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Abstract

We consider linear two-stage stochastic programs with mixed-integer recourse. Instead of basing the
selection of an optimal first-stage solution on expected costs alone, we include into the objective a risk
term reflecting the probability that a preselected cost threshold is exceeded. After we have put the
resulting mean-risk model into perspective with stochastic dominance, we study further structural
properties of the model and derive some basic stability results. In the algorithmic part of the paper,
we propose a scenario decomposition method and report initial computational experience.
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1 Introduction

Stochastic programming with recourse deals with two- or multi-stage sequential decision processes under
uncertainty and aims, in its traditional setting, at the optimization of the expected value of some random
objective reflecting costs or revenues, for instance. In the present paper, we are heading for an extension
towards risk aversion with a risk measure based on excess probabilities of random costs.

Criteria for the selection of risk measures are a topic of extensive discussion in the literature, cf. e.g.
[2, 31, 32] and the references therein. The discussion covers a wide range of issues, such as compatibility
with axiomatic settings or stochastic ordering principles, smoothness and convexity properties, and, last
but not least, algorithmic possibilities for the resulting optimization problems. It goes without saying
that, given the variety of criteria, there is no universally recommendable risk measure.

In recourse stochastic programming, the random variables whose risk shall be controlled are implicit
entities closely related with value functions that become discontinuous and nonconvex in the presence of
integer decision variables. When imposing a risk measure in this situation, care has to be taken to arrive
at stochastic integer programs that are structurally sound and amenable to algorithmic treatment. In
what follows we will confirm that excess probabilities lead to a risk measure that serves these purposes
and is consistent with first-order stochastic dominance [31, 32].

Our paper is organized as follows. In Section 2 we extend the traditional modeling in two-stage stochastic
integer programming towards risk aversion. We formulate a risk measure based on excess probabilities,
put it into perspective with stochastic dominance, and discuss relations of the resulting mean-risk model
with robust optimization. Section 3 analyzes structure and stability of the added model components.
Algorithmic issues including remarks on the efficient frontier and some first numerical experiments are
presented in Section 4.
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2 Two-Stage Stochastic Integer Programs with Excess Proba-
bilities

Throughout the paper, we impose a cost minimization framework. We are given the following random
mixed-integer linear program

minl{cTa: +q"y+d"y T+ Wy+W'y = h(w), z€ X,y ZT, y € IRT’}. (1)
Ty
It is assumed that all ingredients in (1) have conformal dimensions, that W, W' are rational matrices,
and that X C IR™ is a nonempty closed set, possibly involving integer requirements to components of x.
The right-hand side h(w) € IR® is a random vector on some probability space (€2, A, IP). Along with (1)
we have the constraint that the variables z are to be fixed before observing h(w), and that the variables
(y,y") may be fixed afterwards. Accordingly, z and (y,y’) are called first- and second-stage variables,
respectively. The mentioned information constraint is usually referred to as nonanticipativity.
The mixed-integer value function

®(t) == min{q"y + ¢y : Wy+W'y' =t, y€ ZT, y' € RT'} (2)

is an essential object in our subsequent stochastic programming models. According to integer program-
ming theory([30]), this function is real-valued on IR® provided that W(ZT) + W'(IR}) = IR® and
{fue R* : WTu<gq, W'y < ¢'} # 0 which, therefore, will be assumed throughout.
With
Q@)1= [ ("o + B(h(w) - o) Pld) 3)
Q

the traditional expectation-based stochastic program with recourse is the optimization problem
min{Qg(z) : z € X}. (4)
Introducing the excess probability functional
Qr(z) =P{weQ : 'z + @(h(w) —Tz) > ¢,}) (5)
problem (4) is extended into the mean-risk model
min{Qr(z) + pQr(z) : z € X}. (6)

Here ¢, € IR denotes some preselected threshold, and p € IR, is a suitable weight factor. The proposal
to include a probability term like (5) into the objective of a stochastic program with recourse seemingly
dates back to Bereanu [6] and, hitherto, has not been elaborated in much detail.

The modeling background behind the above construction is the following: The central issue is optimiz-
ing the first-stage decisions z that have to be taken without anticipation of future realizations of h(w).
After having decided for x and observed h(w), the remaining decisions (y, '), of course, shall be taken
in an optimal way. This results in the mixed-integer linear program defining the function ® in (2). The
costs of the sequential process of decision and observation then are expressed by the random variable
c'z + ®(h(w) — Tx). Finding an optimal first-stage decision # € X can be understood as selecting a
“best” random variable from the indexed family (c"x + ®(h(w) — Tx)),_ - The models (4) and (6) are
based on scalar criteria for making this selection.

The mean-risk model (6) aims at controlling variability of second-stage solutions and, thus, is closely
related with the robust optimization approach proposed by Mulvey, Vanderbei, and Zenios in [29]. To
discuss similarities and differences between (6) and [29] we denote by (yopt(7,w), Y, (2, w)) an optimal
solution to the optimization problem defining ®(h(w) —Tz), cf. (2). The random variable ¢”z + ®(h(w) —

Tz) then coincides with

f('ra CU) = CTJ: + quopt(xaw) + qITy:)pt(l”,W),

and the mean-risk model (6) can be written as

min { E,[f(z,w)] + pRisk,[f(z,w)] : z € X}. (7)



Here IE, denotes the expectation, and Risk, is a symbol for an abstract risk measure, specified in
our model by (5). The ROBUST model of [29] incorporates both variability of second-stage costs and
penalization of second-stage infeasibility. In our terminology, the variability term of [29] is based on the
random variable

g(z,w) = e +qTyw) + ¢y (W),

and the counterpart model of [29] to our model (6) would read
min {E,[g(z,w)] + pRisk,[g(z,w)]
Tr+Wyw)+W'y'(w) = hw), z€eX, yw)eZT, y'(w)e IRT’, Ywe Q) (8)

where Risk, is specified by the variance.

In (7) the statistical parameter IE,,[.] + pRisk,[.] is optimized over all feasible first-stage solutions z € X
and all optimal second-stage decisions (yYopt (7, w), Yy, (2, w)). In (8) the statistical parameter is optimized
jointly over all feasible first- and second-stage decisions. The essential structural difference between (7)
and (8) hence is in the order of integration and second-stage minimization. If the statistical parameter in
(7), (8) is just IE,[.] then (7) and (8) are equivalent which is a basic fact of stochastic linear programming.
For statistical parameters involving risk terms this equivalence is no longer valid in general. In particular,
second-stage portions of optimal solutions to (8) need no longer be optimal for the second-stage, i.e., for
the optimization problem behind ®(h(w) — T'z). For problems without integer variables this issue is
addressed in [21, 49].

In [49] it is shown that (7) and (8) are equivalent if the risk term depends on the second-stage costs only
and fulfills a monotonicity condition. If, in addition, the risk term is convex, then numerical treatment
of the problem is possible by a direct transfer of L-shaped decomposition techniques. Another issue
discussed in [49] is ranking the random variables (¢z + ®(h(w) — Tz)), _, by means of a convex dis-
utility function. Again L-shaped techniques can readily be employed to solve the resulting optimization
problem.

Apart from the integer decision variables in both stages of our model the major distinction between (6)
and the ranking model of [49] is in the nonconvex discontinuous dis-utility function we employ, in fact,
a sum of indicator functions of level sets. In Section 4 we will show how numerical treatment of (6)
becomes possible by a reformulation using additional Boolean variables.

Among the fundamental concepts in decision theory the relation of stochastic dominance introduces a
partial order in the space of real random variables. This provides some basis for selecting “best” members
from families of random variables. Recently, Ogryczak and Ruszczynski have studied scalar criteria and
their consistency with the multiobjective criteria induced by stochastic dominance, see [31, 32]. Let us
quickly outline how the scalar criterion proposed in (6) can be put into the perspective of [31, 32].

Let f(z,w),xz € X C IR™ be real random variables on some probability space (2,4, IP). Consider the
distribution function

Fp(n) == P{weQ: flz,w) <n}).

Since we prefer smaller outcomes to larger we define that =’ dominates =’ to first degree (' = z'’) if
Fyu(n) > Fyi(n) forally € R. 9)

Let m, be the expectation E( f(z, w)) and r, denote some functional measuring the risk of the outcome
f(z,w). We adapt the setting of [31, 32] to preference of smaller outcomes and say that the mean-risk
model (m,,r,) is a-consistent with first degree stochastic dominance, where a > 0, if ' > z' implies
My + ary < Mgr + argr.

Lemma 2.1 The mean-risk model (my,r,) with my := E(f(z,w)) and rp :== P({w € Q : f(z,w) >
goo}), with fized p, € IR, is a-consistent with first degree stochastic dominance for all o > 0.

Proof: The fact that (9) implies m, < m,» is well-known in probability theory. Moreover, it holds
rer = 1= Fp(po) < 1—Fpi(po) = rgn,

and the proof is complete. |



In conclusion, the excess probability in (5) entails a risk measure fulfilling a weak requirement of consis-
tency with stochastic dominance. For further risk measures fulfilling stronger consistencies with stochastic
dominance we refer to [31, 32].

In the subsequent sections we will show that (6) is well-posed from formal viewpoint. We will establish
structural properties of the functional @), and we will demonstrate that solution methodology from
mixed-integer linear programming (the class our initial random optimization problem (1) belongs to) can
be employed for solving (6).

The expectation-based optimization problem (4) meanwhile belongs to the well-studied objects in stochas-
tic programming. Therefore, the main accent in our further investigations will be on the functional @ p.
Without going into details, we mention that, under mild conditions, @ g is real-valued and lower semicon-
tinuous and that Qg is continuous if the distribution of h(w) has a density. Optimal values and optimal
solutions to (4) behave stable under perturbations of the probability distribution of h(w). This gives
rise to discrete approximations of the probability distribution for which (4) can be rewritten equivalently
as a block-structured mixed-integer linear program. The latter is amenable to decomposition methods
splitting (4) into smaller mixed-integer linear programs that are often tractable by standard solvers like
CPLEX, [14]. Detailed expositions of the mentioned results can be found in [1, 13, 18, 46, 47]. With-
out integer requirements, (4) becomes a convex optimization problem allowing for application of various
analytical and algorithmic techniques from convex analysis, see [10, 19, 35] and the references therein.

3 Structure and Stability

The mixed-integer value function @ from (2) is crucial for the structural understanding of @Qp. From
parametric optimization ([4, 11]) the following is known about ®.

Proposition 3.1 Assume that W(Z1") + W’(RTI) =R and {ue R* : Whu <q, W'y < g} #0.
Then it holds

(i) ® is real-valued and lower semicontinuous on IR®;

(ii) there exists a countable partition IR® = UL, T; such that the restrictions of ® to T; are piecewise
linear and Lipschitz continuous with a uniform constant not depending on i, more specifically, on
each T;, the function ® admits a representation

d(t) = min {q" di (t—

(t) yren;r(lt){q y+ , max, dj Wy)}

where Y (t) == {y € ZT : t € Wy + W’(IRT’)} and di,k = 1,..., K, are the vertices of the
polyhedron {u € IR® : W'y <dq'};

(iii) each of the sets T; has a representation T; = {t;+K} \ UN, {t;;+ K} where K denotes the polyhedral
cone W’(IRQ_”’) and t;,t;; are suitable points from IR®, moreover, N does not depend on i;

(iv) there exist positive constants 3,7 such that |®(t1) — ®(t2)| < B||t1 — t2|| + v whenever t1,ts € IR®.

To facilitate notation we introduce for all x € R™

M(z) = {heR : s+ dh—-Tz)> 0},
My(z) = {heR° : "o+ ®h-Tz)=0p,},
Mu(z) := {he IR’ : ®is discontinuous at h — Tx}.

By liminf,, ., M(2,) and limsup, _,, M(z,) we denote the (set theoretic) limes inferior and limes
superior, i.e., the sets of all points belonging to all but a finite number of the sets M(x,), n € IN, and
to infinitely many of the sets M (z,,), respectively.

Lemma 3.2 Assume that W (ZT') + W’(IRT’) =R and {u€ R®* : WTu<gq, W'y < q} #0. Then
it holds for all x € R™

M(z) C liminf M(z,) C limsup M(z,) C M(z) U M.(z) U My(z).

Tn—T Tp—T



Proof: To show the first inclusion let h € M (z). By the lower semicontinuity of ® (Proposition 3.1(i))
we have

l’;m_igf(cT:Un +®h—Tx,)) > cTa+®h—-Tz) > @,.
Therefore, there exists an n, € IV such that c’'z,, + ®(h—T4z,) > @, for all n > n,, implying h € M (z,,)
for all n > n,, and we obtain that M (z) C liminf, _,, M(x,).
The second inclusion being valid by definition we turn to the third. Let h € limsup, _,, M(z,)\ M(z).
Then there exists an infinite subset IV of IV such that

Tap+ ®(h—Tay) >, Vne N and cTz+ ®(h—Tz) < @,.

Now two cases are possible. First, ® is continuous at h — T'z. Passing to the limit in the first inequality
then yields that ¢"z + ®(h —Tz) > ¢,, and h € M,(x). Secondly, ® is discontinuous at h — T'z. In other
words, h € My(x). O

For convenience, we denote by u the image measure IP o h~! on IR®. By the lower semicontinuity of &,
the sets M (z), M.(z), and M4(x) are p-measurable for all z € R™.

Proposition 3.3 Assume that W(ZT) + W’(RTI) =R and {uc R : WTu<gq, Wu<q}#0.
Then Qp : IR™ — IR is a real-valued lower semicontinuous function. If, in addition, it holds that
p(Me(z) U My(z)) =0, then Qpp is continuous at x. If u has a density, then Qp is continuous on IR™.

Proof: The function @Qp is real-valued on IR™ due to the py-measurability of M (z). By Lemma 3.2 and
the (semi-) continuity of the probability measure on sequences of sets we have for all z € R™
Qr(x) = p(M(2)) < p(liminf M(z,)) < liminfu(M(en)) = liminf Qp(z,),

establishing the asserted lower semicontinuity. In case (M (z) U My(z)) = 0 this argument extends as
follows

Qr) = u(M(@) = p(M()UM.() UM(@)) > p(limsup M(z,))

Tn—>T

> limsup u(M(z,)) = limsup Qp(z,),

Ty —>T Tp—T

and @ p is continuous at z. In view of Proposition 3.1 (ii), (iii), for given € IR™, both M. (z) and M4(x)
are contained in a countable union of hyperplanes, i.e., in a set of Lebesgue measure zero. Since p has a
density, it is absolutely continuous with respect to the Lebesgue measure, hence p (M, (z) U My(z)) =0,
and the proof is complete. O

Remark 3.4 The above lower semicontinuity of Q p implies in particular that problem (6) is well-posed in
the sense that, provided X is compact, the infimum in (6) is finite and is attained. Given the discontinuity
of ®, the well-posedness of (6) may become critical with other risk measures, cf. [27]. To see this let us
consider the variance, leading to the functional

Quv(z) := /Q [cTa: + &(h(w) —Tz) — /Q(CT.CL‘ + ®(h(w) — Tz)) P(dw) ’ P(dw).

We consider the counterpart
min{Q(x) + pQu() : o € X} (10)

to problem (6) with the specifications m = s = 1,c = 1,T = -1,p =4, X = {x € R : =z > 0},

®(t) = min{y : y > t,y € Z}, and h(w) attaining the values 0 and % each with probability L. One

computes that Qe (x) =z + 3[z] + L[z + 1] and Qv(z) = 1([z] — [z + 1)

Then (10) has the infimum 1, and any sequence (Tp)newN with T, | 0,2, # 0 is a minimizing sequence.
3

However, the infimum is not attained since the objective value for x =0 is 3.

Before we turn to the Lipschitz continuity of Q p we study the boundary bd M (z) of the set M (z) = {h €
R : Tz +®(h—Tx) > p,}.



Lemma 3.5 Adopt the setting of Proposition 8.1 and assume in addition that q,q' are rational vectors.
Then there exist a K, € IN, affine hyperplanes H,, C R°,k = 1,...,K,,y € ZY', and matrices
T.,k=1,...,K,, such that

(i)

K,
bdM(z) € |J |J {Twzr + Hpy}  forall z € R™, (11)
k=1 yEZf

(i) there exists r > 0 such that for any k € {1,...,K,} and any y',y" € ZT, the hyperplanes
Hyyr, Hyy are either identical or have a Hausdorff distance of at least r.

Proof: Let us assume that W’(Rf) has a representation {t € R® : d['t < 0,1 =1,...,L} with suitable

vectors d;,l = 1,..., L. According to Proposition 3.1(ii) we obtain that h belongs to the complement of
M () if and only if there exists a y € ZT* such that the following system of inequalities in h is fulfilled

Ty+dl(h—Tz-Wy) < ¢,—clz, k=1,... K, (12)
dl'(h—Tz-Wy) < 0, I=1,...,L. (13)

If di, = 0 for some k € {1,..., K} then the corresponding inequality in (12) turns into

'y < g, —c'z

leading to a restriction on y, but not on h. It then would actually suffice to form the union in (11) over
Zn{y : 'y < ¢, —cl'z} instead of Z'. So let us assume that dp # 0 for all k € {1,..., K}. For
some fixed k we assume that the first component dy ) of dj. is nonzero. We put

~ 1 CT
Ty = T — (dpy)~ < 0>

and obtain that

~ CT
diTe = diT — (dyry) dp ( 0) = dI'T - L.

This allows us to rewrite (12) as
"y +di (h—Tez—=Wy) < ¢,, k=1,....K. (14)

If h belongs to the boundary of M (z) then at least one of the inequalities in (13) and (14) has to be
fulfilled as an equation. Defining the affine hyperplanes

Hy = {teR° : dft = po+diWy—q"y}, yeZ? ke{l,... K} (15)
and )
Hy = {teR° : d[t = d] Wy}, yeZl lec{l,..., L} (16)
we obtain that h € bd M (x) implies

h € 6 U {Tkx + Hiy} ULLJ U {7z + B} = 6 U {Twr + Heyl,

k=1 yezZy I=1 yezZy k=1 yEZY

proving (i).
Since ¢',W' are rational, dy,k = 1,...,K, and Jl,l = 1,...,L, can be selected as rational vectors.
According to the definitions in (15), (16) and the rationality of ¢, W this yields that there exists r > 0
such that, for arbitrary x € {1,...,K,} and y',y" € Z'", the hyperplanes H,,, H,, are either identical
or have a Hausdorff distance that is bounded below by r. The latter is seen as follows. For H,, we have
a representation

Hy, = {teR° : It = by, +bly} (17)
with rational vectors 8y, bs. So if Hyy # Hyyr, then b (y' —y") # 0. Let b, > 0 denote the least
common multiple of the (absolute values of) the denominators of the components of b,. By y' —y" € Z
the number b7 (y' —y"”) # 0 then has to be a multiple of ;-. In the representations for Hy, and Hy:

the right-hand sides therefore differ at least by i, proving the claim. |



Proposition 3.6 Assume that q,q' are rational wvectors, W(ZT) + W’(RT’) = IR’

{fu e RP : WTu < g, W'y < ¢'} # 0, and that for any nonsingular linear transformation
B € L(IR?, IR®) all one-dimensional marginal distributions of o B have bounded densities which, outside
some bounded interval, are monotonically decreasing with growing absolute value of the argument. Then
Qp is Lipschitz continuous on any bounded subset of IR™.

Proof: Let S be a bounded subset of IR™ and z',z" € S. It holds

Qp(') = Qp(a")| = |n(M (") — p(M (") < p(M () \ M(z") + p(M(2") \ M(z")).

For symmetry reasons it is sufficient to establish the assertion for the first member of the sum on the
right.

Recall the representation (17) for the hyperplanes H,, arising in Lemma 3.5 and put S,iy = b, +bly
such that we have Hy,, = {t € IR® : §7t = 6,y } for k = 1,... K,,y € ZT. Consider the halfspaces

H,, = {teR": 65t < b4y} (18)

Then it holds

M(z')\ M(z") C KU U {cl[{THw’JrH;y}\{THx”+H;y}] Ucl[{TNm”+H;y}\{THw'+H;y}]}.
w=1 yeZT

As usual, the symbol “cl” denotes the closure. To estimate the p-measure of the set on the right we
fix some k € {1,...,K,}. Without loss of generality we may assume that §. T,,z" < §1T,z' such that
{Tha" + H,}\ {Txx' + H;,} = 0 for all y € Z7. Tt remains to estimate

u( U cl[{Tnx'+H;y} \ {Tna:”+H,;y}])

yGZr

= /’L( U {h € RS : Sny +65Tn$” S 6Zh S Sny +(S?;TH§17I})
yEZT

Let B, be a nonsingular matrix whose first row coincides with §7. Let ¢ := B,h be the corresponding
linear transformation and ((;) denote the first component of (. Then it holds

p({h € R® : 8,y + 6. To2" < 65h < by + 61 Tia'})
= (uoB ") (Bi({h € R® : 8y + 6. Toz" < 65 h < by + 61 T2'}))
= (poB N)({C € R : 0y + 0. Tyz" < 1y < by + 65T, a'})

Sy ol Toa!
= / 0, (1) dr.
s

ey 0L T

In the last row above, 6,, denotes a marginal density of the first component with respect to the image
measure p o B t. The density is selected such that it fulfills the requirements made in the assumptions
of our proposition.

Let (0xi)ien be an enumeration of the distinct values attained by the numbers d,,, y € ZT. By the
argument from the proof of Lemma 3.5(ii), the sequence (dx;);cnv has no accumulation points.

Since z', " belong to the bounded set S and the §,; do not accumulate, there exists an index i = i(S),
independent of ', 2", such that the intervals [0,; + 61 T,.x", 8x; + 01 Ty2'], up to renumbering, meet the
bounded interval arising in the assumptions at most for i < 7. By assumption, we have an upper bound 6,
for 6,,(.). For i > i, we denote by 7,; the left or right endpoint of [§,; + 6. Tyz",8xi + 61 Tx'] depending
on whether 6, is decreasing or increasing on that interval. This allows the estimate

3,“'+55T,¢zl B
/ bu(rydr < 3 B ISTTll - 1o — 2"
5ri+0T T e~

+ > O(Fui) 168 Tl - |2 — 2”1

i>i

i€ IN



Next we show that ), 76, (7x;) is finite. It is sufficient to do that for the sum over all i > i belonging to
those 7; around which 6y is decreasing. For the remaining i > i a similar argument applies. Since the
d,; do not accumulate, there exists an € > 0 such that

> Z/_e( jir 2 Y [ buGadr = e 3 bu(ra).

This provides the desired finiteness. Repeating the above arguments for all kK = 1,..., K, we obtain a
constant ¢, > 0, not depending on z', 2", such that

p(M(2") \ M(2")) < ¢ - llz" = 2",

and the proof is complete. |

Remark 3.7 Among the probability measures fulfilling the requirements of Proposition 3.6 there are the
so called r-convexr measures, in particular the (nondegenerate) multivariate normal distribution and the
t-distribution. For details see [45].

Remark 3.8 Without integer requirements (m = 0) the function ® is less complicated. Imposing the
assumptions W’(RT’) =R, {ue R* : W' u < ¢'} #0 one obtains due to linear programming duality

(1) = max{tTu : W u<q} = . r?adeZt

IEREE)

where di, k =1,..., K are the vertices of {u € IR® : Wy < ¢'}. This implies that, for all x € IR™, the
set My(x) is empty and the complement M (z)° of M (x) is a single polyhedron. This provides a link with
linear chance constraints which belong to the well-studied objects in stochastic programming [10, 19, 35].
Lower semicontinuity of Qup, for instance, then already follows from Proposition 3.1 in [{2]. Further
material about Qp in the absence of integer requirements can be found in [39].

Remark 3.9 For some early work on continuity properties of general probability functionals we refer to
Raik ([37, 38], see also [20, 35]).

Remark 3.10 With the additional assumption that [, ||h]|p(dh) < oo the statements of Proposi-
tions 8.8 and 3.6 are valid for Qg as well. The set M.(z) turns out irrelevant for the continuity
of QE such that the corresponding assumption turns into u(My(x)) = 0. For details we refer to [45, 46].

In many practical modeling situations knowledge about the underlying probability measure yp = IPo h~!
in (6) is subjective. Furthermore, the multivariate integration required in (3) and (5) often has to rely on
approximations, in particular if h(w) is multidimensional and follows a continuous probability distribu-
tion. These issues motivate the stability analysis of (6) under perturbations of u. The aim is to identify
sufficient conditions such that “small” perturbations in g result in only “small” perturbations of optimal
values and optimal solutions to (6). Qualitative and quantitative continuity of Q@ m and @Qp jointly in x
and g become a key issue then. For @ this has been settled in [1, 46, 47] such that we will now focus
on QP

Let P(IR®) denote the set of all Borel probability measures on IR*. We consider Qp as a function
mapping from R™ x P(IR*) to IR where IR™ is equipped with the usual topology. On P(IR?) a notion
of convergence is desirable that is both sufficiently general to cover relevant applications and sufficiently
specific to enable substantial statements. This is met by weak convergence of probability measures for
which [9] is a basic reference. We say that a sequence {u,} in P(IR®) converges weakly to p € P(IR?),
written p, — p, if for any bounded continuous function ¢ : IR® — IR it holds

[ atunian) » [ guan) as n oo (19)
s BS

Proposition 3.11 Assume that W( ™)+ W’(RTI) =R and {u€ R®* : WTu <gq, W'y < q} #0.
Let i € P(IR®) be such that pu(M, Md (z)) = 0. Then Qp : R™ x P(IR®) — IR is continuous at
(2, p).



Proof: Let , — = and p, — p be arbitrary sequences. By x,,x : R® — {0,1} we denote the
indicator functions of the sets M (zy), M (x),n € IN. In addition, we introduce the exceptional set

E = {he€ R® : 3h, — hsuch that yn(hn) A v(h)}.

Now we have E C M, (z) U My(z). To see this, consider h € (M. (z) U Md(ﬁr:))C = M.(z)* N My(z)°
where the superscript ¢ denotes the set-theoretic complement. Then @ is continuous at h — T'xz, and
either ¢’z + ®(h — Tx) > ¢, or ¢’'x + ®(h — Tx) < p,. Thus, for any sequence h,, — h there exists an
no € IN such that for all n > n, either ¢’z + ®(h,, — Txz,) > @, or ¢’z + ®(h,, — Txy,) < .. Hence,
Xn(hn) = x(h) as hy, — h, implying h € E°.

In view of E C M, (z)UMgy(z) and p(M.(z)UMy(z)) = 0 we obtain that 4(E) = 0. A theorem on weak
convergence of image measures attributed to Rubin in [9], p. 34, now yields that the weak convergence
in — v implies the weak convergence i, o 7! — pox~".

Note that j, o x; !, o x~',n € IN are probability measures on {0,1}. Their weak convergence then
particularly implies that

pno Xy ({13) — mox'({1}).
In other words, pn (M (z,)) — p(M(z)) or Qp(zn, pn) — Qp(z, ). ad

To analyze the quantitative continuity of @Qp as a function of the underlying probability measure let us
again consider the hyperplane arrangement

K,
U U {Twe + By} (20)

k=1 yezf
arising in Lemma 3.5. Associated with that arrangement there are the affine halfspaces

Tux + Hy, and Tz + HY, c=1,...,K,, ye Z} (21)

Ky

where H, is defined as in (18) and, accordingly, H;, := {t € IR : 61t > Sy}

Let II(z) denote the family of all, not necessarily full-dimensional polyhedra in IR® arising as intersections
of halfspaces from (21). In the proof of Lemma 3.5 we have seen that the complement of M(z) is a
countable union of polyhedra each arising as an intersection of halfspaces from (21). Thus, the set M (x)
admits a representation

M@) = |J P@) (22)

such that P,, (z) N P,,(z) = 0 whenever 1; # i2, and, for all © € IN, the closure ¢l P,(x) belongs to II(z).
Consider the outer normals J, and —6, of the affine halfspaces H_, and HJ , respectively. By B, we

denote the family of all subsets in IR® which are given as intersect?ons of af%ne halfspaces with outer
normals in {+6, : k = 1,...,K,}. Clearly, IlI(z) C B, for all z € IR™, provided the setting of
Lemma 3.5 is adopted.
The representation (22) now gives rise to the following variational distance of probability measures in
P(IR?)

ap,(m,v) = sup{|u(B) —v(B)| : BeB,}. (23)

We further introduce
Boc(B) = {veP@) : [ [blmvian) < c}
BS

where a > 0 and C' > 0 are fixed constants.

Proposition 3.12 Assume that W(ZT)+W'(RT') = R® and {u € R®* : WTu < g, W< q'} #0,
and that q,q' are rational vectors. Then there exists a constant L, > 0 such that

Qp(z,pn) — Qp(z,v)| < L,-ap,(u,v)

for all x € R™ and all p,v € Ay, c(IR?) with ap, (1, v) #0.



Proof: Let z € R™ and p,v € A, c(IR®) such that ap,(u,v) # 0. With R := aBO(,u,l/)fsJ%a we
consider the ball Br := {h € IR® : ||h|| < R}. Recall the representation (22) for M(z) and denote
IN, := {1 € IN : P,(x) N Bg # 0}. Then it holds

Qe = Qple )| = u(M (@) - (M ()]
<3 (P ~ v (@)
LeIN
< Y IR ~ v(P)] + (u o) ({h e R bl > R))
teIN,
< Y IR@) - v(P@) + (24
LEIN,

where Markov’s Inequality has been used in the last estimate. We continue by estimating the cardinality
of IN,. Due to Lemma 3.5(ii) there exists a constant ¢; > 0, which does not depend on z, such that at
most ¢; - R hyperplanes from the arrangement in (20) intersect the ball Bg. From the theory of hyperplane
arrangements it is known that the complement of an arrangement of N hyperplanes in IR® consists of
at most » (1:[) = O(N?®) connected cells of dimension s, see [12, 33]. Hence there exists a constant
¢y > 0 such that at most co - R® full-dimensional sets P,(z) intersect the ball Bg. Since there are only
finitely many normals d,,k = 1,..., K,, in the arrangement (20), there exists a constant c3 > 0, again
not depending on z, such that the number of all (not necessarily full-dimensional) sets P,(z) intersecting
the ball Bpg, in other words the cardinality of IV,, is bounded above by c3 - R?.

For any ¢ € IN, we have the estimate

[u(P. () —v(Pu(z))| < as,(p,v)

where, in case P,(z) is not closed, P,(x) is approximated by a sequence that is monotonically increasing
with respect to set inclusion and that consists of closed polyhedra from B, which are contained in the
relative interior of P,(z). Altogether, this allows to continue the estimate (24) as follows

2C
< e R -ag,(pv) + Ra
< c3- aBo(M)’/)isJ%ale + 2C- Oégo(,u,l/)ﬁ = (C3 + 20) 'aBo(/J/ay)ﬁa
and the proof is complete. O

Remark 3.13 In general, ap, need not define a metric on P(IR®) since ap,(u,v) = 0 is possible with
i # v. This can be overcome by enriching B,, for instance by adding the canonical basis vectors in IR®
to the set of relevant outer normals in the definition of B,. Then ap, majorizes the uniform distance of
distribution functions which is known to be a metric on P(IR®), and Proposition 3.12 holds without the
restriction that ag,(p,v) # 0.

Remark 3.14 Under suitable assumptions, weak convergence of probability measures implies convergence
in ap,, and Proposition 3.12 can be seen as a quantification of Proposition 3.11: A class B of Borel sets
in IR® is called a p-uniformity class if ag(pn, ) — 0 holds for every sequence ., in P(IR*) converging
weakly to u € P(IR®). By Theorem 2.11 in [8] the family of all convex Borel sets in IR® is a p-uniformity
class provided p has a density. Since all members of B, are convexr and Borel, weak convergence of
probability measures implies convergence in ag, if the limiting measure has a density.

Remark 3.15 The fact that the number of affine halfspaces defining the members of B, is uniformly
bounded implies speed-of-convergence estimates for ag, in the context of estimation by empirical measures.
Given a sequence &1,&a,...,&n, ... of independent IR®-valued random variables on some probability space
(Q, A, P) with joint distribution u, the empirical measures p,(w) (w € Q, n € IN) are defined by

1 n
(@) =~ de.(w)
=1
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where O¢, () denotes the measure with unit mass at &;(w) (cf. [15, 34, 48]). For the variational distance
ap (i, pin(w)) then the following law of iterated logarithm established in [26] holds, provided that B is a so
called Vapnik-Cervonenkis class:

n

1/2 1
lim sup ( ) - ap(p, pr(w)) < 3 for P-almost all w € Q. (25)

n—oo \2loglogn

A family B of Borel sets in IR® is called a Vapnik-Cervonenkis class if there exists an m, € IN such that
for any finite set E C IR® with m, elements not every subset E, of E arises as an intersection E, = ENB
for some B € B. The catch is now that, thanks to the uniform bound on the number of defining half
spaces, the family B, is a Vapnik-Cervonenkis class, for details see e.g. [34, 48]. Proposition 3.12 and
(25) then provide a speed-of-convergence estimate for |Qp(z,n) — Qp(z, pn(w))].

Propositions 3.11 and 3.12 are the essential ingredients for studying the stability of optimal solutions to
optimization problems whose objective function involves the excess probability functional Q) p. Stability
of the traditional expectation-based stochastic program (4) was studied in [1, 36, 46, 47]. We will close
this section with some stability results for the risk minimization problem

P(u) min{Qp(z,un) : x € X}.

This specific problem has been chosen to display the direct impact of Propositions 3.11 and 3.12 on sta-
bility. If one is interested in the stability of the mean-risk model (6) one has to combine the assumptions
in the statements below with assumptions in [1, 36, 46, 47].

In general, the function @ p(., 1) is nonconvex such that an analysis of local optimal solutions is appro-
priate. To this end we follow [40, 24] and consider localized optimal values and solution sets. With some
subset V' C IR™ we define

ev(p) = inf{Qp(z,n) : € XNV},
Uy(p) = {zeXndV : Qpr(z,u) =pv(p}

Given p € P(IR?), a nonempty set Z C IR™ is called a complete local minimizing set (CLM set) of
P(u) with respect to V if V' is open and Z = ¥y (u) C V. Examples for CLM sets are the set of global
minimizers and isolated local minimizers. The basic feature of CLM sets is that they contain all local

minimizers “nearby”. Without such a completeness property, pathologies may occur under perturbations,
see [40, 24] for details.

Proposition 3.16 Assume that W (ZT) + W’(BTI) =R and {u€ R* : WTu <gq, W'l < q}#0,
that q,q' are rational vectors, and that u € P(IR®) has a density. Suppose further that there exists a
subset Z C IR™ which is a CLM set for P(u) with respect to some bounded open set V- C IR™. Then it
holds

(i) the function @y : P(IR®) — IR is continuous at u, where P(IR®) is equipped with weak convergence
of probability measures,

(ii) the multifunction ¥y : P(IR®) — 27" is Berge upper semicontinuous at i, i.e., for any open set
O in R™ with O D Yy (u) there exists a neighborhood N of u in P(IR®), again equipped with the
topology of weak convergence of probability measures, such that Uy (v) C O for allv € N,

(111) there exists a neighborhood N' of u in P(IR®) such that for all v € N the set Uy (v) is a CLM set
for P(v) with respect to V,

(iv) there exists a constant L, > 0 such that

a

lov(n) —ov(v)] < Lo-ag,(p,v) =

for all p,v € Ay c(IR®) with ap, (u,v) # 0.
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Before proving the above proposition let us add a few comments. The above assertions are paradig-
matic statements in the stability analysis of nonconvex optimization problems. Their proofs rely on
well-established arguments that date back (at least) to Berge [7] and that were adapted and extended
by many authors, cf. [3, 41], for instance. The main ingredients to make these arguments work are
qualitative and quantitative continuity properties as established in Propositions 3.11 and 3.12 together
with nonemptiness and compactness of the unperturbed solution set that, in Proposition 3.16, is hidden
in the boundedness assumption on V. Therefore, we will refrain from presenting all details of the proof
and merely outline its main ideas.

Proof: Using the joint continuity established in Proposition 3.11 the proof of (i) and (ii) follows the lines
of Berge’s theory as displayed, for instance, in the proof of Theorem 4.2.2 in [3].

To prove (iii), one first confirms the nonemptiness of ¥y (v) which is a consequence of the lower semi-
continuity of @ p(.,v), see Proposition 3.3, together with the nonemptiness and compactness of X Nl V.
The CLM property then follows from (ii).

For proving (iv) we, as in the proof of (iii), confirm that ¥y (1) # 0 and ¥y (v) # 0. Let u,v € A, o (IR?)
and z, € ¥y (v), z, € ¥y (p). Then it holds

QOV(I'L) S QP(wllnu) S SOV(V)+|QP(QZV7H)_QP(QZIHVH
and
ev(v) < Qp(zu,v) < evp) +1Qpr(zy,v) — Qp(zu, p)l.
Together with Proposition 3.12 this implies
lov(v) —ov(w)] < Lo-as,(v,m)7,

and the proof is complete. O

Remark 3.17 Due to the lower semicontinuity of Qp(.,v) and the fact that X N el V' is nonempty and
compact, nonemptiness of Uy (v) is immediate. Not immediate, however, is that Uy (v) consists of local
minimizers to P(v), i.e., when minimizing over X . The latter is confirmed by assertion (iii) above, which
says that for all v € N the set Uy (v) is a CLM set and hence a set of local minimizers to P(v).

4 Algorithm and Computational Experiments

The following result establishes a useful link between two-stage stochastic programs with excess proba-
bilities and traditional expectation-based two-stage models. Before stating the proposition we recall that
the support supp p of p € P(IR?) is the smallest closed subset of IR® with y-measure 1.

Proposition 4.1 Assume that W(Z) + W'(R7') = R*, {u€ R* : WTu<gq, W< gy #0, and
that p has bounded support. Then the following holds.

(i) For any x € IR™ there exists a constant M, > 0 such that

r() = Qu(@) = [ @h-Ta.cTs— ) u(an (26)
where
D(ty,t2) = min{d : Wy+W'y' = t;, —¢"y—dTy' + My — 0,)0 > ta,
yeZT, y € R, 0€{0,1}}. (27)

(i1) If, in addition, X is bounded then M, in (i) can be chosen as a uniform constant M for all x € X,
and the stochastic programs

min{Qp(z) : z€ X} and min{Qg(z) : z€ X}

are equivalent.
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Proof: To prove (i) we define
M, := sup{c’z+ ®(h—Tz) : h € suppp}.
This supremum is finite since, by Proposition 3.1(iv) and ®(0) = 0, it holds
®(h—Ta)| = |8(h—Tx) - 8(0)| < BlIAl| + BIT=] + (28)

and since supp p is bounded.

Next we verify that the integral in (26) is taken over a real-valued function, i.e., that ®(h—Tx, Tz —p,) €
R for all h € supp p. By Proposition 3.1(i) it holds that ®(¢) € IR for all ¢ € IR®. Hence, the
optimization problem associated with ®(h — T'z), cf. (2), is solvable for all h € supp u. Let h € supp u
and (y,y') € Z" x IRTI be an optimal solution associated with ®(h — T'z). Then we have

Wy+W'y'=h—Tz and M, —¢, > cla+®h-Tz)—¢p, = cTz+q¢"y+q¢Ty — p,.

Hence, the tuple (y,y',1) is feasible for the optimization problem associated with ®(h — Tz, ¢'x — ¢,),
cf. (27). Since this optimization problem has an objective with values in {0, 1} only, it is solvable, and
®(h—Tx,c'z — ¢,) € R.

The integral in (26) makes sense for measurable functions only. Therefore, we have to show that & is
measurable. Since @ takes values in the finite set {0,1}, it is sufficient to show measurability of the
pre-images ®~'({0}) and ®~'({1}). For these sets we have the following representations:

$1{0}) = {(tit) e R : I(y,y) € ZT x RTY Wy+W'y' =t, 'y + ¢y < —t>}

{(t1,t2) € R¥T" : ®(t1) < —t}
and
e'({1) = @7'({o,1) \ @7'({o})
= {(tl,tz) e R 1 3y, 0) € ZT x RT x{0,1} Wy+W'y' =t

"y +qdTy < —to+ (M, — %)9}

N {(tl,tQ)ele“ . ®(t) >—t2}

[{(tlat2) e R - A(y,y) € ZT x RY Wy+W'y' =t1, ¢y +q7y < —t2}
U {(t,t2) € R 2 3(y,y) € ZT x RY Wy +W'y' =t

qu +qITyI S _t2 +Mm - on}]

N {(tl,tQ)ele“ . ®(t) >—t2}

= {(ti,t2) € R+ B(t)) < —ta+My — o} N {(t,t2) € R+ &) > —ta}
= {(ti,t2) € R*TT © —ty < B(t) < —t2+ M, — @, }.

In view of Proposition 3.1(i) the function ® is lower semicontinuous and hence measurable. The above
representations then yield measurability of the sets ®~'({0}) and =" ({1}). Note that in case M, —p, < 0
we have ®~'({1}) = (). Since the integrand in (26) is globally bounded on its domain of finiteness, now
measurability of ® implies that the integral in (26) is well-defined.

To check the asserted equality in (26) we denote by xaz(z)(h) the indicator function of M (x) and we show
that ®(h — Tz, cTx — @,) = XM (z)(h) for all h € supp p.

If &(h — Tz, c"x — ¢,) = 0 then there exists (y,y') € Z7 x lRf fulfilling Wy + W'y’ = h — Tz and
cl'e+q"y +q¢"y' < p,. Hence ¢’z + ®(h — Tx) < ¢,, implying h ¢ M(z), and we have XM(z)(h) = 0.
If ®h — Tz,cTz — p,) = 1 then ¢’z + ¢y + ¢Ty' > ¢, for all (y,y') € Zm x IRQ_"I fulfilling
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Wy + W'y" = h — Tz. Since the optimization problem associated with ®(h — T'x) is solvable, it fol-
lows that ¢’z + ®(h — T'z) > ¢,. Therefore h € M (z), and we obtain xs(y)(h) = 1. This completes the
proof of (i).

To verify (ii) we observe that the estimate (28) yields a uniform upper bound M for sup{c’z+ ®(h—Tz) :
h € supp u},z € X, provided that supp p and X are bounded. Equivalence of the listed stochastic pro-
grams then is a direct consequence of (i). O

Remark 4.2 As a particular consequence of Proposition 4.1 we obtain that the stochastic program
min{QlE(m) :x € X} has relative complete mized-integer recourse, meaning that for any h € supp p and
any x € X there exists a feasible tuple (y,y',0) to the optimization problem associated with
i’(h —Tx,c's — ¢,). On the other hand, the stochastic program fails to have complete mized-integer
recourse. Namely, if we fix t; € IR®, consider a sequence (t3)nev tending to +0o0, and assume that there
exist (Yn, Y, 0n) € ZT x R x {0,1} such that

Wy, + Wyl =t and — q yn —q'Tyl, + (M — 0)0, > 17,

then we have found (yn,y,,) € ZY x IRTI for which Wy, + W'y!, = t; and ¢"y, + ¢Ty!, - —0 as
n — oo. This contradicts the fact that min{q”y + ¢'Ty' : Wy + W'y’ = t1,(y,y') € ZT % RTI} is
solvable, or, in other words, that ®(t1) € IR, c¢f. Proposition 3.1(i).

This lack of complete mized-integer recourse prevented the application of existing results on structure
and stability of expectation-based two-stage stochastic integer programs (see [46, 47]) in our analysis of
Section 3. In addition, of course, Proposition 4.1 requires the underlying probability measures to have
bounded support while the analysis of Section 3 does not.

In the remainder of this section we assume that the set X is bounded and closed, and arises as a solution
set to a system of linear inequalities, possibly involving integer requirements to components of z. More-
over, we assume that the underlying probability measure p is discrete with finitely many realizations (or
scenarios) h; and probabilities 7;,j = 1,...,J. Clearly, the support of i is bounded then, and we obtain
the following corollary to Proposition 4.1.

Corollary 4.3 Adopt the setting of Proposition 4.1 and let X, u be as above. Then there exists a constant
M > 0 such that the stochastic program

min{Qp(z) : € X} (29)

can be equivalently restated as

J
zglg}e{zﬂjej : Wy + W'y = hj =Tz, —q"y; — ¢y + M—@o)0; > 'z —,,
vy =

v€X, yi € ZT, y; € Ry, 6, €{0,1}, j=1,....7}. (30)

Problem (30) quickly becomes large-scale such that general-purpose mixed-integer linear programming
algorithms and software fail. On the other hand, the constraint matrix of (30) obeys the same block-
angular structure as with traditional expectation-based linear two-stage stochastic programs. Second-
stage variables (yj,y;-,ﬁj) for different scenarios are not linked in explicit constraints but only through
the scenario-independent first stage variable x.

In analogy to the traditional expectation-based model, cf. [13], this suggests the following algorithmic
approach to (30) via scenario decomposition, i.e., Lagrangian relaxation of nonanticipativity.

Introduce in (30) copies z;,j = 1,...,J, referring to the number of scenarios, and add the nonanticipa-

tivity constraints ¢y = ... = x; (or an equivalent system), for which we use the notation ijl Hjz; =0
with proper (I, m)-matrices H;,j = 1,...,J. Problem (30) then becomes

J
II;I:LI}Q {Z T8 : Wy + W'y, = hj — Tz, —q"y; — q'Ty;- + M= p)8; > cTaj— po,
R R

J
v, €X, y; € ZT, Yy € R, 0, €{0,1}, j=1,...,J, > Hjz;=0}. (31)

j=1
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The constraint system of (31) can be decoupled by Lagrangian relaxation of ijl Hjz; = 0. To this
end, we consider for A € IR! the functions

Lj(l‘j,yj,y;-,gj',/\) = 7Tj0j + )\THJ'Z‘J‘, j=1,...,J,

and form the Lagrangian

J
L(:L‘,y,yl,G,)\) = ZLj(xjayjayé'aejaA)'
j=1
The Lagrangian dual of (31) reads
max{D()\) : X € R'} (32)

where

J

D(\) = min{Y_ Lj(z;,y;,y},05, %) : Wy; + W'yj = h; — Tz,
j=1 1T, 1

—qTy; = Ty + (M= o)0; > cTxj— o,
w;€X, y € ZT, yi € RT, 6; € {0,1}, j=1,....J}.

Separability yields

where

D;(A) = min{L;(z;,y;,y;,0;,A) : Wy; + W'y; = hj —Taj,
—q"Ty; = Ty + (M= o)0; > cTxj— o,

w;i€X, y € ZT, yi € RT, 6; € {0,1}}. (34)

D()) is the pointwise minimum of affine functions in A. Therefore it is piecewise affine and concave.
Thus, (32) is a nonsmooth concave maximization (or convex minimization) problem that can be solved
by bundle methods from nondifferentiable optimization, for instance by the conic bundle method of [17]
or the proximal bundle method of [22, 23]. At each iteration, these methods require the objective value
and one subgradient of D. The structure of D, cf. (33), enables substantial decomposition, since the
single-scenario problems (34) can be tackled separately. Their moderate size often allows application of
general-purpose mixed-integer linear programming codes.

Altogether, the optimal value zrp of (32) provides a lower bound to the optimal value z of problem
(30). From integer programming ([30]) it is well-known, that in general one has to live with a positive
duality gap. On the other hand, it holds that zpp > zpp where zp p denotes the optimal value to the LP
relaxation of (30). The lower bound obtained by the above procedure, hence, is never worse the bound
obtained by eliminating the integer requirements.

In Lagrangian relaxation, the results of the dual optimization often provide starting points for heuristics
to find promising feasible points. Our relaxed constraints being very simple (z; = ... = zy), ideas for
such heuristics come up straightforwardly. For example, examine the z;-components, j = 1,...,J, of
solutions to (34) for optimal or nearly optimal A, and decide for the most frequent value arising or average
and round if necessary.

If the heuristic yields a feasible solution to (30), then the objective value of the latter provides an upper
bound Zz for z. Together with the lower bound zy,p this gives the quality certificate (gap) Z — zLp.

The full algorithm improves this certificate by embedding the procedure described so far into a branch-
and-bound scheme for (29) seen as a nonconvex global optimization problem. Let P denote the list
of current problems and zr,p = zp(P) the Lagrangian lower bound for P € P. The algorithm then
proceeds as follows.

Algorithm 4.4

Step 1 (Initialization): Set Z = 400 and let P consist of problem (31).

Step 2 (Termination): If P = () then the solution & that yielded z = Qp(Z) is optimal.

Step 3 (Node selection): Select and delete a problem P from P and solve its Lagrangian dual. If the
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optimal value z;,p(P) hereof equals +oo (infeasibility of a subproblem) then go to Step 2.
Step 4 (Bounding): If z,p(P) > Z go to Step 2 (this step can be carried out as soon as the value of the
Lagrangian dual rises above z). Consider the following situations:

1. The scenario solutions x;, j = 1,...,J, are identical: If Qp(z;) < Z then let Z = Qp(x;) and
delete from P all problems P' with z,p(P') > Z. Go to Step 2.
2. The scenario solutions xj, j = 1,...,J differ: Compute the average T = ijl m;x; and round it by

some heuristic to obtain T%. If Qp(TF) < Z then let 2 = Qp(Z?) and delete from P all problems
P’ with z,p(P') > z. Go to Step 5.

Step 5 (Branching): Select a component x(yy of x and add two new problems to P obtained from P by
adding the constraints x(yy < |Zy)| and xy) > [T ] + 1, respectively (if x() is an integer component),
or T(xy < Ty — € and T(yy > T(y) + €, respectively, where € > 0 is a tolerance parameter to have disjoint
subdomains. Go to Step 3.

The algorithm is obviously finite if all z-components have to be integers. (Recall that X is bounded !) If
x is mixed-integer some stopping criterion to avoid endless branching on the continuous components has
to be employed.

As already mentioned, the algorithm follows the same lines as the algorithm for min{Qr(z) : = € X}
developed in [13]. In a straightforward manner this leads to a scenario decomposition algorithm for the
mean-risk model min{Q g (z) + pQr(z) : x € X}. At the end of the present section we will report some
initial computational experience with this algorithm.

Relations with Efficient Points in Multiobjective Optimization The mean-risk model (6) can
be seen as a scalarization of the multiobjective optimization problem

min {(QE(z),Qr(z)) : v € X}. (35)

A common notion of optimality in multiobjective optimization is efficiency (or nondominance). In terms
of (35) a point z* € X is called efficient if there is no z € X fulfilling Qg (z) < Qr(z*) and Qp(z) <
Qp(z*), with at least one strict inequality. For basic facts of multiobjective optimization we refer to
[5, 25] and the references therein. Given p1, ps € IR, every optimal solution to

min{p Qr(x) + p2Qp(zr) : x € X} (36)

is efficient. This result enables computation of efficient points by solving scalar optimization problems.
In general, only a subset of the efficient points of (35) can be computed via (36). For computing the full
efficiency set via (36), additional assumptions, e.g., convexity of the individual objectives and the feasible
set, are needed. Although we did not elaborate this in Section 3, it is quite easy to confirm that neither
@ E nor ) p are convex in general. The following example demonstrates that, indeed, there exist efficient
points for (35) not computable as solutions to (36) for any p1, p2 € R..

Example 4.5 We specify (1) and (2) as follows. Let m = 1,m =1,m' = 2,s =1, and ¢ = 0,T =
2—12,)(1 ={&, 5,5} The.mndom variable h(w) is given by the realizations 0, 15, = with the probabilities
£,&,5- The second stage is defined by
o1
() = m1n{§y1 +ur Yy iy -y =ty € Zy, (y1,y5) € R}
o1
= min{gy + [t -yl y1 € Zy}.

Finally, the probability threshold is selected as p, = % We have just three points in X such that the
image set (Qm,Qr)(X) can be computed explicitly. It holds

onanm - {(Ga), (42 (22)
33 2

Clearly, all three members of the image set are efficient. One confirms that the point (55, £) is located at

the straight line passing through (32,0) and (32,2). Hence there is no straight line supporting (from below)

B QPp and passing through (2, 2). In other words, the efficient point (25,2) is not computable
QE,Qp)(X) and passing through (3%, 2). In oth ds, th ient point (2%, 2) is not tabl
as a solution to (36) for any p1,p2 € R4.
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A prominent example of efficiency in the context of mean-risk models is induced by Markowitz’ mean-
variance model for portfolio selection, [28, 44]. The model aims at finding an optimal asset allocation
where the quality of the allocation is judged by both expectation and variance of the return. The total
return being the sum of individual returns multiplied by the allocation proportions, both expectation
and variance of the return are convex functions of the allocation. Hence the full set of efficient points,
also called the efficient frontier, can be traced by solving scalarizations as in (36).

Due to lacking convexity and the above example we cannot hope to be able to trace the full efficient set,
or efficient frontier, of (35) by solving scalarizations (36). However, Algorithm 4.4 bears the potential
of tracing the supported part of the efficient frontier, i.e., those efficient points that arise as optimal
solutions to scalarizations (36). To this end, it is sufficient to vary the parameter p in (6) within the
nonnegative reals. For every individual p, Algorithm 4.4 then provides a global solution to the nonconvex
optimization problem (6). The numerics of tracing nonsupported parts of efficient frontiers to nonconvex
multiobjective optimization problems still is a widely open field, cf. [25] for an account of existing
methods.

Modeling Background for Computational Tests To illustrate our initial computational experience
we will report tracing of supported efficient points at an example from chemical engineering. The modeling
background is given by a real-life multi-product batch plant producing expandable polystyrene (EPS). A
detailed description of the EPS production process can be found in [16].

The process consists of preparation, polymerization, and finishing. During preparation different kinds of
intermediates are produced. In certain mixtures depending on a finite number of recipes the intermediates
are fed batch-wise into the polymerization reactors. After termination of each polymerization its product
is transferred immediately into a mixing tank of a finishing line, leading to a discontinuous inflow into
these tanks. Each finishing line further consists of a separation stage where different grain sizes of EPS
are separated from each other. These grain sizes are the final product of the process and have to match
customer demand. The separation stages are driven continuously. Shut-down and start-up procedures
for separation stages are time consuming, expensive, and have to adhere to minimum up- and down-times
of the stages.

The EPS process is controlled by fixing starting times and choices of recipes for the polymerizations
and by selecting start-up and shut-down times as well as feed rates for the separation stages. A typical
scheduling horizon is given by two weeks, with a time discretization into five equidistant intervals. The
major source of uncertainty is customer demand. Optimization aims at minimizing a weighted sum of
costs caused by running the polymerizations, switching the separation stages, and compensating deficit
between production and customer demand.

The above setting gives rise to different two-stage stochastic integer programs, see [16] for details. For
the numerical tests in the present paper we have used a planning model where the first-stage variables
are given by the states of the separation stages. This places emphasis on the qualitative aspect that a
smooth operation of the EPS process is desired, which is achieved by fixing the states of the most sensible
part of the plant as early as possible.

Tracing of Supported Efficient Points To trace the supported parts of nonconvex, nonconnected
efficient frontiers we have formulated instances of the EPS problem with 10, 20, 50, and 100 scenarios.
With the mentioned extension of Algorithm 4.4 we then have solved to global optimality instances of the
mean-risk model min{Q g (z) + pQp(z) : © € X} for suitable values of p.

Tracing starts with p = 0, i.e., with solving min{@Qg(z) : © € X}. If the optimal solution is unique then
it has to be efficient as well. Since we have no indication about unicity of optimal solutions, we solve the
mean-risk model again with “small” p, say p = 0.001. If the @ p-value of the optimal solution remains
the same, the optimal solution has to be efficient, and there are no further supported efficient points for
0<p<op.

An analogous procedure is carried out at the
with a “big” p (p = 1000) for efficiency.
Suppose the “lower” and “upper end” procedures have resulted in two distinct efficient points ', z"
with distinct values of (Q g, Qp)(x). We calculate the normal vector (1,5)7 of the straight line passing
through (Qm,Qp)(z') and (QE,Qr)(z") and solve min{Qr(z) + pQr(z) : € X}. The optimal
solution z'’ is a supported efficient point. If Qg (z"") + pQr(z"") coincides with the identical values
Qr(@)+pQr(r') = Qr(z")+pQp(z") then it is clear that, up to equality of the value Q g (z)+pQ p (),

&

‘upper end”. We solve min{@p(x) : x € X} and check
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there are no further supported efficient points for p < p < p. Otherwise, the search continues with the
intervals p<p<pand p<p<p. B

The procedure is iterated at subintervals for p where further supported efficient points still may be
expected. It terminates when no such intervals exist any longer. With a discrete probability distribution,
@ p attains only finitely many values, implying that the procedure terminates after finitely many steps.
Table 1 documents our computations. The parameter M, cf. (30), was put to 1000 in all instances. The
threshold values ¢, are 102.52,102.55,102.07, and 102.39 for the 10-,20-,50-, and 100-scenario instances,
respectively.

Table 1: Computational results for the EPS problem

Scenarios  Cont/Int/Bin Constraints p QE, Qp) Time (h:mm) CPLEX
500/400/352 1370 0 (114.81, 1.00) 0:11 3.23%
500/400/362 1380 0.001 (114.81, 1.00) 0:12 3.16%
500/400/362 1380 44.17 (141.31, 0.40) 0:22 14.17%

10 500/400/362 1380 94.78 (141.31, 0.40) 0:21 7.22%
500/400/362 1380 246.60 (141.31, 0.40) 0:19 11.77%
500/400/362 1380 1000 (190.64, 0.20) 0:10 0.67%
500/400/362 1380 +00 (302.52, 0.20) 0:01 00
1000/800/692 2740 0 (120.50, 1.00) 0:21 4.79%
1000/800/712 2760 0.001 (120.50, 1.00) 0:21 5.51%
1000/800/712 2760 66.57 (120.50, 1.00) 0:37 11.87%
1000/800/712 2760 67.80 (137.14, 0.75) 0:38 12.24%

20 1000/800/712 2760 68.68 (161.18, 0.40) 0:38 12.03%
1000/800/712 2760 177.13 (161.18, 0.40) 0:37 9.68%
1000/800/712 2760 833.08 (161.18, 0.40) 0:37 23.56%
1000/800/712 2760 1000 (244.49, 0.30) 0:34 7.18%
1000/800/712 2760 +00 (402.55, 0.30) 0:01 00

2500/2000/1712 6850 0 (124.00, 1.00) 0:59 5.77%
2500/2000/1762 6900 0.001 (124.00, 1.00) 1:00 6.23%
2500/2000/1762 6900 111.25 (166.27, 0.62) 1:53 29.73%
50 2500/2000/1762 6900 222.05 (166.27, 0.62) 1:40 28.03%
2500/2000/1762 6900 413.43 (257.23, 0.40) 1:48 22.80%
2500/2000/1762 6900 1000 (257.23, 0.40) 1:04 24.86%
2500/2000/1762 6900 +00 (502.07, 0.40) 0:09 00
5000/4000/3412 13700 0 (122.10, 1.00) 2:21 5.98%
5000/4000/3512 13800 0.001 (122.10, 1.00) 2:14 13.40%
5000/4000/3512 13800 80.33 (153.43, 0.61) 3:27 31.81%
100 5000/4000/3512 13800 153.57 (153.43, 0.61) 3:09 33.11%
5000/4000/3512 13800 263.42 (221.92, 0.35) 3:18 00
5000/4000/3512 13800 1000 (221.92, 0.35) 1:45 00
5000/4000/3512 13800 +00 (452.39, 0.35) 0:22 00

The p-column displays the values that were necessary for the search. Let us explain at the 10-scenario
instance: p =0 and p = +00 correspond to minimizing @ and @ p, respectively. The values p = 0.001
and p = 1000 are the mentioned safeguards for efficiency at the “lower” and “upper ends”. Simultane-
ously, they serve to initialize the search interval for p. The first value for p is 94.78. It yields an efficient
point whose value of Qi (z) + pQp(z) is distinct from the corresponding value of the two efficient points
already found. Hence, the subintervals [p, p] and [p, p] must be considered further, what is done with the
updated p-values 44.17 and 246.60, respectively. In both cases, the optimal values of Qg (z) + pQp ()
coincide with (Qm + pQ p)-values of efficient points already known. (In fact, even the optimal solution
points coincide with an efficient point already known.) The search terminates. Altogether, we have found
three supported efficient points with (Q g, Q@ p)-values of (114.81,1.00), (141.31,0.40), and (190.64, 0.20).
Up to equality of values Qg (z) + pQr(z) for p € {44.17,246.60}, these are all supported efficient points
of the instance.

The Time-column displays the time needed by our decomposition algorithm to find an optimal point and
prove its optimality with a relative gap of 0.001%.
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The CPLEX-column shows the relative optimality gaps achieved by CPLEX 8.0 (with default parame-
ters) in the time listed in the column before. The symbol oo indicates that no feasible solution was found
in this time. All computations were carried out on a Linux PC with an AMD Athlon XP 2200+ processor
(1.8 GHz) and 1 GB RAM.

The Cont/Int/Bin-column has the numbers of continuous, integer (nonbinary), and binary variables in
the block-angular mixed-integer linear programs corresponding to the models. The numbers of constraints
are listed in the next column.

Altogether, the table confirms that our algorithm is able to trace with reasonable effort supported parts
of efficient frontiers of realistic instances of the nonconvex multi-objective program (35).
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