(5.7)

and

εk+1 = O((εk)2) .(5.8)

In the above theorem for the SDP, we need the nondegeneracy to prove quadratic
convergence of Algorithm 4.1. In the next section, we shall show that, for the SDCP,
this assumption can be replaced by the positive definiteness of the Jacobian of the
problem on a certain subspace.

6. Application to the SDCP. In this section, we shall deduce quadratic con-
vergence of the squared smoothing Newton method in solving the SDCP. We first
prove a result on the generalized Jacobian for a composite function.

Proposition 6.1. Let S,S1, and S2 be symmetric block-diagonal matrix spaces.
Let F : S → S1 be continuously differentiable on an open neighborhood N of X and
Ψ : S1 → S2 be locally Lipschitz continuous and semismooth on an open neighborhood
of F (X). Then, for any H ∈ S, it holds that

∂BΥ(X)(H) ⊆ ∂BΨ(F (X))JF (X)(H),(6.1)

where for any X ∈ N , Υ(X) := Ψ(F (X)).
Proof. Since Υ is locally Lipschitz continuous, by Rademacher’s theorem (see [28,

page 403]), Υ is differentiable almost everywhere in N . For any V ∈ ∂BΥ(X), there
exists a sequence of differentiable points {Xk} ⊂ N of Υ converging to X such that

V = lim
k→∞

JΥ(Xk) .

Since Ψ is directionally differentiable on an open neighborhood of F (X), for any
H ∈ S,

JΥ(Xk)(H) = Ψ′(F (Xk);JF (Xk)(H)) .

Since Ψ is semismooth at F (Xk), there exists a W ∈ ∂BΨ(F (Xk)) such that [25]

Ψ′(F (Xk);JF (Xk)(H)) = W JF (Xk)(H).

Thus,

JΥ(Xk)(H) ∈ ∂BΨ(F (Xk))JF (Xk)(H) ,

which, together with the upper semicontinuity of ∂B (see [25]), implies that

lim
k→∞

JΥ(Xk)(H) ∈ ∂BΨ(F (X))JF (X)(H) .

This proves (6.1).
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In the following analysis, we assume that F : S → S is continuously differentiable
and E : R × S → R × S is defined as

E(ε,X) =

[
ε

G(ε,X)

]
, (ε,X) ∈ R × S ,(6.2)

where G : R × S → S is defined by (4.1); i.e.,

G(ε,X) = X − [X − F (X) + Φ(ε,X − F (X))] /2

and for any Y ∈ S,

Φ(ε, Y ) = ( ε2I + Y 2 )1/2 .

Then solving the SDCP is equivalent to solving the following equation:

E(ε,X) = 0 .(6.3)

The next result is on the nonsingularity of the B-subdifferential of E at (0, X) ∈
R × S.

Proposition 6.2. Suppose that for a given X ∈ S, the Jacobian JF (X) of F
at X is positive definite on the linear subspace L(X − F (X);S+), the affine hull of
C(X − F (X);S+). Then all U ∈ ∂BE(0, X) are nonsingular.

Proof. Let U be an element of ∂BE(0, X). Assume that (τ,H) ∈ R × S is such
that U(τ,H) = 0. Then, from the definition of the B-subdifferential of E, we know
that τ = 0 and there exists a W ∈ ∂BG(0, X) such that W (0, H) = 0. By Proposition
6.1, there exists a V ∈ ∂BΦ(0, X − F (X)) such that

W (0, H) = H − [H − JF (X)(H) + V (0, H − JF (X)(H))]/2 ,

which, together with the fact that W (0, H) = 0, implies that

2H − [H − JF (X)(H)] − V (0, H − JF (X)(H)) = 0 .

Let H := H − JF (X)(H). We have that

2H = H + V (0, H)(6.4)

and that

2
[
H + JF (X)

(
(H + V (0, H))/2

)]
−H − V (0, H) = 0 ;

i.e.,

H − V (0, H) + JF (X)(H + V (0, H)) = 0 ,

which implies that

[H + V (0, H)] • [H − V (0, H)]

+[H + V (0, H)] • [JF (X)(H + V (0, H))] = 0 .(6.5)

By Proposition 3.1, (6.5), and the assumption that JF (X) is positive definite on
L(X − F (X);S+), we conclude that

H + V (0, H) = 0 ,

which, together with (6.4), implies that H = 0. This shows that for any (τ,H) ∈ R×S
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satisfying U(τ,H) = 0, one has (τ,H) = 0. Hence, U is nonsingular. The proof is
completed.

Finally, we can state quadratic convergence of the squared smoothing Newton
method for solving the SDCP.

Theorem 6.3. Suppose that F : S → S is continuously differentiable on S. Sup-
pose that for each X ∈ S, JF (X) is positive semidefinite. Then an infinite sequence
{Zk} is generated by Algorithm 4.1 for solving (6.3) and each accumulation point Z∗

of {Zk} is a solution of E(Z) = 0. Moreover, if JF (·) is Lipschitz continuous around
X∗ and JF (X∗) is positive definite on the linear subspace L(X∗ − F (X∗);S+), the
affine hull of C(X∗ − F (X∗);S+), then the whole sequence {Zk} converges to Z∗,

‖Zk+1 − Z∗‖ = O(‖Zk − Z∗‖2),(6.6)

and

εk+1 = O((εk)2) .(6.7)

Proof. For any ε �= 0 and X ∈ S, by Lemma 2.3, E is continuously differentiable at
(ε,X). It is easy to check that JE(ε,X) is nonsingular if and only if JG(ε,X)(0, H) =
0 implies H = 0. It has been shown by Chen and Tseng [6] that the latter is true.
Thus, for any ε �= 0 and X ∈ S, JE(ε,X) is nonsingular. By Theorem 4.2, an infinite
sequence {Zk} is generated by Algorithm 4.1 and each accumulation point Z∗ of {Zk}
is a solution of E(Z) = 0.

If JF (·) is Lipschitz continuous around X∗, then by Theorem 2.5 and a property
on the strong semismoothness of a composite function (originally due to Fischer [10];
for the matrix version, see [32, Theorem 3.10]), we know that E is strongly semismooth
at (0, X∗). Furthermore, by Proposition 6.2, all U ∈ ∂BE(0, X∗) are nonsingular.
Thus, by Theorem 4.2, the whole sequence {Zk} converges to Z∗, and (6.6) and (6.7)
hold.

7. Conclusions. We have studied quadratic convergence of a squared smoothing
Newton method for nonsmooth matrix equations. For the SDCP, the strong semi-
smoothness of G, together with the positive definiteness of JF (X∗) on the affine hull
of C(X∗ − F (X∗);S+), implies that the proposed algorithm has quadratic rate of
convergence without requiring the strict complementarity.

There are several possible directions to extend our work. One direction is to
study the strong semismoothness of other smoothing functions used in [6] and then
to improve the local analysis in [6]; another direction is to relax the nonsingularity
condition on the Jacobians. It is also possible to use some regularization techniques,
for example, the Tikhonov-type regularization, to get stronger global convergence
results as has been done for vector-valued complementarity problems [8, 30].

Acknowledgments. The authors are grateful to the referees for their very con-
structive comments. In particular, the present proof of Lemma 2.4 was suggested by
a referee.
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