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Abstract. We study subdifferential conditions of the calmness property for multifunctions
representing convex constraint systems in a Banach space. Extending earlier work in finite dimensions
[R. Henrion and J. Outrata, J. Math. Anal. Appl., 258 (2001), pp. 110–130], we show that, in contrast
to the stronger Aubin property of a multifunction (or metric regularity of its inverse), calmness can
be ensured by corresponding weaker constraint qualifications, which are based only on boundaries
of subdifferentials and normal cones rather than on the full objects. Most of the results can be
immediately interpreted in the context of error bounds.
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1. Introduction. Following [24, p. 399], a multifunction M : Y ⇒ X between
metric spacesX,Y is calm at some point (ȳ, x̄) of its graph if there exist neighborhoods
V, U of ȳ, x̄, respectively, and some L > 0 such that the corresponding distance
functions satisfy

d(x,M(ȳ)) ≤ Ld(y, ȳ) ∀x ∈M(y) ∩ U , ∀y ∈ V.(1.1)

With U := X, calmness reduces to the upper Lipschitz property of multifunctions,
introduced by Robinson [23]. Obviously, calmness is also weaker than the well-known
Aubin property of multifunctions

d(x,M(y′)) ≤ Ld(y, y′) ∀x ∈M(y) ∩ U , ∀y, y′ ∈ V.(1.2)

(In particular, M(y) = ∅ for y close to but different from ȳ is possible under calm-
ness but violates the Aubin property.) Calmness plays a key role in many issues of
mathematical programming like optimality conditions, error bounds, or stability of
solutions. The focus of this paper will be on multifunctions defined by convex systems
in a Banach space X like

M(y) := {x ∈ C | f(x) ≤ y} or M(y) := {x ∈ X | d(x,C) + d(x,D) ≤ y} (y ∈ R),
(1.3)
where C,D ⊆ X are closed, convex subsets and f is convex. Of course, writing down
the calmness property (1.1) for the first system considered in (1.3) immediately yields
the existence of a local error bound for f with respect to the set C. Hence all results
obtained for this first part have an immediate link to the context of error bounds,
which are extensively studied in the literature (e.g., [5], [15], [14], [16], [17], [19]). The
aim of this paper is to derive dual (i.e., formulated in terms of the subdifferential and
normal cone) conditions for calmness of the systems in (1.3) which are weaker than
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the well-known Slater-type conditions implying the stronger Aubin property (1.2) of
M (or, equivalently, the metric regularity of M−1).

IfM is a polyhedral multifunction, then it is automatically calm (see [23]). Apart
from this special class, certain conditions have to hold true in order to ensure calmness,
and it seems natural to characterize these conditions in terms of well-known objects
from nonsmooth analysis such as (co-) derivatives, (sub-) differentials, or tangent or
normal cones. Similar characterizations have been successfully established for the
stronger Aubin property. In finite dimensions, for instance, (1.2) is equivalent to each
of the following two conditions, described by Mordukhovich [18] and Aubin (see, e.g.,
[1] and [6, Corollary 1.19] for necessity), respectively:

D∗M(ȳ, x̄)(0) = {0},(1.4)

∃α, β > 0 : B(0, 1) ⊆ D−M−1(x, y)(B(0, α)) ∀x, y ∈ GphM ∩B((x̄, ȳ), β).(1.5)

Here, D∗ and D− refer to Mordukhovich’s coderivative and to Aubin’s contingent
derivative, respectively, while B refers to appropriate closed balls. As coderivatives
relate to normal cones while derivatives are associated with tangent cones, the first
criterion above is of dual nature and the second one is of primal nature. The question
arises of whether the criteria above can be modified appropriately to characterize the
weaker calmness property (1.1) rather than (1.2). A primal criterion of calmness was
found in [9, Proposition 2.1] (sufficiency) and [10, Proposition 4.1] (necessity):

DM(ȳ, x̄)(0) = {0}.(1.6)

Note that (1.6) immediately enforces the isolatedness of x̄ in M(ȳ) because a se-
quence xn → x̄, xn ∈M(ȳ), xn �= x̄ would generate a nontrivial tangent vector (0, ξ)
to GphM at (ȳ, x̄), whence a contradiction 0 �= ξ ∈ DM(ȳ, x̄)(0) to (1.6). Conse-
quently, a reduced version of calmness (also called calmness on selections) is equiva-
lently characterized by (1.6). A dual characterization of calmness in the broader sense
of (1.1) was given in [7] for the special case of finite-dimensional multifunctions

M(y) := {x ∈ C|g(x) + y ∈ D},

where C ⊆ R
p, D ⊆ R

m are closed subsets and g : R
p → R

m is locally Lipschitz.
In this special case, Mordukhovich’s criterion (1.4) for the Aubin property takes the
form

⋃
y∗∈ND(g(x̄))\{0}

D∗g(x̄)(y∗) ∩ (−NC(x̄)) = ∅,

where N refers to Mordukhovich’s normal cone. It was shown in [7] that under mild
assumptions, calmness is implied by the weaker condition

⋃
y∗∈ND(g(x̄))\{0}

D∗g(x̄)(y∗) ∩ (−bdNC(x̄)) = ∅,

where “bd” refers to the topological boundary. Hence, reducing Lipschitzian stability
to upper Lipschitzian stability corresponds to a transition from certain geometric
objects to their boundaries. This fact becomes most evident for the simple case of
one single inequality g(x) + y ≤ 0 (i.e., D = R−): if g (as a function) and C (as a
set) are regular in the sense of Clarke, then calmness of M holds true at some point
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(0, x̄) with g(x̄) = 0, provided that bd ∂g(x̄) ∩ (−bdNC(x̄)) = ∅ (see Theorem 4.2
in [7]). Here, “∂” refers to either Mordukhovich’s or Clarke’s subdifferential (which
coincide due to regularity). This last constraint qualification can be opposed again to
the corresponding criterion of the Aubin property, which now takes the form ∂g(x̄)∩
(−NC(x̄)) = ∅. For absent abstract constraints (C = R

p) the calmness condition
reduces to 0 /∈ bd ∂g(x̄) (as opposed to the condition 0 /∈ ∂g(x̄), which ensures the
stronger Aubin property).

The aim of this paper is to study possible infinite-dimensional extensions of the
previous results. For the first system in (1.3), a counterexample will show that, even
for Clarke-regular data, the mentioned constraint qualification bd ∂g(x̄)∩(−bdNC(x̄)) =
∅ no longer implies calmness in a Banach space setting. It does, however, for convex
data, and in this case it can even be weakened again. This gives an improvement
even for the finite-dimensional case. Therefore, the focus of the paper is on convex
constraint systems.

2. Notation. Throughout this paper, X will denote some Banach space, and X∗

its dual endowed with the strong topology. In these spaces, B(α, β) and B∗(α, β) are
the closed balls around α with radius β, whereas B0(α, β) refers to the corresponding
open ball in X. By iS we denote the indicator function of a closed set S ⊆ X, and by
epif the epigraph of some function f : X → R ∪ {∞}. N(S;x), ∂f , and ∂∞f refer to
the normal cone to S at some x ∈ S and to the usual and singular subdifferentials of
f , respectively, all in the sense of convex analysis. In contrast, ∂c represents Clarke’s
subdifferential. “bd ” and “int” are the topological boundary and interior. For a
multifunction M : X ⇒ Y between Banach spaces,

GphM = {(x, y) ∈ X × Y |y ∈M(x)},
rangeM = {y ∈ Y | ∃x ∈ X, y ∈M(x)},

M−1 : Y ⇒ X, M−1(y) = {x ∈ X|y ∈M(x)}
denote its graph, its range, and its inverse, respectively.

3. Convex constraint systems with a perturbed inequality. In this sec-
tion, we consider constraint systems involving a fixed abstract constraint set and an
inequality which is subject to perturbations. More precisely, we are interested in the
calmness property (1.1) of the multifunction

M(y) := {x ∈ C | f(x) ≤ y} (y ∈ R),(3.1)

where C is a closed, convex subset of some Banach space X and f is a convex, lower
semicontinuous function. First, we state an auxiliary result. Recall from [2] that a set
S ⊆ X is compactly epi-Lipschitzian at some x0 ∈ S if there exist a norm-compact
set K and a constant r > 0 such that

S ∩B(x0, r) +B(0, tr) ⊆ S − tK ∀t ∈ (0, r).

Lemma 3.1. For C and f as introduced above, the sum rule

∂(f + iC)(x̄) ⊆ ∂f(x̄) +N(C; x̄)

applies if the following constraint qualification is satisfied:

∂∞f(x̄) ∩ −N(C; x̄) = {0} and
C or epi f is compactly epi-Lipschitzian at x̄.

}
(CQ∗)
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Proof. Define two closed and convex subsets of X × R by D1 = epi f and D2 =
C × R. The first part of (CQ∗) implies that

N(D1; (x̄; f(x̄))) ∩ −N(D2; (x̄; f(x̄))) = {0}.
Along with the second part of (CQ∗), this last relation is sufficient for the intersection
rule

N(D1 ∩D2; (x̄; f(x̄))) ⊆ N(D1; (x̄; f(x̄))) +N(D2; (x̄; f(x̄)))

(see [11, Corollary 4.5]). Now, let x∗ ∈ ∂(f + iC)(x̄) be arbitrarily given, i.e., 〈x∗, x−
x̄〉 ≤ f(x)− f(x̄) for all x ∈ C. Consequently,

〈(x∗,−1), (x, t)− (x̄, f(x̄))〉 ≤ 0 ∀x ∈ C, ∀t ≥ f(x).

In other words, (x∗,−1) ∈ N(D1 ∩ D2; (x̄; f(x̄))), and the above intersection rule
ensures that (x∗,−1) = (y∗, r) + (z∗, t) for certain (y∗, r) ∈ N(D1; (x̄; f(x̄))) and
(z∗, t) ∈ N(D2; (x̄; f(x̄))). By definition of D2, one gets t = 0 and z∗ ∈ N(C; x̄).
It results that r = −1; hence y∗ ∈ ∂f(x̄) by definition of D1. Summarizing, x∗ ∈
∂f(x̄) +N(C; x̄), as we wanted to show.

Remark 3.2. The constraint qualification (CQ∗) in Lemma 3.1 is always satisfied
if the convex function f is continuous at x̄ or if x̄ is an interior point of C. The second
part of (CQ∗) holds true whenever X is finite-dimensional or the convex set C has
nonempty interior.

Theorem 3.3. With the setting introduced above, the multifunction M in (3.1)
is calm at a point (0, x̄) ∈ GphM of its graph if one of the following conditions is
satisfied:

f(x̄) < 0,(3.2)

bd ∂f(x̄) ∩ −bdN(C; x̄) �= ∂f(x̄) ∩ −N(C; x̄),(3.3)

bd ∂f(x̄) ∩ −bdN(C; x̄) = ∅, and (CQ∗).(3.4)

Proof. From (0, x̄) ∈ GphM it follows that x̄ ∈ C and f(x̄) ≤ 0. In case of (3.2),
it follows that

0 ∈ int [f(x̄),∞) ⊆ int rangeM−1.(3.5)

SinceM has a closed and convex graph, this last relation implies the metric regularity
of M−1 at (x̄, 0) by the Robinson–Ursescu theorem (see [21], [25]). However, the
metric regularity of M−1 at (x̄, 0) is equivalent to M having the Aubin property at
(0, x̄) (cf. [3], [20], [24]), which in turn implies the calmness of M at (0, x̄). Hence,
in what follows we assume that f(x̄) = 0. Suppose next that (3.3) is satisfied. Then,
since both ∂f(x̄) and −N(C; x̄) are (strongly) closed in X∗, it holds that

int ∂f(x̄) ∩ −N(C; x̄) �= ∅ or ∂f(x̄) ∩ −intN(C; x̄) �= ∅.(3.6)

If the first condition of (3.6) holds, then choose x∗ ∈ int ∂f(x̄) ∩ −N(C; x̄). Accord-
ingly, there exists some α > 0 such that B∗(x∗;α) ⊆ ∂f(x̄). In other words,

〈x∗ + αp∗, x− x̄〉 ≤ f(x)− f(x̄) = f(x) ∀p∗ ∈ B∗(0; 1), ∀x ∈ X.

It follows that

〈p∗, x− x̄〉 ≤ α−1(f(x)− 〈x∗, x− x̄〉) ≤ α−1f(x) ∀p∗ ∈ B∗(0; 1), ∀x ∈ C,
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since x∗ ∈ −N(C; x̄). Consequently,

‖x− x̄‖ ≤ α−1f(x) ∀x ∈ C and f(x) ≥ 0 ∀x ∈ C,(3.7)

and thus the desired calmness property of M follows (with U := X and V := R in
(1.1)):

d(x,M(0)) ≤ ‖x− x̄‖ ≤ α−1y = α−1d(y, 0) ∀y ∈ R, ∀x ∈M(y).

If the second condition of (3.6) holds true, then choose x∗ ∈ ∂f(x̄) ∩ −intN(C; x̄).
Now, there is some α > 0 such that B∗(x∗;α) ⊆ −N(C; x̄); hence

〈x∗ − αp∗, x− x̄〉 ≥ 0 or 〈p∗, x− x̄〉 ≤ α−1〈x∗, x− x̄〉 ∀p∗ ∈ B∗(0; 1), ∀x ∈ C.

Due to x∗ ∈ ∂f(x̄), this yields ‖x− x̄‖ ≤ α−1〈x∗, x− x̄〉 ≤ α−1f(x) for all x ∈ C. In
this way, we end up once more at relation (3.7) and, hence, at the calmness of M at
(0, x̄), as above.

Finally, assume that (3.4) holds. If 0 ∈ int ∂f(x̄), then—because of 0 ∈ ∂f(x̄) ∩
−N(C; x̄)—(3.3) is satisfied and calmness of M follows as shown before. Suppose
that 0 ∈ bd ∂f(x̄). When N(C; x̄) = X∗, calmness of M follows again from (3.3). In
the opposite case, N(C; x̄) �= X∗, it always holds that 0 ∈ −bdN(C; x̄), which gives
a contradiction to (3.4). It remains to check the case of

0 /∈ ∂f(x̄).(3.8)

Then, one has

∂f(x̄) ∩ −N(C; x̄) = ∅ or ∂f(x̄) ⊆ −intN(C; x̄).(3.9)

To verify this statement, assume that neither of the two conditions is satisfied. Then,
there exist x∗1, x

∗
2 ∈ ∂f(x̄) such that x∗1 ∈ −N(C; x̄) and x∗2 /∈ −intN(C; x̄). The

convexity of ∂f(x̄) and −N(C; x̄) guarantees the existence of some x∗ (on the line
segment [x∗1, x

∗
2]) such that x∗ ∈ ∂f(x̄) ∩ −bdN(C; x̄). By the cone property of

N(C; x̄), one has that tx∗ ∈ −bdN(C; x̄) for all t > 0. Due to the closedness of ∂f(x̄),
there must be some t∗ > 0 such that t∗x∗ /∈ ∂f(x̄) (otherwise we have a contradiction
with (3.8)). But then, since x∗ ∈ ∂f(x̄), there must exist some t̂ > 0 such that
t̂x∗ ∈ bd ∂f(x̄). At the same time, t̂x∗ ∈ −bdN(C; x̄), whence a contradiction to
(3.4), and (3.9) must hold true.

Now, the first case of (3.9) implies the existence of some x′ ∈ C such that f(x′) < 0
(Slater’s condition). Indeed, negating Slater’s condition means that x̄ is a minimum
of f over C or, equivalently, a free minimum of the lower semicontinuous function
f + iC . Consequently,

0 ∈ ∂(f + iC)(x̄) ⊆ ∂f(x̄) +N(C; x̄),

where we have applied Lemma 3.1. However, the obtained relation contradicts the
first case of (3.9). Hence, Slater’s condition is satisfied, and one has (3.5) with x̄
replaced by x′. Consequently, the calmness of M at x̄ follows as in the lines below
(3.5).

Concerning the second case of (3.9), assume first that ∂f(x̄) = ∅. Then, we are
back to the first case of (3.9) already considered. Finally, if ∂f(x̄) �= ∅, then the
second case of (3.9), along with (3.4), yields (3.3), and the calmness of M at (0, x̄)
follows again.
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For missing abstract constraints, a much simpler characterization of calmness can
be derived from Theorem 3.3, as follows.

Corollary 3.4. Let X be a Banach space, and f : X → R ∪ {∞} a convex,
lower semicontinuous function. Then, the multifunction M(y) := f−1(−∞, y] is calm
at a point (0, x̄) with f(x̄) ≤ 0 if

f(x̄) < 0 or 0 /∈ bd ∂f(x̄).(3.10)

Proof. The first condition of (3.10) coincides with (3.2); thus it suffices to consider
the second condition of (3.10). Evidently, in the setting of (3.1), we have C = X;
hence N(C; x̄) = bdN(C; x̄) = {0}. Along with 0 /∈ bd ∂f(x̄), this provides

bd ∂f(x̄) ∩ −bdN(C; x̄) = ∅;
hence (3.4) is satisfied. (Note that (CQ∗) is trivially satisfied in the context of this
corollary; see Remark 3.2.)

Note that in the setting of Corollary 3.4 we have the following implications:

(3.3) =⇒ 0 ∈ int ∂f(x̄) =⇒ (3.4) =⇒ (3.10).

Hence, in contrast to the alternative of conditions (3.3) and (3.4) in Theorem 3.3,
there is no point in considering (3.3) here in addition to (3.10). In the general setting
of Theorem 3.3, however, it is no longer true that (3.3) implies (3.4), as can be seen
from the second part of Example 3.6 below.

Remark 3.5. For finite-dimensional X, condition (3.4)—with the convex sub-
differential replaced by Clarke—was shown in [7] to be sufficient for calmness of the
multifunctionM if f is locally Lipschitzian and both f and C are regular in the sense
of Clarke. Theorem 3.3 demonstrates that this condition can be weakened to “(3.3) or
(3.4)” in the convex case even if X is infinite-dimensional. More precisely, one has the
following structure of constraint qualifications here (assuming that f is continuous at
x̄ ∈ C and f(x̄) = 0):

∂f(x̄) ∩ −N(C; x̄) = ∅ =⇒ (3.4) =⇒ (3.3) or (3.4)
�

Slater’s condition ⇓
�

Aubin property of M at (0, x̄) calmness of M at (0, x̄).

(3.11)

In this diagram, we mean by Slater’s condition the existence of some x∗ ∈ C such
that f(x∗) < 0 (which is equivalent to the Aubin property of M at (0, x̄) or to the
metric regularity of M−1 at (x̄, 0) by the Robinson–Ursescu theorem).

We continue with some examples.
Example 3.6. The three constraint qualifications considered in Remark 3.5 are

strictly different. Setting, for instance, f(x) = |x|, C = R, x̄ = 0, Slater’s condition
is obviously violated (and also 0 ∈ ∂f(x̄) ∩ −N(C; x̄) �= ∅), whereas (3.4) holds true:

bd ∂f(x̄) ∩ −bdN(C; x̄) = {−1, 1} ∩ {0} = ∅.
Indeed, M is calm at (0, x̄) but fails to have the Aubin property there. Another example
is f(x) = f(x1, x2) = ‖x‖, C = {(x1, x2) | x1 ≥ 0}. Then, at x̄ = (0, 0), one has

bd ∂f(x̄) ∩ −bdN(C; x̄) = {(x1, x2) | x2
1 + x2

2 = 1, x1 ≥ 0, x2 = 0} = {(1, 0)},
∂f(x̄) ∩ −N(C; x̄) = {(x1, x2) | x2

1 + x2
2 ≤ 1, x1 ≥ 0, x2 = 0}

= conv {(0, 0), (1, 0)}.
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Hence, (3.4) is violated here, whereas (3.3) is satisfied, and thus Theorem 3.3 ensures
the calmness of M at (0, x̄). Again, M fails to have the Aubin property.

The following example demonstrates that Theorem 3.3 provides a sufficient but
not a necessary condition for the calmness of the multifunction M considered there.

Example 3.7. Let X = C = R, x̄ = 0, and f(x) = max{x, 0}. Then, (0, x̄) ∈
GphM , f(x̄) = 0, and M(0) = R−. One has M(y) = ∅ for y < 0, and M(y) =
(−∞, y] for y ≥ 0; hence d(x,M(0)) ≤ d(y, 0) for all y ∈ R and all x ∈ M(y). This
means calmness of M at (0, x̄). On the other hand, since ∂f(x̄) = [0, 1], (3.10) is
violated, which implies the violation of both (3.4) and (3.3).

Note that, in the last example, M was a polyhedral multifunction; hence it seems
that one cannot recover by Theorem 3.3 Robinson’s result mentioned in the introduc-
tion. However, this will be possible after some modification, following the ideas of
[12].

The next example requires some technical work. It illustrates the limitation
of Theorem 3.3 to convex data. In finite dimensions, the condition “f(x̄) < 0 or
0 /∈ bd ∂cf(x̄)” (i.e., (3.10) with the convex subdifferential replaced by Clarke’s) was
found in [7] to ensure calmness of the multifunctions (3.1) without abstract constraints
(i.e., C = X) as long as f is regular at x̄ in the sense of Clarke. This is no longer true
in infinite dimensions unless the data are restricted to be convex as in Corollary 3.4.

Example 3.8. For k ∈ N, let τk ∈ (0, k−2) be the unique solution of τ+k
√
τ = 1.

Define the sequence of real functions

ϕk(τ) :=

{ |τ |(1− k
√|τ |) if τ ∈ [−τk, τk],

τ2
k if |τ | ≥ τk.

Elementary analysis shows that each ϕk is (globally) Lipschitz continuous with mod-
ulus 1 and regular at zero in the sense of Clarke. (Close to the origin, each ϕk can be
represented as the maximum of two C1- functions.) Furthermore,

ϕk ≥ 0, ϕk(τ) = 0 ⇐⇒ τ = 0, and ϕk(τk) = τ2
k ∀k ∈ N,∀τ ∈ R.(3.12)

Now, let X = l1, and define f : X → R by f(x) :=
∑∞

k=1 ϕk(xk). Evidently, f(0) = 0
by (3.12). Since ϕk(τ) ≤ τ2

k ≤ k−4 for all τ ∈ R and all k ∈ N, f is well defined. For
arbitrary x, y ∈ X, one has

|f(x)− f(y)| =
∣∣∣∣∣
∞∑
k=1

(ϕk(xk)− ϕk(yk))

∣∣∣∣∣ ≤
∞∑
k=1

|ϕk(xk)− ϕk(yk)|

≤
∞∑
k=1

|xk − yk| = ‖x− y‖1;

hence f is (globally) Lipschitz continuous with modulus 1.
Next, we calculate Clarke’s directional derivative f0(0;h) of f at zero in arbitrary

direction h ∈ X. By definition (see [4]), one has

f0(0;h) = lim sup
t↓0,x→0

f(x+ th)− f(x)

t
= lim

n→∞
f(x(n) + t(n)h)− f(x(n))

t(n)

= lim
n→∞

∞∑
k=1

ϕk(x
(n)
k + t(n)hk)− ϕk(x

(n)
k )

t(n)
,(3.13)
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where x(n) → 0 and t(n) ↓ 0 are suitable sequences realizing the above limsup as a
limit. Now, we fix an arbitrary k′ ∈ N. Assume that there exist ε > 0 and n0 ∈ N

such that

ϕk′(x
(n)
k′ + t(n)hk′)− ϕk′(x

(n)
k′ )

t(n)
≤ ϕk′(t(n)hk′)

t(n)
− ε ∀n ≥ n0.(3.14)

In order to lead (3.14) to a contradiction, define a sequence x̃(n) ∈ X by

x̃
(n)
k :=

{
x

(n)
k , k �= k′,

0, k = k′,
∀k, n ∈ N.

It follows that x̃(n) → 0 and, in view of (3.12),

f(x̃(n) + t(n)h)− f(x̃(n))

t(n)
=

∞∑
k=1,k �=k′

ϕk(x
(n)
k + t(n)hk)− ϕk(x

(n)
k )

t(n)
+
ϕk′(t(n)hk′)

t(n)

≥
∞∑
k=1

ϕk(x
(n)
k + t(n)hk)− ϕk(x

(n)
k )

t(n)
+ ε

=
f(x(n) + t(n)h)− f(x(n))

t(n)
+ ε

for n ≥ n0, whence the contradiction with (3.13),

lim sup
t↓0,x→0

f(x+ th)− f(x)

t
≥ f0(0;h) + ε.

Therefore, we may negate (3.14) in order to obtain a subsequence symbolized by the
index m(n) such that

lim inf
n→∞

ϕk′(x
(m(n))
k′ + t(m(n))hk′)− ϕk′(x

(m(n))
k′ )

t(m(n))

≥ lim
n→∞

ϕk′(t(m(n))hk′)

t(m(n))
= dϕk′(0;hk′) = ϕ0

k′(0;hk′)

≥ lim sup
n→∞

ϕk′(x
(m(n))
k′ + t(m(n))hk′)− ϕk′(x

(m(n))
k′ )

t(m(n))
,(3.15)

where “dϕk′” refers to the usual directional derivative, which, by the already stated
regularity of ϕk′ in the sense of Clarke, exists and coincides with ϕ0

k′ . From the
definition of ϕk′ , one calculates dϕk′(0;hk′) = |hk′ |. Since k′ was arbitrarily fixed,
(3.15) provides

lim
n→∞

ϕk(x
(m(n))
k + t(m(n))hk)− ϕk(x

(m(n))
k )

t(m(n))
= |hk| ∀k ∈ N.

This finally allows us to interchange limit and summation in the last term of (3.13)
(upon passing to the subsequence m(n) there too):

f0(0;h) =

∞∑
k=1

|hk| = ‖h‖1 ∀h ∈ X.
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Consequently, ∂cf(0) = B1, where ∂cdenotes Clarke’s subdifferential and B1 is the
unit ball in X.

Next, we verify that f is regular at 0 in the sense of Clarke. To this aim, we
calculate its usual directional derivative at 0 in arbitrary direction h. Since for each
sequence t(n) ↓ 0 it holds that

lim
n→∞

ϕk(t
(n)h̃)

t(n)
= dϕk(0; h̃) = |h̃| ∀h̃ ∈ R,∀k ∈ N,

one may interchange limit and summation once more:

‖h‖1 =

∞∑
k=1

lim
n→∞

ϕk(t
(n)hk)

t(n)
= lim

n→∞

∞∑
k=1

ϕk(t
(n)hk)

t(n)
= lim

n→∞
f(t(n)h)− f(0)

t(n)
.

As t(n) ↓ 0 was arbitrary, it follows that df(0;h) = ‖h‖1 = f0(0;h); hence f is regular
in the sense of Clarke.

Finally, we consider the multivalued mapping M : R ⇒ X defined by M(t) :=
{x ∈ X | f(x) ≤ t}. This is exactly the setting of (3.1) with abstract constraints
missing (X = C). By the definition of f and (3.12), one has

f(x) ≥ 0 ∀x ∈ X and f(x) = 0 ⇐⇒ x = 0.

Hence, M(0) = {0}. Define a sequence z(n) = (0, . . . , 0, τn, 0, 0, . . .) ∈ X, with τn at
position n. Then, again by (3.12),

d(z(n),M(0)) = ‖z(n)‖1 = τn and f(z(n)) = ϕn(τn) = τ2
n ∀n ∈ N.

Setting y(n) := f(z(n)), we have constructed sequences z(n), y(n) such that z(n) ∈
M(y(n)), z(n) → 0, y(n) → 0 (because of τn ∈ (0, n−2)). From here, we derive that M
fails to be calm at (0, 0):

d(z(n),M(0)) = τ−1
n f(z(n)) = τ−1

n d(f(z(n)), 0) ≥ n2d(f(z(n)), 0)

(again by τn ∈ (0, n−2)), which contradicts (1.1). On the other hand, we have seen
that ∂cf(0) = B1; hence 0 ∈ int ∂cf(0), and the constraint qualification “f(x̄) < 0 or
0 /∈ bd ∂cf(x̄)”—which was sufficient for calmness in the regular, finite-dimensional
and in the convex, infinite-dimensional cases—is evidently satisfied. However, the
same constraint qualification (to which the conditions (3.4) and (3.3) reduce when
C = X) does not imply calmness in the regular, infinite-dimensional case, as was
shown in this example.

The next result is an immediate application of Theorem 3.3 to the characterization
of calmness for nonstructured multifunctions.

Corollary 3.9. Let X be a Banach space, Y a metric space, M : X ⇒ Y a
multifunction with closed values, and (x̄, ȳ) ∈ GphM . Assume further that

(1) the distance function d(ȳ,M(·)) is convex and lower semicontinuous in a
neighborhood of x̄;

(2) 0 /∈ bd ∂d(ȳ,M(·))(x̄).
Then M−1 is calm at (ȳ, x̄).

Proof. Corollary 3.4 immediately provides calmness at (ȳ, x̄) of the multifunction
P : R ⇒ X defined by

P (t) := {x ∈ X | d(ȳ,M(x)) ≤ t}.
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This means the existence of some L > 0, ε > 0 such that

d(x, P (0)) ≤ L|t| ∀t ∈ (−ε, ε), ∀x ∈ B0(x̄; ε) ∩ P (t).

Since P (0) = M−1(ȳ) and M−1(y) ⊆ P (d(ȳ, y)) for all y ∈ Y , the calmness of M−1

at (ȳ, x̄) follows:

d(x,M−1(ȳ)) = d(x, P (0)) ≤ Ld(ȳ, y) ∀y ∈ B0(ȳ; ε), ∀x ∈ B0(x̄; ε) ∩M−1(y).

Note that Corollary 3.9(2) is far removed from being necessary for calmness or
even the stronger Aubin property.

Example 3.10. ConsiderM(x) := [x,∞) at (0, 0) ∈ GphM . Since d(0,M(x)) =
max{0, x}, Corollary 3.9(1) is satisfied, whereas condition (2) is violated. On the other
hand, the inverse multifunctionM−1(y) = {x|x ≤ y} is easily seen to satisfy the Aubin
property (1.2) and, hence, calmness at (0, 0).

At the end of this section we want briefly to compare our conditions for the calm-
ness of system (3.1) with similar conditions which were obtained in the context of
error bounds. First, recall that the calmness of (3.1) is equivalent to the existence of
a local error bound. A rigorous comparison is difficult because the obtained condi-
tions may differ by many features (e.g., local vs. global error bounds, primal vs. dual
conditions, finite- vs. infinite-dimensional spaces, point vs. neighborhood conditions).
However, one could at least try to reduce all these conditions to a simple common
setting, where C = X is finite-dimensional and f is convex and finite-valued. As far
as dual conditions for error bounds are concerned, they usually come down to just
Slater’s condition in dual form, “0 /∈ ∂f(x̄)” in that situation (see, e.g., [14, condi-
tion (ACQ11)], [15, Section 3, Corollary 2(b)], or [5, Theorem 1]). Slater’s condition,
however, is much stronger than our condition (3.10), as was shown in Example 3.6
(see also (3.11)). A primal condition for calmness proposed in [17, Theorem 13] is

0 ∈ int(f(C) + R+).

However, in our setting, with C = X, this relation obviously reduces to Slater’s
condition in primal form: “∃x∗ : f(x∗) < 0.” Hence, the same remarks as above apply
with respect to condition (3.10). A mixed primal/dual condition was derived in [15,
Theorem 1] for finite dimensions:

∃γ > 0 : f ′(x̄; d) ≥ γ−1 ‖d‖ ∀x̄ ∈ f−1(0), ∀d ∈ N(f−1(−∞, 0]; x̄).(3.16)

Here, f ′ refers to the directional derivative of f . It is elementary to verify that in the
special setting considered here (C = X), (3.10) implies (3.16). In particular, (3.16)
could be applied in Example 3.7, where (3.10) failed. On the other hand, (3.16) is
not a point condition by relying on the whole solution set f−1(−∞, 0]. This could
make its verification in general problems less convenient than that of (3.10), which
is sufficient at least for local error bounds. A similar comparison holds true for a
nonsmooth Abadie’s constraint qualification formulated in [19].

4. Calmness of the intersection of two sets. In this section, we turn to the
calmness property with respect to two sets. To this aim, let C,D ⊆ X be closed,
convex subsets such that x̄ ∈ C ∩ D. We want to characterize the calmness of the
multivalued mapping Q : R ⇒ X defined by

Q(t) := {x ∈ X | d(x,C) + d(x,D) ≤ t}



530 R. HENRION AND A. JOURANI

at the point (0, x̄) ∈ GphQ.
Lemma 4.1. Q is calm at (0, x̄) ∈ GphQ, provided that

intN(D; x̄) ∩ −N(C; x̄) �= ∅.(4.1)

Proof. Choose x∗ ∈ intN(D; x̄) ∩ −N(C; x̄). From x∗ ∈ intN(D; x̄), it follows,
similarly to the proof of Theorem 3.3, that there exists some α > 0 such that

α‖x− x̄‖+ 〈x∗, x− x̄〉 ≤ 0 ∀x ∈ D.

Hence, x̄ is a minimizer of the function 〈x∗, x̄−·〉−α‖ ·−x̄‖ on the set D. Now, using
a well-known penalization argument, which appeals to the Lipschitz constant of the
function involved, it follows that there exists some ε > 0 such that

〈x∗, x̄− x〉 − α‖x− x̄‖+ (‖x∗‖+ α)d(x,D) ≥ 0 ∀x ∈ B(x̄; ε),

whence, by x∗ ∈ −N(C; x̄),

−α‖x− x̄‖+ (‖x∗‖+ α)d(x,D) ≥ 0 ∀x ∈ B(x̄; ε) ∩ C.
In other words, x̄ is a local minimizer of the function −α‖ · −x̄‖+ (‖x∗‖+ α)d(·, D)
on the set C. Now, upon repeating the same penalization argument, one arrives at

−α‖x− x̄‖+ (‖x∗‖+ α)d(x,D) + (‖x∗‖+ 2α)d(x,C) ≥ 0 ∀x ∈ B(x̄; ε′)

for some ε′ > 0. This, however, is the desired calmness property

d(x,Q(0)) ≤ ‖x− x̄‖ ≤ α−1(‖x∗‖+ 2α)(d(x,D) + d(x,C)) ≤ α−1(‖x∗‖+ 2α)|t|,
which holds true for all t ∈ R and all x ∈ B(x̄; ε′) ∩Q(t).

Next, we need an auxiliary result, which is of independent interest.
Lemma 4.2. If one of the sets C or D is compactly epi-Lipschitzian in a neigh-

borhood of x̄, then

N(D; x̄) ∩ −N(C; x̄) = {0} ⇐⇒ 0 ∈ int (D − C ∩B(x̄, 1)).
Proof. (=⇒) For symmetry reasons, one may take, e.g., D to be compactly epi-

Lipschitzian in a neighborhood of x̄. Assume that

0 /∈ int (D − C ∩B(x̄, 1)) = int (D − C ∩B(x̄, 1))
(the equality follows from [22, Lemma 1]). Accordingly, there exists a sequence bn → 0
with

bn /∈ D − C ∩B(x̄, 1)).
The separation theorem provides a corresponding sequence x∗n ∈ X∗ such that ‖x∗n‖ =
1 and

〈x∗n, bn〉 ≤ 〈x∗n, d− x̄〉 ∀d ∈ D, 〈x∗n, bn〉 ≤ 〈x∗n, x̄− c〉 ∀c ∈ C ∩B(x̄, 1).(4.2)

The first relation of (4.2) yields that 〈x∗n, x̄〉 ≤ infd∈D〈x∗n, d〉 + ‖bn‖. Now Ekeland’s
variational principle provides a sequence dn ∈ D such that

‖dn − x̄‖ ≤
√

‖bn‖ and 〈x∗n, dn〉 ≤ 〈x∗n, d〉+
√

‖bn‖ ‖dn − d‖ ∀d ∈ D.(4.3)
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The second relation of (4.3) entails that −x∗n ∈ N(D; dn)+B
∗(0,

√‖bn‖); hence there
are sequences z∗n ∈ N(D; dn) and b

∗
n with ‖b∗n‖ ≤ √‖bn‖ such that z∗n + x∗n + b∗n = 0.

In particular, ‖z∗n‖ → 1. Thus, the sequence z∗n is bounded and, hence, there exists a
weak∗ convergent subnet z∗λ ⇀w∗ z∗. Now, since z∗λ ∈ N(D; dλ), this last convergence,
dλ → x̄ (see the first relation of (4.3)), and the very definition of the normal cone
to convex sets yield that z∗ ∈ N(D; x̄). Now, the assumed property of D being
compactly epi-Lipschitzian in a neighborhood Vx̄ of x̄ results in the inclusion

N(D;x) ⊆
{
x∗ | ‖x∗‖ ≤ max

i=1,...,k
〈x∗, hi〉

}
∀x ∈ Vx̄ ∩D

for certain hi ∈ X (i = 1, . . . , k). From dλ → x̄, one derives that

max
i=1,...,k

〈z∗λ, hi〉 ≥ ‖z∗λ‖.

Consequently, z∗ �= 0. On the other hand, we also have that x∗λ = −z∗λ−b∗λ ⇀w∗ −z∗,
which together with the second part of (4.2) provides

〈−z∗, x̄− c〉↼w∗ 〈x∗λ, x̄− c〉 ≥ 〈x∗λ, bλ〉 → 0 ∀c ∈ C ∩B(x̄, 1),
whence z∗ ∈ −N(C; x̄). Summarizing, there is some z∗ �= 0 with z∗ ∈ N(D; x̄) ∩
−N(C; x̄). This contradicts our assumption.

(⇐=) Choose an arbitrary x∗ ∈ N(D; x̄) ∩ −N(C; x̄). Then,

〈x∗, d− x̄〉 ≤ 0 ∀d ∈ D and 〈x∗, x̄− c〉 ≤ 0 ∀c ∈ C.

In other words, 〈x∗, d − c〉 ≤ 0 for all d ∈ D and all c ∈ C. However, since by
assumption 0 ∈ int (D − C), it results that x∗ = 0, as we wanted to show.

Theorem 4.3. Let one of the sets C or D be compactly epi-Lipschitzian at x̄.
Then, Q is calm at (0, x̄) under the following condition:

bdN(D; x̄) ∩ −bdN(C; x̄) = {0}.(4.4)

Proof. For the case in which N(D; x̄)∩−N(C; x̄) = {0}, Lemma 4.2 ensures that
0 ∈ int (D − C). Since D − C equals the range of the multifunction M : X ⇒ X
defined by

M(x) =

{ −x+D, x ∈ C,
∅, x /∈ C,

we have 0 ∈ int rangeM , and the Robinson–Ursescu theorem yields the metric reg-
ularity of M at the point (x̄, 0) of its graph. This property means the existence of
L, ε > 0 such that

d(x,M−1(y)) ≤ Ld(y,M(x)) ∀x ∈ B(x̄, ε), ∀y ∈ B(0, ε).

With M−1(y) = C ∩ (D − y) and fixing y := 0, one arrives at

d(x,C ∩D) ≤ Ld(x,D) ∀x ∈ B(x̄, ε) ∩ C; hence
d(x,C ∩D) ≤ (L+ 1) (d(x,D) + d(x,C)) ∀x ∈ B(x̄, ε).

This, of course, is the calmness of the multifunction Q at (0, x̄).
Otherwise (N(D; x̄) ∩ −N(C; x̄) �= {0}), (4.4) implies that

intN(D; x̄) ∩ −N(C; x̄) �= ∅ or N(D; x̄) ∩ −intN(C; x̄) �= ∅.
In both cases, Lemma 4.1 yields the desired result.
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5. The differentiable nonconvex case. In this section we briefly return to
the constraint system (3.1), with a convex closed subset C ⊆ X as before, but with
a (strictly) differentiable function f . Theorem 3.3 has shown that, in the completely
convex case (C and f), each of the constraint qualifications (3.4), (3.3) is sufficient
for the calmness of (3.1). On the other hand, we know by Example 3.8 that neither of
the two conditions ensures calmness if f is just regular in the sense of Clarke. Since,
in that example, f was nondifferentiable, the question arises of whether a positive
result can be expected in the smooth case. The answer is affirmative even for a finite
number of inequalities.

Theorem 5.1. Consider a multifunction M : R
m ⇒ X defined by

M(y) := {x ∈ C | f(x) ≤ y} (y ∈ R
m),

where C ⊆ X is convex and closed and f : X → R
m is strictly differentiable. Then,

the constraint qualification

conv {∇fi(x̄)}i∈I(x̄) ∩ −bdN(C; x̄) = ∅(5.1)

implies the calmness of M at (0, x̄) ∈ GphM . Here, fi denote the components of f ,
and I(x) = {i ∈ {1, . . . ,m}|fi(x) = 0} refers to the set of active indices.

Proof. Assume first that conv {∇fi(x̄)}i∈I(x̄) ∩ −N(C; x̄) = ∅. Then, the strict
differentiability assumption on f allows us to apply Theorem 2.4 in [13] in order
to derive the metric regularity of M−1 at (x̄, 0), which is equivalent to the Aubin
property of M at (0, x̄) and, hence, implies calmness of M at (0, x̄). In the opposite
case, (5.1) guarantees the existence of some x∗ ∈ conv {∇fi(x̄)}i∈I(x̄) ∩−intN(C; x̄).
Accordingly, there exist λi ≥ 0 (i ∈ I(x̄)) with

∑
i∈I(x̄) λi = 1 as well as ε > 0 such

that

x∗ =
∑

i∈I(x̄)

λi∇fi(x̄) and ε‖x− x̄‖ ≤ 〈x∗, x− x̄〉 ∀x ∈ C.

Due to the differentiability assumption on f and to the finiteness of I(x̄), there is
some η > 0 such that

fi(x)− fi(x̄) ≥ 〈∇fi(x̄), x− x̄〉 − ε

2
‖x− x̄‖ ∀x ∈ B(x̄, η), ∀i ∈ I(x̄).

Using the fact that fi(x̄) = 0 for i ∈ I(x̄), it holds for all x ∈ C ∩B(x̄, η) that

max
i∈I(x̄)

fi(x) ≥
∑

i∈I(x̄)

λifi(x) ≥
∑

i∈I(x̄)

λi〈∇fi(x̄), x− x̄〉 − ε

2
‖x− x̄‖ ≥ ε

2
‖x− x̄‖.

Measuring, without loss of generality, the distance in R
m with respect to the maximum

norm, one has for all x ∈M(y) ∩B(x̄, η) and all y ∈ R
m

d(x,M(0)) ≤ ‖x− x̄‖ ≤ 2

ε
max
i∈I(x̄)

fi(x) ≤ 2

ε
max

i=1,...,m
|yi| = 2

ε
d(y, 0).

This, however, is the calmness of M at (0, x̄).
The last result shows that the ideas of the completely convex case can be extended

to differentiable inequalities. With a single inequality which is differentiable and con-
vex, (5.1) reduces to (3.4) (without the need of the additional constraint qualification
(CQ∗)). One might ask about an alternative condition in the sense of (3.3) for the
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differentiable case as well. However, the closedness of the normal cone immediately
provides that the differentiable formulation of (3.3) implies (3.4); hence the two con-
ditions are not independent as in the convex (nonsmooth) setting. Finally, we note
that for finite-dimensional X, (5.1) can be weakened to the condition

bd conv {∇fi(x̄)}i∈I(x̄) ∩ −bdN(C; x̄) = ∅

(see [7, Theorem 9]). In infinite dimensions, the interior of the convex hull involved
is empty; hence this last relation is equivalent to (5.1).

6. Conclusion. The dual conditions for calmness formulated in this paper (in
particular, (3.3), (3.4), (3.10), and (5.1)) are weaker than the usual Slater-type char-
acterizations, which ensure the stronger Aubin property (or metric regularity) of the
considered systems. These conditions can be immediately applied to various issues in
mathematical programming such as error bounds, optimality conditions, weak sharp
minima (see also [8]), or the stability of solutions under perturbations.
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