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Abstract. A basic closed semialgebraic subset S of Rn is defined by simul-

taneous polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0. We give a short intro-
duction to Lasserre’s method for minimizing a polynomial f on a compact set

S of this kind. It consists of successively solving tighter and tighter convex

relaxations of this problem which can be formulated as semidefinite programs.
We give a new short proof for the convergence of the optimal values of these

relaxations to the infimum f∗ of f on S which is constructive and elementary.

In the case where f possesses a unique minimizer x∗, we prove that every
sequence of “nearly” optimal solutions of the successive relaxations gives rise

to a sequence of points in Rn converging to x∗.

1. Introduction to Lasserre’s method

Throughout the paper, we suppose 1 ≤ n ∈ N and abbreviate (X1, . . . , Xn) by
X̄. We let R[X̄] denote the ring of real polynomials in n indeterminates. Suppose
we are given a so called basic closed semialgebraic set, i.e., a set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

defined by polynomials g1, . . . , gm ∈ R[X̄]. We consider the problem of minimizing
a polynomial f ∈ R[X̄] on S in the case where S is compact. So we are interested
in computing numerically the optimal value

f∗ := inf{f(x) | x ∈ S} ∈ R ∪ {∞}

and, if possible, an optimal point, i.e., an element of the set

S∗ := {x∗ ∈ S | ∀x ∈ S : f(x∗) ≤ f(x)}.

Note that S∗ 6= ∅ and f∗ = min{f(x) | x ∈ S} unless S = ∅ since S is assumed to
be compact.

We will now outline Lasserre’s [Las] approach to solve this problem. It will be
convenient to set g0 := 1 ∈ R[X̄]. Furthermore, we denote by R[X̄]2 the set of all
squares p2 of polynomials p ∈ R[X̄], by R[X̄]2gi the set of all p2gi, by

∑
R[X̄]2gi

1991 Mathematics Subject Classification. Primary 90C26, 13J30; Secondary 44A60, 14P10,

11E25.
Key words and phrases. nonconvex optimization, positive polynomial, sum of squares, moment

problem, Positivstellensatz, semidefinite programming.
This work was partially done during the author’s one year stay at Université de Rennes 1
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the set of all finite sums of such elements, and so on. In real algebra, the set

M :=
∑

R[X̄]2 +
∑

R[X̄]2g1 + · · ·+
∑

R[X̄]2gm

=

{
m∑

i=0

σigi | σi ∈
∑

R[X̄]2
}
⊆ R[X̄]

(1)

is called the quadratic module generated by g1, . . . , gm [PD, 5.1.7]. It is a set of
polynomials that are nonnegative on S and possess a very nice certificate for this
property. Lasserre’s method works only if a certain assumption is satisfied. It can
be expressed in several different ways that are equivalent by the following theorem.

Theorem 1 (Schmüdgen). The following are equivalent:
(i) There exist finitely many p1, . . . , ps ∈ M such that the set

{x ∈ Rn | p1(x) ≥ 0, . . . , ps(x) ≥ 0}
(which contains S) is compact and

∏
i∈I pi ∈ M for all I ⊆ {1, . . . , s}.

(ii) There exists some p ∈ M such that {x ∈ Rn | p(x) ≥ 0} is compact.
(iii) There exists an N ∈ N such that N −

∑n
i=1 X2

i ∈ M .
(iv) For all p ∈ R[X̄], there is some N ∈ N such that N ± p ∈ M .

It is clear that (iv) =⇒ (iii) =⇒ (ii) =⇒ (i). We don’t include the easy proof of
(iii) =⇒ (iv) [PD, 5.1.13][S1, 2.1] since this implication comes out as a byproduct
in this article: Soon we will impose (iii) as a general assumption under which we
will be able to prove Theorem 3 below which together with the compactness of S
implies immediately (iv).

The essential part of Theorem 1 is the implication (i) =⇒ (iii). This is a weak
form of Schmüdgen’s Theorem [Sch, Corollary 3] because N−

∑n
i=1 X2

i > 0 holds on
the compact set defined by the pi when N ∈ N is big enough. The reader acquainted
with real algebra should not be confused by the fact that in Schmüdgen’s work
there is no quadratic module appearing: When proving (i) =⇒ (iii) you can assume
without loss of generality that M is even a so-called preorder (the one generated
by the pi). We will not include a proof of this weak form of Schmüdgen’s Theorem
and instead state our assumption in the seemingly stronger form (iii). We do this
for the following reasons:

• Once assuming (iii), we have a new short proof of Theorem 3 (and thus
the convergence of Lasserre’s procedure to f∗) that uses only elementary
analysis (see Section 2). It completely avoids any arguments from functional
analysis used in Putinar’s original proof [Put] or from real algebra used in
the other proof of Jacobi [Jac][PD].

• In many practical applications, an N ∈ N is known such that S is contained
in the closed ball around 0 with radius

√
N . Then the condition (iii) can

be assured by adding the redundant inequality N −
∑n

i=1 X2
i ≥ 0 in the

definition of S. This increases the number m of gi’s only by one.
• Whether it is decidable that the equivalent conditions of Theorem 1 are

satisfied is not known and subject to current research. But (iii) seems to
be the condition the most suitable for algorithmic exploitation among the
given ones.

• Condition (i) is interesting if it is known that S is compact, but no ball
containing S is known explicitly. It can be satisfied by adding the redundant
inequalities

∏
i∈I gi ≥ 0 for all I ⊆ {1, . . . ,m} of cardinality #I ≥ 2 to the
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definition of S. However, this gives rise to an exponential growth of the
number of inequalities, which is fatal from the complexity point of view
unless the number m of gi’s is very small.

We refer readers interested in the proof of the implication (i) =⇒ (iii) to [PD,
5.1.17] or [S1, 2.2]. These are expositions of Wörmann’s nice algebraic proof [BW,
Theorem 4] that don’t use a sledgehammer to crack a nut (the sledgehammer is
[BW, Corollary 1]). Theorem 1 was first proved by Schmüdgen in his pioneering
work [Sch] where he proved even Putinar’s Theorems 2 and 3 in the special case
where g1, . . . , gm are the m = 2s products

∏
i∈I pi of some polynomials p1, . . . , ps.

In this context, we should also mention that deep work of Jacobi and Prestel gives
criteria for the conditions of Theorem 1 to be satisfied that are even more applicable
than condition (i) [JP][PD, 6.3]. We end the discussion around Theorem 1 once and
for all by assuming from now on the following condition, which is really stronger
than the compactness of S [PD, 6.3.1].

General assumption. ∃N ∈ N : N −
n∑

i=1

X2
i ∈ M

A fundamental obstacle when one tries to find f∗ is that the set S and the function
f |S : S → R are in general far from being convex. Of course, S need not even be
connected. The first step towards Lasserre’s method is to convexify the problem
by brute force. There are two ways of doing this.

The first one is to exchange the points of S by probability measures on S.
Every point x ∈ S can be identified with the Dirac measure δx at x, and a convex
combination of probability measures is again a probability measure. Obviously, we
have

(2) f∗ = inf
{∫

fdµ | µ ∈M1(S)
}

.

Here, for any set A ⊆ Rn, M1(A) denotes the set of all probability measures on A.
To be precise, A is understood as a measurable space. More exactly, it is equipped
with the σ-algebra B(A) of its Borel sets, i.e., the σ-algebra generated by all sets
that are open in the topological space A. Consequently, a probability measure µ
on A is a σ-additive map µ : B(A) → [0,∞) with µ(∅) = 0 and µ(A) = 1.

The second method of convexification is to take a dual standpoint, namely, to
write

(3) f∗ = sup {a ∈ R | f − a ≥ 0 on S} = sup {a ∈ R | f − a > 0 on S} .

In (2) and (3), we got rid of the usually nonconvex set S by introducing a convex
object which is, however, very hard to describe and not suitable for algorithmic
purposes — namely, the set M1(S) of probability measures on S and the set of
polynomials nonnegative (or positive) on S, respectively. The following key theo-
rems of Putinar [Put] will help us to overcome this problem.

Theorem 2 (Putinar). For any map L : R[X̄] → R, the following are equivalent:
(i) L is linear, L(1) = 1 and L(M) ⊆ [0,∞).
(ii) L is integration with respect to a probability measure µ on S, i.e.,

∃µ ∈M1(S) : ∀p ∈ R[X̄] : L(p) =
∫

pdµ.
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Theorem 3 (Putinar). If p ∈ R[X̄] satisfies p > 0 on S, then p ∈ M .

Theorem 2 does not really describe M1(S), but all real families (aα)α∈Nn that
are the sequence of moments of a probability measure on S, that is to say,

aα =
∫

X̄αdµ for all α ∈ Nn

where X̄α := Xα1
1 · · ·Xαn

n . This is clear from the fact that every linear map L :
R[X̄] → R is given uniquely by its values L(X̄α) on the basis (X̄α)α∈Nn of R[X̄].
One says therefore that Theorem 2 is a solution to the moment problem on S. For
our purposes this is sufficient since the integral of a polynomial depends only on
the moments, and we can rewrite Equation (2) as

(4) f∗ = inf{L(f) | L : R[X̄] → R is linear, L(1) = 1, L(M) ⊆ [0,∞)}.

Remark 4. Some articles (e.g., [Put]) prefer the viewpoint of a linear map L :
R[X̄] → R as a family (L(X̄α))α∈Nn . In other words, they use an infinite matrix
representation of L (with respect to the standard basis of R[X̄]). Sometimes this
is useful as we will see (especially in the proof) of Theorem 12.

A third way of seeing such an L is by looking at the bilinear forms

R[X̄]× R[X̄] → R : (p, q) 7→ L(pqgi)

(confer proof of Lemma 24) for L(M) ⊆ [0,∞) means nothing else than these
bilinear forms are all positive semidefinite. Again, an infinite matrix representation
of these bilinear forms can be useful, see for example [Lau].

Theorem 3 is called Putinar’s Positivstellensatz in analogy to Hilbert’s Nullstel-
lensatz. Of course, it does not really characterize the polynomials positive on S
since the polynomials lying in M must only be nonnegative on S but not positive.
Also, it does not fully describe the polynomials nonnegative on S since they are not
always contained in M [PD, Example before 8.2.3]. Nevertheless, we get together
with (3) that

(5) f∗ = sup{a ∈ R | f − a ∈ M}.
Putinar proved first Theorem 2 using tools from functional analysis and then

deduced Theorem 3 from it. Jacobi found an algebraic approach to these theo-
rems. He proved an abstract generalization of Putinar’s Positivstellensatz using
tools of real algebra [Jac][PD, 5.3.7]. (In fact, the author observed that it is not
hard to get that abstract theorem back from Theorem 3 using compactness argu-
ments.) Putinar’s solution to the moment problem can then be derived from his
Positivstellensatz using the well-known Riesz Representation Theorem (see Section
3).

In Section 2, we shall present a new proof of Putinar’s Positivstellensatz that uses
only elementary arguments. Like an earlier approach of the author to Schmüdgen’s
Positivstellensatz [S1], it it based on an old theorem of Pólya, Theorem 6 below. At
first glance, this earlier approach seems to be inferior to the one we shall take here,
since it works only for Schmüdgen’s Positivstellensatz, which is a special case of
Theorem 3. On the other hand, it led to complexity results [S2] that we were despite
all efforts not able to reproduce in the more general situation that we encounter
here.
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The idea is now to relax (4) and (5) by introducing approximations Mk ⊆ R[X̄]k
of M ⊆ R[X̄]. Here, for k ∈ N, R[X̄]k denotes the R-vector space consisting of the
polynomials p ∈ R[X̄] of degree deg p ≤ k (we set deg 0 := −∞). So we define, in
analogy to (1),

Mk :=
∑

R[X̄]2d0
+
∑

R[X̄]2d1
g1 + · · ·+

∑
R[X̄]2dm

gm

=

{
m∑

i=0

σigi | σi ∈
∑

R[X̄]2,deg(σigi) ≤ k

}
(6)

for arbitrary

(7) k ∈ N := {s ∈ N | s ≥ max{deg g1, . . . ,deg gm,deg f}}.
Here the di depend on k and deg gi, more exactly,

(8) di := max{d ∈ N | 2d + deg gi ≤ k}
if gi 6= 0, and (for instance) di := 0 otherwise. The equality in (6) follows from
the fact that the leading form (the highest homogeneous part, i.e., the sum of the
monomials of highest degree) of a nonzero square polynomial is a square polyno-
mial and a fortiori a globally nonnegative polynomial. Hence, when adding square
polynomials, no cancellation of leading forms can occur because the sum of two
or more nonzero globally nonnegative polynomials cannot vanish. In contrast to
this, cancellation of leading forms of the terms in the sum

∑m
i=0 σigi is a frequent

phenomenon on which the validity of Theorem 3 relies. In the expression of a given
polynomial p as such a sum, the degree of the terms of the sum sometimes neces-
sarily has to exceed deg p enormously [Ste] (see also [S2][PD, 8.3]). So Mk should
never be confused with M ∩ R[X̄]k ⊇ Mk.

Replacing M by Mk in (4) and (5) motivates the consideration of the following
pair of optimization problems for each k ∈ N .

(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,
L(1) = 1 and
L(Mk) ⊆ [0,∞)

(Dk) maximize a subject to a ∈ R and
f − a ∈ Mk

We call (Pk) and (Dk) the primal and dual relaxation of order k ∈ N , respectively.
The optimal value of (Pk), i.e., the infimum over all L(f) where L ranges over all
feasible solutions of (Pk), is denoted by P ∗

k ∈ R ∪ {±∞}. Analogously, we write
D∗

k ∈ R ∪ {±∞} for the optimal value of (Dk), i.e., the supremum of the feasible
set {a ∈ R | f − a ∈ Mk} of (Dk).

For every x ∈ S, the evaluation at x

εx : R[X̄]k → R : p 7→ p(x)

is a feasible solution of (Pk). This shows that P ∗
k ≤ f∗. Moreover, if L is feasible

for (Pk) and a for (Dk), then L(f) ≥ a since f − a ∈ Mk implies L(f) − a =
L(f) − aL(1) = L(f − a) ≥ 0. We therefore get also D∗

k ≤ P ∗
k . It is easy to see

that every feasible solution a ∈ R of (Dk) is also feasible for (Dk+1), and every
feasible solution L of (Pk+1) is feasible for (Pk) when restricted to the subspace
R[X̄]k of R[X̄]k+1 (k ∈ N ). This tells us that the sequences (Dk)k∈N and (Pk)k∈N
are increasing. Furthermore, (D∗

k)k∈N and consequently (P ∗
k )k∈N converges to f∗.
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Indeed, for any ε > 0, we have for sufficiently large k ∈ N that f − f∗ + ε ∈ Mk by
Theorem 3, i.e., f∗ − ε is feasible for (Dk), whence f∗ − ε ≤ D∗

k. Summarizing, we
have seen that the following is true.

Theorem 5 (Lasserre). (D∗
k)k∈N and (P ∗

k )k∈N are increasing sequences that con-
verge to f∗ and satisfy D∗

k ≤ P ∗
k ≤ f∗ for all k ∈ N .

In special cases, something has been proved about the rate of convergence. For
example, if S = {x ∈ Rn | g(x) ≥ 0} is defined by only one polynomial g ∈ R[X̄],
then there is a constant c ∈ N depending on f and g and a constant 0 < d ∈ N
depending on g such that

f∗ −D∗
k ≤

c
d
√

k
for big k.

Much more precise information can be found in [S2, Section 2]. It is based on the
author’s earlier constructive approach to representations of positive polynomials
[S1]. The new approach taken here is simpler and more general as long as one
is interested only in the mere existence of representations of positive polynomials.
But on the other hand, it seems to be less suited to the purpose of keeping track
of complexity. At least, we didn’t succeed in proving a similar rate of convergence
for the general case.

Lasserre observed that (Pk) and (Dk) (when modified insignificantly) can be
easily translated into semidefinite programs and are as such dual to each other.
We will recapitulate this in Section 5. Semidefinite programs are generalizations
of linear programs and can be solved efficiently. Currently, there exist two imple-
mentations of the method [HL][PPP]. Practical experience shows that f∗ is often
actually reached by D∗

k and P ∗
k already for small k ∈ N .

If S 6= ∅, one is usually not only interested in finding the minimum value f∗ of f
on S, but also in obtaining a minimizer x∗ ∈ S∗. Section 3 deals with this problem.
Speaking very roughly, Theorem 12 shows that the method allows for getting finite
families of real numbers that are arbitrarily close to being the family of moments
up to some fixed order of some probability measure on S∗. In case S∗ = {x∗} is a
singleton, i.e., f possesses a unique minimizer, there is only one probability measure
on S∗. Its moments of order one are the coordinates of the unique minimizer
x∗, and we can consequently approximate them arbitrarily closely (see Corollary
13). So the method is good for computing minimizers when they are unique. As
soon as there are two or more minimizers, symmetries in the problem, which often
occur in practice, frequently prevent the algorithm from steering towards one of the
minimizers. In the proof of Theorem 12, we use Theorem 2. For convenience of the
reader, we include the brief well-known derivation of Theorem 2 from Theorem 3
at the beginning of Section 3.

In Section 4, we investigate the duality of the problems (Pk) and (Dk). If S has
nonempty interior, then there is no duality gap, i.e., P ∗

k = D∗
k for all k ∈ N . This

result is essentially due to Lasserre who proved it by applying the duality theory
of semidefinite programming. However, the duality of the problems (Pk) and (Dk)
is much easier to understand than the duality theory of semidefinite programming
in general. We try to give the reader a good visual image of this duality, and then
take Marshall’s [Mar] approach to it, which gives in our opinion a much better
understanding than looking at the duality in general semidefinite programming.
We liberate Marshall’s exposition from arguments using algebraic geometry and
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present it in a less technical framework. The only really new material in Section 4
are some negative examples in the case where S has no interior points.

The author would like to thank Chip Delzell for his numerous useful comments
concerning the exposition of the present work.

2. Convergence to the infimum: An new proof of Putinar’s Theorem

In this section, we present our new proof of Theorem 3. Thinking in terms of
optimization, this means that we prove Theorem 5, that is, the convergence of
(D∗

k)k∈N (and hence of (P ∗
k )k∈N ) to f∗. The key is the following theorem proved

by Pólya in 1928 [Pól]. Like the proof of all the other statements in this section, its
proof requires only very elementary analysis. We recommend [PR] as a reference
where in addition a bound on the exponent k can be found.

Theorem 6 (Pólya). Suppose F ∈ R[X̄] is homogeneous and satisfies

F > 0 on [0,∞)n \ {0}.

Then for all big enough k, the polynomial

(X1 + · · ·+ Xn)kF

has only nonnegative coefficients.

Lemma 7. For all k ∈ N and y ∈ [0, 1],

(y − 1)2ky ≤ 1
2k + 1

.

Proof. In fact, by elementary calculus, we have even

(y − 1)2ky ≤
(

1
2k + 1

− 1
)2k 1

2k + 1
≤ 1

2k + 1
.

�

Suppose now that we are given some p ∈ R[X̄] with p > 0 on S. We want to
show that it lies in M . The idea is to subtract first from p a certain element of
M in order to extend the positivity condition from S to a much larger set C. To
understand the next lemma, we propose to consider the pointwise limit of the left
hand side of (9) below separately at points of C ∩ S and at points of C \ S, using
the hypothesis that gi ≤ 1 on C together with the preceding lemma.

Lemma 8. Suppose C ⊆ Rn is compact and gi ≤ 1 on C for all i ∈ {1, . . . ,m}.
Suppose p ∈ R[X̄] satisfies p > 0 on S. Then there exists s ∈ N such that for all
sufficiently large k ∈ N,

(9) p− s
m∑

i=1

(1− gi)2kgi > 0 on C.

Proof. Since S is compact, we can choose ε > 0 such that p > ε on S. Set

A := {x ∈ C | p(x) ≤ ε}.

Then A is compact and disjoint to S, whence we can choose δ > 0 such that

(10) min{g1(x), . . . , gm(x)} ≤ −δ for x ∈ A.
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It suffices to show that for s, k ∈ N satisfying

p +
sδ

2
> 0 on C,(11)

δ

2
≥ m− 1

2k + 1
and(12)

ε ≥ sm

2k + 1
,(13)

we have (9). If x ∈ A, then in the sum

(14)
m∑

i=1

(1− gi(x))2kgi(x)

at most m− 1 terms are nonnegative. By Lemma 7, these nonnegative terms add
up to at most m−1

2k+1 . At least one term is negative, even ≤ −δ by (10). All in all, if
we evaluate the left hand side of our claim (9) in a point x ∈ A, then it is

≥ p(x)− s
m− 1
2k + 1

+ sδ ≥ p(x) +
sδ

2︸ ︷︷ ︸
>0 by (11)

+s

(
δ

2
− m− 1

2k + 1

)
︸ ︷︷ ︸

≥0 by (12)

> 0.

When we evaluate it at a point x ∈ C \A, all terms of the sum (14) might happen
to be nonnegative. Again by Lemma 7, they add up to at most m

2k+1 . But at the
same time, the definition of A gives us a good lower bound on p(x), so that the
result is

> ε− s
m

2k + 1
≥ 0

by (13). �

Now we are able to prove Putinar’s Positivstellensatz.

Proof of Theorem 3. In this proof, N is chosen like in the general assumption we
have imposed on page 3. Consider the compact set

∆ :=
{

y ∈ [0,∞)2n | y1 + · · ·+ y2n = 2n

(
N +

1
4

)}
⊆ R2n

and let C := l(∆) ⊆ Rn be its image under the linear map

l : R2n → Rn : y 7→
(

y1 − yn+1

2
, . . . ,

yn − y2n

2

)
.

Since l(∆) is compact, we can scale each gi with a positive factor such that gi ≤ 1
on C. Thereby no generality is lost since this affects neither S nor M (noting that
all positive real numbers are squares). So we can apply the preceding lemma and
get s, k ∈ N such that

q := p− s
m∑

i=1

(gi − 1)2kgi > 0 on C.

It suffices to show that q ∈ M , and we shall even show that

q ∈ T :=
∑

R[X̄]2 +
∑

R[X̄]2
(

N −
n∑

i=1

X2
i

)
⊆ M.
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To start with, write

q =
d∑

i=0

Qi

where d := deg q and Qi ∈ R[X̄] is homogeneous of degree i, i = 0, . . . , d. Now
define

F :=
d∑

i=0

Qi

(
Y1 − Yn+1

2
, . . . ,

Yn − Y2n

2

)(
Y1 + · · ·+ Y2n

2n(N + 1
4 )

)d−i

∈ R[Ȳ ]

where R[Ȳ ] denotes the polynomial ring in 2n new indeterminates Y1, . . . , Y2n. For
each y ∈ ∆, we obtain

F (y) =
d∑

i=0

Qi(l(y)) = q(l(y)) > 0,

since l(y) ∈ l(∆) = C. Since F is a homogeneous polynomial, it has constant sign
on each ray emanating by the origin, whence

F > 0 on [0,∞)2n \ {0}.

By Pólya’s Theorem 6, there is some e ∈ N such that

G :=
(

Y1 + · · ·+ Y2n

2n(N + 1
4 )

)e

F ∈ R[Ȳ ]

has only nonnegative coefficients. Now we apply on this polynomial the R-algebra
homomorphism ϕ : R[Ȳ ] → R[X̄] defined by

Yi 7→
(

N +
1
4

)
+ Xi, Yn+i 7→

(
N +

1
4

)
−Xi (i ∈ {1, . . . , n}).

Note that ϕ(Yi) ∈ T for each i ∈ {1, . . . , 2n} since(
N +

1
4

)
±Xi =

∑
j 6=i

X2
j +

(
Xi ±

1
2

)2

+

N −
n∑

j=1

X2
j

 ∈ T.

Noting that T is closed under addition and multiplication, we obtain therefore that

ϕ(G) = ϕ(F ) =
d∑

i=0

Qi = q

is contained in T . �

3. Convergence to the unique minimizer

Recall that N is the set of k for which we have defined the relaxations (Pk) and
(Dk), see (7) on page 5. If, for some k ∈ N , (Pk) happens to possess an optimal
solution L that comes from a probability measure µ on S, that is,

∀p ∈ R[X̄]k : L(p) =
∫

pdµ,

then we can conclude that

f∗ ≤
∫

fdµ = L(f) ≤ f∗.



10 Markus Schweighofer

Consequently, L(f) = f∗ and µ(S∗) = 1. If S∗ = {x∗} is a singleton, then µ must
be the Dirac measure at x∗ and

(L(X1), . . . , L(Xn)) =
(∫

X1dµ, . . . ,

∫
Xndµ

)
= x∗.

In this section, we shall prove that, for high k ∈ N , we are never terribly far
from this nice situation (see Theorem 12). The important Corollary 13 tells us
that Lasserre’s procedure converges not only to the infimum f∗, but also to the
minimizer x∗ in the case that it is unique. These results are based on Theorem 2,
whose well-established proof we include.

Proof of Theorem 2. The implication (ii) =⇒ (i) is trivial. To show the reverse,
suppose that (i) holds. Consider the ring homomorphism

ϕ : R[X̄] → C(S, R) : p 7→ p|S
from the polynomial ring into the ring C(S, R) of continuous real-valued functions
on S. Suppose p ∈ R[X̄] satisfies p ≥ 0 on S. Then p + ε ∈ M by Theorem
3 and a fortiori L(p) + ε = L(p + ε) ≥ 0 for all ε > 0. This implies L(p) ≥ 0.
In particular, L vanishes on the kernel of ϕ and induces therefore a linear map
L̄ : ϕ(R[X̄]) → R well defined by L̄(ϕ(p)) := L(p) for all p ∈ R[X̄]. We equip
C(S, R) with the supremum norm and thus turn it into a normed vector space,
noting that S = ∅ would imply −1 ∈ M , whence −1 = −L(1) = L(−1) ≥ 0. By
the Stone-Weierstrass Approximation Theorem, ϕ(R[X̄]) lies dense in C(S, R). It
is easy to see that L̄(ϕ(p)) = L(p) ≤ ‖p‖ for all p ∈ R[X̄]. Hence the linear map L̄
is (uniformly) continuous. But every map uniformly continuous on a subspace of a
metric space extends uniquely to a continuous map on the closure of this subspace.
Therefore we may consider L̄ as a continuous map on the whole of C(S, R). Using
again the Stone-Weierstrass Theorem, it is easy to see that L̄ maps C(S, [0,∞)) into
[0,∞). Since S is compact, the Riesz Representation Theorem [Rud, 2.14] tells us
that L̄ is integration with respect to a measure on S. �

Definition 9. We say that Lk solves (Pk) nearly to optimality (k ∈ N ) if Lk is a
feasible solution of (Pk) (k ∈ N ) such that limk→∞ Lk(f) = limk→∞ P ∗

k .

If Lk is an optimal solution of (Pk) for every k ∈ N , then, of course, Lk solves
(Pk) nearly to optimality. The same applies for example if |Lk(f)−P ∗

k | ≤ 1
k for all

big k. This is a useful notion because (Pk) might not possess an optimal solution
(see Example 22 below), and even if it does, we might not be able to compute it
exactly. In view of Theorem 5, we note for later reference the following.

Remark 10. Suppose Lk is a feasible solution of (Pk) (k ∈ N ). Then Lk solves (Pk)
nearly to optimality (k ∈ N ) if and only if limk→∞ Lk(f) = f∗.

Notation 11. For α = (α1, . . . , αn) ∈ Nn, we set

|α| := α1 + · · ·+ αn

and, for d ∈ N, we introduce the notation

Λ(d) := {α ∈ Nn | |α| ≤ d}.

Note that (X̄α)α∈Λ(d) is a basis of R[X̄]d for each d ∈ N. We now give the exact
formulation of the main theorem in this section. The norm on RΛ(d) appearing in
the theorem can be anyone.
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Theorem 12. Suppose that S 6= ∅ and Lk solves (Pk) nearly to optimality (k ∈ N ).
Then

∀d ∈ N : ∀ε > 0 : ∃k0 ∈ N ∩ [d,∞) : ∀k ≥ k0 : ∃µ ∈M1(S∗) :∥∥∥∥∥
(

Lk(X̄α)−
∫

X̄αdµ

)
α∈Λ(d)

∥∥∥∥∥ < ε.

Proof. Let d ∈ N and ε > 0 be given. For each k ∈ N , there is some Nk ∈ N such
that

Nk ± X̄α ∈ MNk
for all α ∈ Nn with |α| = k

by (iv) of Theorem 1 (note that M =
⋃

k∈N Mk and N0 ± X̄α ∈ Mk implies
N ± X̄α ∈ MN for all N ≥ max{N0, k}). The topological space

Z :=
∏

α∈Nn

[−N|α|, N|α|]

is compact by Tychonoff’s Theorem. Now we have that

(15) {(aα)α∈Nn ∈ Z | a0 = 1} ∩⋂
p∈M

{
(aα)α∈Nn ∈ Z | p =

∑
α

bαX̄α, bα ∈ R,
∑
α

bαaα ≥ 0

}
∩

⋂
µ∈M1(S∗)

{
(aα)α∈Nn ∈ Z |

∥∥∥∥∥
(

aα −
∫

X̄αdµ

)
α∈Λ(d)

∥∥∥∥∥ ≥ ε

}
∩

⋂
δ>0

{
(aα)α∈Nn ∈ Z |

∣∣∣∣∣∑
α

cαaα − f∗

∣∣∣∣∣ ≤ δ

}
= ∅

where (cα)α∈Nn is the family of coefficients of f , i.e., f =
∑

α cαX̄α.
Indeed, an element (aα)α of these huge intersection would give rise to a linear

map L : R[X̄] → R : X̄α 7→ aα, which by Theorem 2 comes from a probability
measure µ ∈M1(S), i.e.,

∀p ∈ R[X̄] : L(p) =
∫

pdµ,

in other words,

(16) ∀α ∈ Nn : aα =
∫

X̄αdµ.

Moreover, we would have |L(f)− f∗| ≤ δ for all δ > 0, whence∫
(f − f∗)dµ = L(f − f∗) = L(f)− f∗ = 0

so that µ(S∗) = 1, and µ can be looked at as a probability measure on S∗, that
is, µ ∈ M1(S∗). Regarding (16), this means that the aα are the moments of
a probability measure on S∗, which is impossible since (aα)α∈Λ(d) has distance
≥ ε > 0 to the family of moments up to order d of each probability measure on S∗.
This establishes (15).

In fact, we can even find finitely many sets contributing to the intersection in
(15) that have no point in common since it is an empty intersection of closed sets
in a compact space. In particular, we get a tight version of (15) where we take
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the intersection only over certain finitely many p1, . . . , ps ∈ M and a sufficiently
small δ > 0 (instead of all p ∈ M and all δ > 0). Choose t ∈ N ∩ [d,∞) such that
p1, . . . , ps ∈ Mt ⊆ R[X̄]t. Choose

k0 ≥ max{t, N0, . . . , Nt}
so large that |Lk(f)− f∗| ≤ δ for all k ≥ k0, which is possible by Remark 10. Now
suppose that k ≥ k0 and define (aα)α∈Nn by

aα :=

{
Lk(X̄α) if |α| ≤ t,
0 otherwise.

Then (aα)α ∈ Z since, for α ∈ Nn with |α| ≤ t,

N|α| ± aα = N|α| ± Lk(X̄α) = Lk(N|α| ± X̄α) ≥ 0.

Here the inequality is implied by N|α| ± X̄α ∈ MN|α| ⊆ Mk, which follows in turn
from N|α| ≤ k0 ≤ k. Furthermore, a0 = Lk(1) = 1 and, for bα ∈ R such that∑

α bαX̄α ∈ {p1, . . . , ps},∑
α

bαaα =
∑
α

bαLk(X̄α) = Lk

(∑
α

bαX̄α

)
∈ {Lk(p1), . . . , Lk(ps)}

⊆ Lk(Mt) ⊆ Lk(Mk) ⊆ [0,∞).

Because of deg f ≤ t (recall t ∈ N ), we have moreover∣∣∣∣∣∑
α

cαaα − f∗

∣∣∣∣∣ = |Lk(f)− f∗| ≤ δ,

and the tight version of (15) implies the existence of µ ∈M1(S∗) such that∥∥∥∥∥
(

aα −
∫

X̄αdµ

)
α∈Λ(d)

∥∥∥∥∥ < ε.

But here we can replace aα by Lk(X̄α) since d ≤ t. �

Corollary 13. Suppose that S∗ = {x∗} is a singleton and Lk solves (Pk) nearly to
optimality (k ∈ N ). Then

lim
k→∞

(Lk(X1), . . . , Lk(Xn)) = x∗.

Proof. We set d = 1 in the preceding theorem and note that M1(S∗) contains only
the Dirac measure at the point x∗. �

As a nice application, we can approximate unique minimizers of polynomials on
polytopes not only from below but also from above. This allows one to eventually
detect with certitude that f∗ has almost been reached when successively solving the
relaxations (Pk). Note that the general assumption from page 3 is automatically
satisfied under the hypothesis that S is compact and deg gi ≤ 1 for all i ∈ {1, . . . ,m}
[PD, 6.5.3].

Corollary 14. Suppose all the gi have degree ≤ 1, f has a unique minimizer on
the polytope S and Lk solves (Pk) nearly to optimality (k ∈ N ). Then for each
k ∈ N ,

[Lk(f), f(Lk(X1), . . . , Lk(Xn))]
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is an interval containing f∗, and the left and right endpoints of these intervals
converge to f∗ for k →∞, respectively.

Proof. Taking into account Theorem 5, it suffices to show that

(f(Lk(X1), . . . , Lk(Xn)))k∈N

is a sequence, which is bounded from below by f∗ and converges to f∗. The
convergence follows immediately from the preceding corollary. To see that f∗ is a
lower bound, observe that

gi(Lk(X1), . . . , Lk(Xn)) = Lk(gi) ≥ 0,

whence (Lk(X1), . . . , Lk(Xn)) ∈ S for all k ∈ N . �

4. Duality

Throughout this section, we fix some k ∈ N (N has been defined in (7) on
page 5). The kernel of any feasible solution of (Pk) is a hyperplane of the finite-
dimensional vector space R[X̄]k with the following properties:

(i) The convex cone Mk is contained in one of the two closed halfspaces of R[X̄]k
defined by the hyperplane.

(ii) The vector 1 ∈ R[X̄]k lies not on the hyperplane.

Conversely, all hyperplanes fulfilling (i) and (ii) are the kernel of a feasible solution
of (Pk).

Now the following image is helpful. Suppose at the point f ∈ R[X̄]k there is a
source that produces subatomic particles and sends them on the way in direction
of the vector −1 ∈ R[X̄]k. Every particle has constant speed and covers a distance
of 1 per time unit (this will correspond to the constraint L(1) = 1 in (Pk)). You
are interested in the age D∗

k of such a particle when it leaves the cone Mk (suppose
that D∗

k ∈ [0,∞) in order to make this interpretation work). The only measuring
instrument you have is a detector that catches the particles with a big metalplate
of which we think as a hyperplane. When the instrument detects a particle it can
determine its age. Since the cone Mk is a material body, the metalplate can touch it
but not interpenetrate it, i.e., it satisfies constraint (i). If we brought the metalplate
in a position where it contains the vector 1 ∈ R[X̄]k, then it would detect particles
of all ages. So we will obey constraint (ii) while measuring. So P ∗

k can be seen as
the age you can measure by moving around the metalplate, and D∗

k as the actual
age of the particles when they leave the cone.

This visualization nicely illustrates “weak duality” P ∗
k ≥ D∗

k, since a particle
cannot be detected before it leaves the cone. It also suggests that “strong duality”
P ∗

k = D∗
k should hold in many cases because it should often be possible to catch a

particle just when it leaves the cone. However, you can imagine that there might
be problems when the particle moves along the boundary of Mk, and Mk is not
closed. In this section, we will discuss these matters in detail.

Notation 15. For s ∈ N, we denote by Rs×s the vector space of real s×s matrices.
Defining the scalar product 〈A,B〉 of two such matrices A and B by

(17) 〈A,B〉 :=
s∑

i,j=1

AijBij ,
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makes Rs×s into an Euclidean vector space. We write SRs×s for its subspace of
symmetric matrices. By SRs×s

+ , we mean the set of symmetric positive semidefinite
s× s matrices. It is a closed convex cone of SRs×s.

Often, we will index rows and columns of matrices by elements of Λ(d) for some
d ∈ N (recall Notation 11). We denote the corresponding objects by RΛ(d)×Λ(d),
SRΛ(d)×Λ(d) and SRΛ(d)×Λ(d)

+ . We write A(α, β) (instead of Aαβ) for the entry of
a matrix A ∈ RΛ(d)×Λ(d) at line α ∈ Λ(d) and column β ∈ Λ(d). Accordingly, we
consider the vector space RΛ(d) consisting of vectors v with entries v(α), α ∈ Λ(d).

Finally, we extend the definition of 〈A,B〉 by (17) to matrices A and B with
polynomial entries.

Lemma 16. If A ∈ SRs×s
+ , then A =

∑s
i=0 viv

T
i for some vectors v1, . . . , vs ∈ Rs.

Proof. As A is symmetric, there exists an (orthogonal) matrix B ∈ Rs×s and a real
diagonal matrix D such that A = BDBT . The entries of D are the eigenvalues of
A, which are all nonnegative by hypothesis. So there exists a real diagonal matrix√

D such that (
√

D)2 = D. Therefore we get A = (B
√

D)(B
√

D)T = CCT where
C := B

√
D. Choosing v1, . . . , vs as the columns of C yields the desired expression

of A. �

The following lemma relates positive semidefinite matrices to sums of squares of
polynomials. More about this well-known connection can be found in [CLR].

Lemma 17. For all d ∈ N,∑
R[X̄]2d =

{〈
(X̄β+γ)(β,γ)∈Λ(d)×Λ(d), G

〉
| G ∈ SRΛ(d)×Λ(d)

+

}
= {q2

1 + · · ·+ q2
s | q1, . . . , qs ∈ R[X̄]d}

where s := dim R[X̄]d = #Λ(d) denotes the dimension of the R-vector space R[X̄]d.

Proof. To see that the first set is contained in the second one, note that the second
one is closed under addition. So it suffices to show that it contains q2 for each
q ∈ R[X̄]d. The polynomial q defines a vector v ∈ RΛ(d) by setting v(α) to be
the coefficient of X̄α in q for α ∈ Λ(d). Then G := vvT ∈ SRΛ(d)×Λ(d) is positive
semidefinite and〈

(X̄β+γ)(β,γ)∈Λ(d)×Λ(d), G
〉

=
∑

β,γ∈Λ(d)

X̄β+γG(β, γ)

=
∑

β,γ∈Λ(d)

X̄β+γv(β)v(γ) =

 ∑
β∈Λ(d)

v(β)X̄β

 ∑
γ∈Λ(d)

v(γ)X̄β

 = q2.

To show that the second set is contained in the last one, first consider the case that
G = vvT for some vector v ∈ RΛ(k). If we now set q :=

∑
α∈Λ(k) v(α)X̄α, then the

above equation holds again. In the general case, use Lemma 16 and argue similarly.
Finally, it is trivial that the last set is contained in the first one. �

Note that R[X̄]k carries a natural topology, which is induced by any norm on it.
The proof of the next result is essentially contained in [PS, 2.6], see also [Mar]. We
repeat the proof without using results from algebraic geometry. The next remark
should prevent misunderstandings concerning the notion of “interior” appearing in
the statement.
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Remark 18. The interior of S is understood in the usual topological sense, i.e., the
set of all interior points of S where an interior point is the center of a nonempty
open (full-dimensional) ball contained in S. Note that

S′ := {x ∈ Rn | g1(x) > 0, . . . , gm(x) > 0}
is contained in this interior. Examples where this inclusion is proper are trivial to
find. Nevertheless, S′ = ∅ implies that the interior of S is empty, too, provided
that none of the gi is the zero polynomial. Indeed, S′ = ∅ would imply that
the polynomial g1 · · · gm vanishes on S. If the interior of S were nonempty, then
g1 · · · gm = 0 would follow.

Theorem 19 (Powers and Scheiderer). If S has nonempty interior, then Mk is
closed in R[X̄]k.

Proof. By (6) and Lemma 17, the convex cone Mk is the image under the continuous
map

ϕ :

{
R[X̄]Λ(d0)

d0
× · · · × R[X̄]Λ(dm)

dm
→ R[X̄]k

((q0α)α∈Λ(d0), . . . , (qmα)α∈Λ(dm)) 7→
∑m

i=0

∑
α∈Λ(di)

q2
iαgi.

This map is quadratically homogeneous, i.e., ϕ(λz) = λ2ϕ(z) for all λ ∈ R and z in
the domain of ϕ. Let us assume without loss of generality that none of the gi is the
zero polynomial. Then there is some x ∈ S with gi(x) > 0 for all i ∈ {1, . . . ,m},
confer the preceding remark. All gi are positive on a neighborhood U of x. For z in
the domain of ϕ, we have that ϕ(z) ≥ 0 on U , but ϕ(z) cannot vanish on U unless
z = 0. In other words, the map ϕ is injective. Now equip the R-vector space on
which ϕ is defined with an arbitrary norm. Then the image V of the unit sphere
with respect to this norm is a compact set not containing the origin. From the
homogeneity of ϕ and the fact that Mk is a cone, it is easy to see that Mk is the set
of nonnegative multiples of elements of V . Finally, it follows from 0 /∈ V that Mk

is closed. Indeed, any sequence in Mk is of the form (λivi)i∈N where λi ∈ [0,∞)
and 0 6= vi ∈ V for all i ∈ N. Suppose that p = limi→∞ λivi. We have to show that
p ∈ Mk. Since V is compact, the sequence (vi)i∈N has a convergent subsequence.
Without loss of generality we may assume that (vi)i∈N itself is convergent, say
v := limi→∞ vi. Then v ∈ V and a fortiori v 6= 0. Now the limit

lim
i→∞

λi = lim
i→∞

‖λivi‖
‖vi‖

=
‖ limi→∞ λivi‖
‖ limi→∞ vi‖

=
‖p‖
‖v‖

exists, so that

lim
i→∞

λivi =
(

lim
i→∞

λi

)(
lim

i→∞
vi

)
=
‖p‖
‖v‖

v ∈ [0,∞)V = Mk.

�

Following Marshall [Mar], we draw the following corollary. Note that a feasible
solution L of (Pk) has to obey the constraint L(1) = 1. So the corollary is not
really just an instance of the well-known fact that the bi-dual of a closed convex
cone is the cone itself.

Corollary 20 (Marshall). If S has nonempty interior, then Mk is the intersection
of all halfspaces {p ∈ R[X̄]k | L(p) ≥ 0} where L ranges over all feasible solutions
of (Pk).
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Proof. Consider an arbitrary p ∈ R[X̄]k \ Mk. We have to show that there is a
feasible solution of (Pk) such that L(p) < 0.

Fix some scalar product on the R-vector space R[X̄]k. Since Mk is closed by the
preceding theorem, we are sure that there exists q ∈ Mk with minimal distance to p.
Choose a linear map L0 : R[X̄]k → R whose kernel is the hyperplane perpendicular
to p − q satisfying L0(p − q) < 0. Note that L0(q) = 0 either because of q = 0 or
because q is the orthogonal projection of p on the line Rq. So we have L0(p) =
L0(p− q) + L0(q) = L0(p− q) < 0.

It is easy to see that L0(Mk) ⊆ [0,∞). Indeed, if there were a q′ ∈ Mk such that
L0(q′) < 0, then all points q′′ on the line segment from q′ to q in a neighborhood
of q would be even closer to p than it is q. At the same time, the convexity of Mk

would imply q′′ ∈ Mk, contradicting the choice of q.
Of course, we have L0(1) ≥ 0 since 1 ∈ Mk. If L0(1) happens to be positive,

then we can scale L0 with a positive factor in order to obtain an L with the desired
properties. If L0(1) = 0, then we choose any point x ∈ S and set L := εx + λL0 for
sufficiently large λ ∈ [0,∞) where εx : R[X̄]k → R is evaluation at the point x. �

We can now proof strong duality. In the case that (Dk) has a feasible solu-
tion, this has been first proved by Lasserre using the duality theory of semidefinite
programming [Las].

Corollary 21 (Lasserre). Suppose that S has nonempty interior. Then P ∗
k = D∗

k.
In addition, if (Dk) has a feasible solution, then it has also an optimal solution.

Proof. Suppose that a ∈ R is such that f − a /∈ Mk. Then Corollary 20 ensures
the existence of a feasible solution L of (Pk) such that L(f − a) < 0, whence
D∗

k ≤ P ∗
k ≤ L(f) < a. This implies all our claims. �

The next example shows that (P ∗
k ) might fail to have an optimal solution, even

if S has nonempty interior.

Example 22. We consider an example in n := 2 variables that we denote by X
and Y instead of X1 and X2. To prepare our example, consider a linear map
L : R[X, Y ]2 → R satisfying L(1) = 1. We claim that the condition

(18) L((aX + bY + c)2) ≥ 0 for all a, b, c ∈ R

is equivalent to the three simultaneous inequalities

(19) (L(XY )− L(X)L(Y ))2 ≤ (L(X2)− L(X)2︸ ︷︷ ︸
≥0

)(L(Y 2)− L(Y )2︸ ︷︷ ︸
≥0

).

Indeed, using a scaling argument, we can split up Condition (18) into the two
conditions

L((X + bY + c)2) ≥ 0 for all b, c ∈ R, and(20)

L((Y + c)2) ≥ 0 for all c ∈ R.(21)

We can rewrite (21) as

c2 + 2L(Y )c + L(Y 2) ≥ 0 for all c ∈ R,

which is equivalent to

(22) (L(Y ))2 ≤ L(Y 2).
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In a similar way, we see that (20) is equivalent to

(L(X + bY ))2 ≤ L((X + bY )2), i.e.,

(L(X))2 + 2bL(X)L(Y ) + b2((L(Y ))2 ≤ L(X2) + 2bL(XY ) + b2L(Y 2)

for all b ∈ R. Now take all the terms to the right hand side and look at it as a
(perhaps degenerate) parabola in b. This parabola opens up by (22). Writing down
the condition that this parabola has at most one zero (taking care of degeneration)
and combining this with (22), shows the equivalence of (18) and (19).

Having finished the preparation, consider now the set S defined by m := 5
polynomials g1 = XY − 1, g2 = 2 + X, g3 = 2−X, g4 = 2 + Y and g5 = 2− Y . It
is the filled region in the following picture and clearly has interior points.

Note that our general assumption we made on page 3 is satisfied since 4(4−X2) =
(g2 + g3)g2g3 = g2

2g3 + g2
3g2 ∈ M, analogously 4(4 − Y 2) ∈ M , and therefore

8 − (X2 + Y 2) ∈ M . We look at the second primal and dual relaxation, (P2) and
(D2). We observe that

M2 =
∑

R[X, Y ]21 + [0,∞)(XY − 1) + [0,∞)(2 + X) + [0,∞)(2−X)

+ [0,∞)(2 + Y ) + [0,∞)(2− Y ).

Therefore, the feasible solutions of (P2) are the linear maps L : R[X, Y ]2 → R
satisfying L(1) = 1, Condition (19), L(XY ) ≥ 1 and (L(X), L(Y )) ∈ [−2, 2] ×
[−2, 2]. Suppose that we want to minimize f := X2. For any feasible solution L of
(P2), we have that L(f) > 0. Otherwise, like in dominoes, all the subexpressions
of (19) involving X would have to vanish, contradicting L(XY ) ≥ 1. On the other
hand, for all ε > 0, the linear map L : R[X, Y ]2 → R defined by

L(X2) = ε2, L(Y 2) =
1
ε2

, L(XY ) = 1, L(X) = L(Y ) = 0 and L(1) = 1

is feasible for (Pk). This proves that P ∗
2 = 0, and (P2) has no optimal solution.

We conclude the section with an example where a big duality gap occurs. By
Theorem 21, S cannot have interior points in such an example.

Example 23. Take again n := 2 variables X and Y . The set S = [−1, 1] × {0}
defined by the m := 3 polynomials g1 := −Y 2, g2 := 1 + X and g3 := 1 −X has
empty interior. The general assumption from page 3 is trivially satisfied since

2(1− (X2 + Y 2)) = (g2 + g3)g2g3 + 2g1 = g2
2g3 + g2

3g2 + (
√

2)2g1 ∈ M.

This time, we want to minimize f := XY on this set. Once more, we look at the
second relaxations. It is easy to see that

M2 =
∑

R[X, Y ]21 − [0,∞)Y 2 + [0,∞)(1 + X) + [0,∞)(1−X).



18 Markus Schweighofer

Every feasible solution L of (P2) satisfies L(εX2 + f) ≥ 0 for all ε > 0 since

εX2 + f =
(√

εX +
1

2
√

ε
Y

)2

− 1
4ε

Y 2 ∈ M2.

But then εL(X2) + L(f) ≥ 0 for all ε > 0, i.e., L(f) ≥ 0. This shows 0 ≤ P ∗
2 ≤

f∗ = 0, whence P ∗
2 = f∗ = 0.

On the other hand, D∗
2 = −∞ < 0 = P ∗

2 because there is no a ∈ R such that
f − a ∈ M2. If there were s ∈ N, a, bi, ci, di, ei ∈ R such that

f − a =
s∑

i=1

(biX + ciY + di)2 − e1Y
2 + e2(1 + X) + e3(1−X),

then comparing the coefficients of X2 on both sides would yield
∑s

i=1 b2
i = 0. Hence

the coefficient of XY on the right hand side would be zero.

5. Formulation as a semidefinite program

We fix again some k ∈ N (as defined in (7) on page 5). In this section, we
show how to solve the problems (Pk) and (Dk) using semidefinite programming.
This translation of (Pk) and (Dk) into semidefinite programs has become a quite
common technique now (see, e.g., [Las, Mar, PPP]). Though this short section
therefore does not contain new ideas, we include it in order to make this article a
complete introduction to Lasserre’s method. Also, other articles use quite different
notations and a technically different setup. (For example, Lasserre [Las] considers
the relaxations (Pk) and (Dk) only for even k. This is in our opinion not natural,
at least if one of the gi has odd degree.) Semidefinite programs are generalizations
of linear programs, which can be solved efficiently (see for example [Tod]). Before
we translate (Pk) and (Dk) into semidefinite programs, we will carry out three
modifications, which are harmless. First, we will pass over from f to f − f(0).
This amounts just to adding the same constant to the goal functions of both prob-
lems. Second, we will negate both goal functions and at the same time exchange
minimization and maximization. Third, we will exchange primal and dual. So we
will forget about (Pk) and (Dk), and instead look at the following pair of modified
problems (Pmod

k ) and (Dmod
k ).

(Pmod
k ) minimize a subject to a ∈ R and

(f − f(0)) + a ∈ Mk

(Dmod
k ) maximize −L(f − f(0)) subject to L : R[X̄]k → R is linear,

L(1) = 1 and
L(Mk) ⊆ [0,∞)

Define d0, . . . , dm ∈ N like in (8) and recall Notations 11 and 15. The key lemma
is the following.

Lemma 24. Suppose L : R[X̄]k → R is a linear map. Then L(Mk) ⊆ [0,∞) if and
only if the m + 1 matrices

(L(X̄β+γgi))(β,γ)∈Λ(di)×Λ(di) (i ∈ {0, . . . ,m})
are positive semidefinite. Moreover,

Mk =

{
m∑

i=0

〈
(X̄β+γgi)(β,γ)∈Λ(di)×Λ(di), Gi

〉
| G0, . . . , Gm ∈ SRΛ(di)×Λ(di)

+

}
.
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Proof. The first part follows from the observation that the m + 1 matrices under
consideration represent the bilinear forms

R[X̄]di
× R[X̄]di

→ R : (p, q) 7→ L(pqgi) (i ∈ {0, . . . ,m})

with respect to the bases (X̄α)α∈Λ(di) of R[X̄]di
. The positive semidefiniteness of

such a matrix expresses the positive semidefiniteness of the corresponding bilinear
form, that is, L(p2gi) ≥ 0 for all p ∈ R[X̄]di

. The second part follows easily from
(6) and Lemma 17. �

Using this Lemma, we can reformulate (Pmod
k ) and (Dmod

k ) using positive semi-
definite matrices.

(P I
k) min. a

s.t. a ∈ R, G0, . . . , Gm ∈ SRΛ(di)×Λ(di)
+ and∑m

i=0

〈
(X̄β+γgi)(β,γ)∈Λ(di)×Λ(di), Gi

〉
= f − f(0) + a

(DI
k) max. −L(f − f(0))

s.t. L : R[X̄]k → R is linear, L(1) = 1 and
(L(X̄β+γgi))(β,γ)∈Λ(di)×Λ(di) is positive semidefinite, i = 0, . . . ,m

The matrix (L(X̄β+γ))(β,γ)∈Λ(d0,d0) appearing in (DI
k) (recall that g0 = 1) is

often called a moment matrix of L. This is because, if L is integration with respect
to a measure, then its entries are moments of this measure. Such matrices seem to
be very interesting objects (see [CF, Lau] and the references therein). The same is
true for the so called localizing matrices (L(X̄β+γgi))(β,γ)∈Λ(di)×Λ(di), i = 1, . . . ,m.

Now for i ∈ {0, . . . ,m} and α ∈ Λ(k), define a matrix Aαi ∈ SRΛ(di)×Λ(di) by
requiring

(23) X̄β+γgi =
∑

α∈Λ(k)

Aαi(β, γ)X̄α,

that is, Aαi(β, γ) is the coefficient of X̄α in X̄β+γgi. Also, we define bα to be the
coefficient of X̄α in f for each 0 6= α ∈ Λ(k), i.e.,

(24) f − f(0) =
∑

α∈Λ(k)\{0}

bαX̄α.

We plug (23) and (24) in (P I
k) and get:

(P II
k ) minimize a

subject to a ∈ R, G0, . . . , Gm ∈ SRΛ(di)×Λ(di)
+ and∑

α∈Λ(k) X̄α
∑m

i=0〈Aαi, Gi〉 =
∑

α∈Λ(k)\{0} bαX̄α + a

(DII
k ) maximize

∑
α∈Λ(k)\{0}−bαL(X̄α)

subject to L : R[X̄]k → R is linear, L(1) = 1 and∑
α∈Λ(k) L(X̄α)Aαi is positive semidefinite, i = 0, . . . ,m

Finally, we rewrite the polynomial equality constraint in (P II
k ) by splitting it up,

coefficient by coefficient, and incorporating the equation for the constant coefficient
into the goal function. Concerning the dual problem (DII

k ), we exploit that a linear
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map L : R[X̄]k → R with L(1) = 1 can be identified with its values yα := −L(X̄α),
0 6= α ∈ Λ(k).

(P sdp
k ) min.

∑m
i=0〈A0i, Gi〉

s.t. G0, . . . , Gm ∈ SRΛ(di)×Λ(di)
+ and∑m

i=0〈Aαi, Gi〉 = bα, 0 6= α ∈ Λ(k)

(Dsdp
k ) max.

∑
α∈Λ(k)\{0} bαyα

s.t. yα ∈ R, 0 6= α ∈ Λ(k), and
A0i −

∑
α∈Λ(k)\{0} yαAαi is positive semidefinite, i = 0, . . . ,m

This is in fact a primal-dual pair of semidefinite programs with matrices in block
diagonal structure (see [Tod]). For each α ∈ Λ(k), you could define Aα to be the
matrix consisting of the m + 1 diagonal blocks Aαi, i = 0, . . . ,m, and G to be a
positive semidefinite matrix variable of the same size. Then (P sdp

k ) could be written
as the minimization of 〈A0, G〉 subject to 〈Aα, G〉 = bα for 0 6= α ∈ Λ(k). Since
semidefinite programming solvers usually take advantage of such a block diagonal
structure, we stick to the above formulation.
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