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Abstract. We present an extension, for nonlinear optimization under linear constraints, of
an algorithm for quadratic programming using a trust region idea introduced by Ye and Tse [Math.
Programming, 44 (1989), pp. 157–179] and extended by Bonnans and Bouhtou [RAIRO Rech. Opér.,
29 (1995), pp. 195–217]. Due to the nonlinearity of the cost, we use a linesearch in order to reduce
the step if necessary. We prove that, under suitable hypotheses, the algorithm converges to a point
satisfying the first-order optimality system, and we analyze under which conditions the unit stepsize
will be asymptotically accepted.
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1. Introduction. In this paper, we study an algorithm for minimizing a non-
linear cost under linear constraints. We consider problems with linear equality con-
straints and nonnegative variables. At each step, a direction is computed by minimiz-
ing a convex quadratic model over an ellipsoidal trust region, and then a linesearch
of Armijo type is performed in this direction. At each iteration, the ellipsoid of the
quadratic problem is so small that it forces the nonnegativity constraints to be satis-
fied. However, the ellipsoid is not necessarily contained in the set of feasible points.

In the case of linear programming (LP) or convex quadratic programming (QP),
we may assume the quadratic model to be equal to the cost function. Then the unit
step will be accepted by the linesearch. In the case of LP, the algorithm is then reduced
to the celebrated Dikin’s algorithm [10] (see also Tsuchiya [26]). Ye and Tse [27] have
extended this algorithm to convex quadratic programming using the trust region idea.
This problem was also considered by Sun [25]. Bonnans and Bouhtou [2] studied such
methods for nonconvex quadratic problems by taking a variable size for the trust
region. An early extension of trust region algorithms to nonlinear costs is done in
Dikin and Zorkalcev [11]. Among the related work, we quote Gonzaga and Carlos
[13]. Interior point algorithms for the solution of constrained convex optimization
problems have been studied by many other researchers; see, for instance, Den Hertog,
Roos, and Terlaky [8], Jarre [15], Mehrotra and Sun [19], McCormick [18], Monteiro
and Adler [20], Dennis, Heinkenschloss, and Vicente [9], and Coleman and Li [7].
Gonzaga [14] explores the shape of the trust regions to generate ellipsoidal regions
adapted to the shape of the feasible set. The resulting algorithm generates sequences
of points in the interior of the feasible set.

In this paper, we obtain some results of global convergence, comparable to those
obtained in [2] for QP; by global convergence we only mean that the limit points
of the sequence generated by the algorithm satisfy the first-order optimality system.
The main novelty of the paper, however, is in the local analysis in the vicinity of
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a local solution satisfying some strong second-order sufficient conditions. We check
that if such a point is a limit point of the sequence computed by the algorithm and
is under a “sufficient curvature” condition satisfied by the Hessian of the quadratic
approximation, then the sequence actually converges to this point and the unit step
is asymptotically accepted. Unfortunately, the acceptance of the unit step is not by
itself a guarantee of a rapid convergence (the convergence might be linear at a very
poor rate). The interest of the result lies in the fact that in the case of convex QP,
this type of algorithm converges reasonably well in practice, although the convergence
rate is only linear (see, e.g., the numerical results reported in Bonnans and Bouhtou
[2] and Bouhtou [5]). Therefore, the question is to know to which extent the features
of Dikin’s type algorithms may be kept when dealing with nonlinear cost functions.
In particular, we do not expect the rate of convergence of the cost to be superlinear,
as this is not the case for quadratic programs.

The paper is organized as follows. In section 2 we present the algorithm and give
a result of global convergence in the sense that under some convenient hypotheses,
the sequence computed by the algorithm converges towards a point satisfying the
first-order optimality system. Then, in section 3 we perform the local analysis: we
check that if the sequence computed by the algorithm has some regular limit point x̄
and if a condition of “sufficient curvature” holds, then the sequence converges to this
point and the unit step is asymptotically accepted.

2. The algorithm. We consider the following problem:

(P) min f(x);Ax = b;x ≥ 0,

where f is a smooth mapping from Rn in R, not necessarily convex; A is a p × n
matrix; and b ∈ Rp. We define the following sets:

F := {x ∈ Rn;Ax = b, x ≥ 0},

◦
F := {x ∈ Rn;Ax = b;x > 0},

so that F is the set of feasible points and
◦
F is the set of “strictly feasible” points. In

the sequel, we assume that F is bounded and
◦
F is nonempty.

The algorithm will use two matrices at each iteration. The first isXk := diag (xk),
where {xk} is the current feasible point. This is a scaling matrix that takes care of
the positivity constraints. The second matrix is Mk, a symmetric approximation of
the Hessian of the cost function. We assume Mk to be positive semidefinite (i.e.,
dtMkd ≥ 0 for all d in Rn). We consider the following algorithm.

Algorithm 1.

0) Choose x◦ ∈
◦
F , δ ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1); k ← 0.

1) Choose an n×n symmetric matrix Mk. Compute δk in (δ, 1/δ) such that the
point dk that solves

(SP) min
d
ϕk(d) := f(xk) +∇f(xk)td+

1

2
dtMkd; Ad = 0; dtX−2

k d ≤ δ2
k

satisfies xk + dk > 0.



A TRUST REGION INTERIOR POINT ALGORITHM 719

2) If ϕk(dk) = f(xk), stop.
3) Linesearch: Compute ρk = β`k , with `k the smallest nonnegative integer such

that

f(xk)− f(xk + β`kdk) ≥ γβ`k(f(xk)− ϕk(dk)).(1)

4) xk+1 = xk + ρkdk ; k ← k + 1. Go to 1.
Some comments are needed to clarify the description of the algorithm. First, let

us note that the stopping criterion of step 2 is, of course, unrealistic. The algorithm
will typically never stop. This is convenient for studying the asymptotic properties of
the sequence generated by the algorithm. A practical stopping criterion might require
that we stop when ϕk(dk) is close enough to f(xk). Because the cost function may be
nonconvex, there is, of course, no guarantee that the limit points are close to a global
or even local solution (our results below deal with the optimality system at the limit
points).

Our second comment deals with the fact that we allow δk to be greater or equal to
1. If we specify a value of δk smaller than 1, then we automatically have xk + dk > 0.
What is the meaning of allowing δk ≥ 1 ? In order to understand that, let us observe
that the trust region problem (SP) cannot be solved directly because of the nonlinear
constraint (see, e.g., Moré [21], Sorensen [24]). Instead, one typically solves a sequence
of equality constrained quadratic problems of type

min
d
f(xk) +∇f(xk)td+

1

2
dtMkd+

ν

2
dtX−2

k d; Ad = 0,

where ν ≥ 0 is an estimate of νk (the Lagrange multiplier associated with the nonlinear
constraint). As Mk is semidefinite positive for any ν > 0, this problem has a unique
solution d = d(ν), and the mapping ν → dt(ν)X−2

k d(ν) is strictly decreasing. Let us
say that ν is too small if either dt(ν)X−2

k d(ν) > 1/δ or mini x
k
i + di(ν) < 0 and too

large if dt(ν)X−2
k d(ν) < δ (as δ < 1, it follows in that case that mini x

k
i + di(ν) > 0).

A dichotomic procedure based on these notions of “too large” and “too small” allows
us to compute a solution of (SP) with δk ∈ (δ, 1/δ) in a finite number of steps; this
is associated with a value of δk that may be greater than 1. It was observed already
in [2] that to allow the possibility that δk ≥ 1 may speed up the convergence, and
therefore it is worth taking this possibility into account in the analysis.

We note that if the algorithm stops at iteration k, then xk satisfies the first-order
optimality condition of (P). To see this, we need the following lemma, which states
the optimality system of (SP). This is a simple extension of the known result for
problems without equality constraints; see [6].

Lemma 2.1. The point dk that solves (SP) is characterized by the existence of
λk+1 in Rp, νk ≥ 0 such that

∇f(xk) +Mkd
k +Atλk+1 + νkX

−2
k dk = 0,(2)

Adk = 0,(3)

νk ≥ 0, (dk)tX−2
k dk ≤ δ2

k, νk[(dk)tX−2
k dk − δ2

k] = 0.(4)
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We now come back to the discussion of step 2 of the algorithm. Using (2), we
deduce that

f(xk)− ϕk(dk) = −∇f(xk)tdk − 1

2
(dk)tMkd

k,

= (λk+1)tAdk + νk(dk)tX−2
k dk +

1

2
(dk)tMkd

k.

Using (3) and (4), we get

f(xk)− ϕk(dk) = νkδ
2
k +

1

2
(dk)tMkd

k.(5)

So, if f(xk) = ϕk(dk), as Mk is a positive semidefinite matrix, then each of the
nonnegative terms on the right-hand side is equal to 0. We deduce that νk = 0 and

M
1/2
k dk = 0, so Mkd

k = 0, where (Mk)1/2 is the square root of the symmetric positive
semidefinite matrix Mk. That is,

(Mk)1/2 =

n∑
i=1

(λi)
1/2ui(ui)t,

where {λi, ui}, i = 1 to n, are the eigenvalues and associated orthonormal eigenvectors
of Mk. Hence, again using (2), we get

∇f(xk) +Atλk+1 = 0,
Axk = b, xk > 0.

So, xk satisfies the first-order optimality condition of (P).
In the sequel, when studying the convergence of the algorithm, we will assume

that it generates an infinite sequence of iterates.
Remark 2.1. From Lemma 2.1 it follows that the convex quadratic function

ψk(x) := ϕk(x− xk) + νk(x− xk)tX−2
k (x− xk)/2

attains its minimum on {x ∈ Rn;Ax = b} at xk + dk.
In step 3, we see that the linesearch is of Armijo type [1], i.e., it consists simply

of testing the unit step, then reducing the step by a factor β < 1 until a convenient
point is found. We note that this linesearch is well defined because, as Mk is positive
semidefinite, the function ϕk is convex. It follows that

∇f(xk)tdk = ∇ϕk(0)tdk ≤ ϕk(dk)− ϕk(0) = ϕk(dk)− f(xk),

hence, for ρ > 0 small enough,

f(xk)− f(xk + ρdk) = −ρ∇f(xk)tdk + o(ρ),

≥ ρ[f(xk)− ϕk(dk)] + o(ρ).

As γ ∈ (0, 1) and f(xk) > ϕk(dk), condition (1) is satisfied whenever `k is large
enough.

For the statement of the result of global convergence, we need some definitions.
Given x ∈ F , we denote the set of active constraints by

I(x) := {i ∈ {1, . . . , n};xi = 0}.
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To any I ⊂ {1, . . . , n} we associate the optimization problem

(P)I min f(x);Ax = b;xI = 0.

The first-order optimality system associated to (P )I is

(OS)I

 ∇f(x) +Atλ− µ = 0,
Ax = b,
xI = 0; µi = 0, i /∈ I.

We will use the following hypotheses:

(H1) For all I ⊂ {1, . . . , n}, system (OS)I has no nonisolated solutions.

(H1)′ For all I ⊂ {1, . . . , n}, system (OS)I has at most one solution.

(H2) There exists α > 0 ; (dk)t(Mk + 2νkX
−2
k )dk ≥ α‖dk‖2.

(H3)

{
The constraints of (P) are qualified in the sense that
(Atλ)i = 0, ∀ i /∈ I(x̄) implies that λ = 0.

We briefly discuss these hypotheses. If f is strictly convex, then the optimality
system (OS)I, which characterizes the minima of F over the feasible set of (P)I, has
at most one primal solution; therefore, if (H3) is satisfied in addition, then (H1)′ will
be satisfied. (H1) is a weaker condition that may be useful especially for nonconvex
problems. Hypothesis (H2) is a means that allows control of the decrease of the cost
function at each iteration. Indeed, from (5) it follows easily that (H2) is equivalent to

there exists α > 0 ; f(xk)− ϕk(dk) ≥ α

2
‖dk‖2.

We have no control on the value of νk, except that it is nonnegative. Still, we may
observe that (H2) will be satisfied if Mk is uniformly positive definite in the sense
that

there exists α > 0 ; (dk)tMkd
k ≥ α‖dk‖2.

In particular, (H2) is satisfied if Mk is close to the Hessian of f and f satisfies a strong
convexity condition of the type

∀x ∈ F, ∃α > 0 ; (dk)t∇2f(x)dk ≥ α‖dk‖2 ∀d ∈ Rn; Ad = 0.

Also, (H3) is no more than the hypothesis of linear independence of the gradients
of active constraints.

Theorem 2.2. Let {xk} be computed by Algorithm 1. We assume that {Mk} is
bounded. Then,

(i) any limit point x̄ of {xk} is a solution of (OS)I(x̄);

(ii) if either (H1)′ or (H1) and (H2) hold, then {xk} converges. If, in addition,
(H3) holds then x̄ satisfies the first-order optimality system of (P); i.e.,

(OS)

 ∇f(x̄) +Atλ̄− µ̄ = 0,
Ax̄ = b,
x̄ ≥ 0, µ̄ ≥ 0, x̄tµ̄ = 0.
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The proof of the theorem uses the following lemma.
Lemma 2.3. The sequence {xk} generated by Algorithm 1 satisfies the following

conditions:
(i)
∑
k

(f(xk)− ϕk(dk))2 <∞.

(ii) νk → 0.
(iii) (Mk)1/2dk → 0.
(iv) If, in addition, {Mk} is bounded, then

Xk[∇f(xk) +Atλk+1]→ 0.

Proof. (i) As F is bounded, {xk} and {dk} are bounded too. We deduce that for
some c1 > 0,

f(xk)− f(xk + ρdk) ≥ −ρ∇f(xk)tdk − c1ρ2.

Using the convexity of ϕk, we get

−∇f(xk)tdk ≥ f(xk)− ϕk(dk),

so that

f(xk)− f(xk + ρdk) ≥ ρ[f(xk)− ϕk(dk)]− c1ρ2.

It follows after some algebra that the linesearch test is satisfied whenever

ρ ≤ ρ̂k := min

{
1,

1− γ
c1

[f(xk)− ϕk(dk)]

}
.

This implies that ρk ≥ βρ̂k. Plugging this in the linesearch test and using the fact
that as F is bounded, {f(xk)} is bounded from below, we deduce that necessarily
(f(xk)− ϕk(dk)) vanishes and, for k large enough,

f(xk)− f(xk+1) ≥ γβ 1− γ
c1

(f(xk)− ϕk(dk))2.

Relation (i) follows.
(ii), (iii) By (i), we get that the left-hand side of (5) goes to 0. Then each of the

nonnegative terms on the right-hand side must go to 0, and that proves (ii) and (iii).
(iv) From (2) we deduce

Xk[∇f(xk) +Atλk+1] = −νkX−1
k dk −XkMkd

k.(6)

From (4) we have that ‖νkX−1
k dk‖2 = νkδk. So, using Lemma 2.3 (ii) and the

boundedness of {δk}, it follows that ‖νkX−1
k dk‖ → 0. If, in addition, {Mk} is

bounded, we get that XkMkd
k = Xk(Mk)1/2(Mk)1/2dk → 0 by using the bound-

edness of {Xk} and Lemma 2.3 (iii). Henceforth, the left-hand side of (6) goes
to 0.

Proof of Theorem 2.1. (i) Let us denote by R(.) the range of an operator. Define

Ī := {1, . . . , n} − I(x̄).
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From point (iv) of Lemma 2.3 it follows that

[∇f(xk) +Atλk+1]Ī → 0.

Since R (At)Ī is closed, we deduce that ∇f(x̄)Ī ∈ R (At)Ī , i.e., (∇f(x̄)+Atλ̄)Ī =
0 for some λ̄ ∈ Rp ; system (OS)I(x̄) follows.

(ii) We first discuss the convergence of {xk}. Note that xk+1
i = xki (1 + ρkdki /x

k
i );

hence,

xk+1
i ≤ (1 + 1/δ)xki .

It follows that if (xk, xk+1)→ (x̄, x̂) for a subsequence, then I(x̄) ⊂ I(x̂).
If (H1)′ holds, using point (i) we deduce that x̄ = x̂ and, in particular, ‖xk+1 −

xk‖ → 0; hence, the set of limit points of {xk} is connected. Using (H1)′ again, it
follows that the set of limit points is finite. Hence, the entire sequence converges
towards the same point.

Now let us analyze the case when (H1) and (H2) hold. We know by Lemma 2.3
(i) that f(xk) − ϕk(dk) → 0. With (5) and (H2), this implies that dk → 0. As
‖xk+1−xk‖ = ρk‖dk‖ and ρk ≤ 1, the set of limit points of {xk} is connected. By (i)
and (H1) each of them is isolated. It follows that the sequence converges.

We now prove that (OS) is satisfied under the additional assumption (H3). If
xk → x̄ then there exists (λ̄, µ̄) such that (x̄, λ̄, µ̄) verifies the first-order optimality
system of (P)I(x̄) by (i). We have to show that µ̄I(x̄) ≥ 0. With Lemma 2.3 (iv) and

(H3), we deduce that {λk} converges to λ̄; hence, by (2) we have µk+1 := −νkX−2
k dk

converges to µ̄. Let i ∈ I(x̄) be such that µ̄i < 0; then dki = −(xki )2µk+1
i /νk > 0 for

k large enough, and this contradicts the fact that xki → x̄i = 0.

3. Acceptance of the unit stepsize. In this section we perform a local analysis
around some point x̄, local solution of (P). We seek conditions implying that if x̄ is
a limit point of {xk}, the sequence {xk} converges to x̄ and ρk = 1 is accepted. We
note that the rate of convergence of the cost will not be better than linear, as this is
the case in LP. Hence, the interest in obtaining a unit stepsize might be questionable.
Our motivation is the following. We know that for QP problems, the solution can
be computed with a good precision in a small number of iterates by using the exact
Hessian for Mk (see [2] and [5]). Hence, we try to reproduce, for problems with a
nonquadratic cost, this behavior. What we may prove, by a theoretical study, is that
provided that Mk approximates the Hessian of the cost in a certain sense, the stepsize
1 is accepted; we then may hope that the contribution of the “nonquadratic part” of
the cost is asymptotically negligible so that the rapid (although linear) convergence
still occurs.

It might be argued that the need for Mk to be both positive semidefinite and an
approximation of the Hessian in a certain sense makes the theory applicable only in
the case of a convex f . This is not so. The situation is comparable to the one for
sequential QP algorithms that use a positive definite approximation of the Hessian.
The key property is that the Hessian of the cost is positive definite in the tangent
space under some natural second-order assumptions, whereas the approximation in
the normal space plays no role. This allows approximation in an effective way of a
possibly undefinite Hessian by a positive semidefinite matrix.

We need a few definitions. Assuming that x̄ satisfies (H3), it follows that x̄ is
associated with a unique pair (λ̄, µ̄) such that (OS) holds. Define the set of strictly
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active constraints as

J(x̄) := {i ∈ {1, . . . , n} ; µ̄i > 0}

and the extended critical cone as

T := {d ∈ Rn ; Ad = 0 ; di = 0, i ∈ J(x̄)}.

We say that x̄ satisfies the strong second-order condition (see Robinson [23])
whenever

(SSOC) ∃α1 > 0 ; dt∇2f(x̄)d ≥ α1‖d‖2 ∀ d ∈ T.

This is a sufficient condition for the strong regularity, as defined in [23], of the
associated optimality system. It has proven useful in sensitivity analysis as well as in
the study of convergence properties of algorithms (see, e.g., [16], [4], and [3]).

Given d in N (A), the null space of A, we now define dT , dN as the orthogonal
projection (in N (A)) of d onto T and N , where N is the orthogonal complement of
T in N (A), i.e.,

N = {z ∈ N (A) ; ztd = 0 ∀ d ∈ T},

of course, d = dT + dN and ‖d‖2 = ‖dT ‖2 + ‖dN‖2. Similarly, we associate dk with
dkT and dkN . Last, but not least, we define the sufficient curvature condition as

(SCC)


∃ ε0 > 0, if ‖xk − x̄‖ ≤ ε0 then

(dkT )tMkd
k
T ≥

1

2− γ (dkT )t∇2f(x̄)dkT + ε0‖dkT ‖2.

We briefly discuss this condition. Specifically, we check that if Mk satisfies the
inequality below and condition (SSOC) holds, then (SCC) is satisfied. We consider
the following condition:

(dkT )tMkd
k
T ≥ (dkT )t∇2f(x̄)dkT + o(‖dkT ‖2).(7)

To see that (7) implies (SCC), note that 1/(2− γ) ∈ (0, 1) and (dkT )t∇2f(x̄)dkT ≥
α1‖dkT ‖2 by (SSOC). This and (7) imply that

(dkT )tMkd
k
T ≥

1

2− γ (dkT )t∇2f(x̄)dkT + α1

(
1− 1

2− γ

)
‖dkT ‖2 + o(‖dkT ‖2),

from which (SCC) follows. In particular, (SCC) is satisfied if (SSOC) holds and
Mk = ∇2f(xk) (which, of course, is possible only if f is convex).

Condition (SCC) is similar to a condition recently used in the analysis of successive
QP algorithms [3]. It is checked in [3] that in the case of unconstrained optimization
(then actually dkT and dk coincide), this condition is very weak in the following sense:
assuming that the second-order sufficient optimality condition hold for (∇2f(x̄) > 0),
a necessary condition for the acceptance of the unit step for xk close to x̄ is

(dkT )tMkd
k
T ≥

1

2− γ (dkT )t∇2f(x̄)dkT + o(‖dkT ‖2).
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Theorem 3.1. Assume that {Mk} is bounded, x̄ satisfies (H3) and (SSOC), and
(SCC) is satisfied for xk close enough to x̄. Then, there exists ε > 0; if, for some
k0, ‖xk0 − x̄‖ < ε then dk → 0, ρk = 1 for all k ≥ k0, and xk → x̄.

We need a few lemmas (Lemma 3.2 is stated in [3]; we give its proof for the
reader’s convenience).

Lemma 3.2. Given ε > 0 and an n× n symmetric matrix M , define

K(ε,M) := ‖M‖(1 + ‖M‖/ε).
The two inequalities below then hold:

dtTMdT ≥ dtMd− ε‖dT ‖2 −K(ε,M)‖dN‖2,(8)

dtMd ≥ dtTMdT − ε‖dT ‖2 −K(ε,M)‖dN‖2.(9)

Proof. Since d = dT + dN , it follows that

dtMd = dtTMdT + 2dtTMdN + dtNMdN .

Hence,

|dtMd− dtTMdT | = |2dtTMdN + dtNMdN | ≤ ‖M‖(2‖dT ‖.‖dN‖+ ‖dN‖2).

Using the inequality 2ab ≤ a2 + b2 with a =
√
ε‖dT ‖ and b = ‖M‖‖dN‖/

√
ε, we

get

|dtMd− dtTMdT | ≤ ε‖dT ‖2 + ‖M‖(1 + ‖M‖/ε)‖dN‖2,
from which the conclusion follows.

Lemma 3.3. There exists c1 > 0 such that

‖zN‖ ≤ c1
∑
i∈J(x̄)

|zi| ∀ z ∈ kerA.

Proof. We have zN = z − zT and (zT )i = 0, i ∈ J(x̄). Henceforth, zi = (zN )i, i ∈
J(x̄), and it suffices to prove that

‖z‖ ≤ c1
∑
i∈J(x̄)

|zi| ∀ z ∈ N.

Since both sides are positively homogeneous, it suffices to establish the inequality
when ‖z‖ = 1. Then, the existence of c1 amounts to saying that the problem

min
∑
i∈J(x̄)

|zi| ; z ∈ N, ‖z‖ = 1

has a positive infimum. If this were not the case, there would exist z ∈ N , ‖z‖ = 1,
with zi = 0, i ∈ J(x̄) because this problem has a solution by compactness arguments;
hence, z ∈ T (by definition of T ), i.e., z ∈ T ∩N = {0}, a contradiction.

Lemma 3.4. Assume that {Mk} is bounded and x̄ satisfies (H3). Given K ≥ 0,
if xk is sufficiently close to x̄, the following relation holds:

νk(dk)tX−2
k dk > K‖dkN‖2.(10)
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Proof. Denote µk+1 := −νkX−2
k dk. From (H3) and Lemma 2.3 (iv), we deduce

that for any subsequence of {xk} converging to x̄, the associated subsequence λk

converges. Combining this with (2), the boundedness of Mk, and Lemma 2.3 (iii), we
deduce that the associated subsequence of {µk} converges to µ̄. Hence, if xk is close
enough to x̄, one has dki < 0 and µki > µ̄i/2, i ∈ J(x̄). Denote

θ := min{µ̄i/2, i ∈ J(x̄)}.
It follows that

νk(dk)tX−2
k dk ≥ νk

∑
i∈J(x̄)

(dki /x
k
i )2 ≥ 1

2

∑
i∈J(x̄)

−µ̄idki ≥ θ
∑
i∈J(x̄)

|dki |.(11)

Also, since |dki | ≤ |xki |/δ, it follows that |dki |, i ∈ J(x̄) can be made arbitrarily
small by taking xk close to x̄. It follows with (11) that

νk(dk)tX−2
k dk/

( ∑
i∈J(x̄)

|dki |
)2

→∞.(12)

We conclude with Lemma 3.3.
Lemma 3.5. Let α1 > 0 be given by (SSOC). Given K > 0, under the hypotheses

of Theorem 3.1, if xk is sufficiently close to x̄ then

(dk)t(Mk + 2νkX
−2
k )dk ≥ α1

2
‖dk‖2 +K‖dkN‖2.(13)

Proof. Define

K(ε) := sup
k∈N

K(ε,Mk).

Because {Mk} is bounded, we have that K(ε) < ∞̇. Apply Lemma 3.2, with ε = ε0,
where ε0 > 0 is such that (SCC) holds. We obtain that if xk is close to x̄, then

(dk)tMkd
k ≥ 1

2− γ (dkT )t∇2f(x̄)dkT −K(ε0)‖dkN‖2.

Since 1/(2− γ) ≥ 1/2, by using (SSOC) we get

(dk)tMkd
k ≥ α1

2
‖dkT ‖2 −K(ε0)‖dkN‖2,

=
α1

2
‖dk‖2 −

(
K(ε0) +

α1

2

)
‖dkN‖2.

The conclusion is obtained with Lemma 3.4.
Proof of Theorem 3.1. (a) We first prove that xk → x̄. We use the fact that ‖dk‖

is small whenever xk is close to x̄, k is large enough as a consequence of Lemma 3.5
and (5), and x̄ satisfies (SSOC). The last fact implies that x̄ is an isolated critical
point of (P) (see [23]). As (H3) necessarily holds in a neighborhood of x̄, it follows
by Theorem 2.2 that x̄ is the only limit point of {xk} in some neighborhood V of x̄.
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We now just have to prove that xk remains in V for k large enough. We can take V
of the form

Vε := {x ∈ F ; ‖x− x̄‖ ≤ ε}.

Note that ‖dk‖ < ε/2 whenever xk ∈ Vε1 for some ε1 > 0 small enough. We may
assume that ε1 < ε/2. It follows that if xk ∈ Vε1 , then ‖xk+1−x̄‖ ≤ ‖xk−x̄‖+‖dk‖ ≤
ε. In other words, xk+1 is in Vε whenever xk is in Vε1 .

On the other hand, we also know that f(xk+1) ≤ f(xk). So, let us define

f̂ := inf{f(x) ; x ∈ Vε − Vε1}.

Because x̄ is a strict local minimum of (P), we may assume that f̂ > f(x̄),

reducing ε and ε1 if necessary. Now, assuming that f(xk) ≤ f̂ and xk ∈ Vε1 , it follows

that f(xk+1) < f̂ and xk+1 ∈ Vε; using the definition of f̂ , we find that xk+1 is in Vε1
again. This implies that the sequence {xk} remains in Vε1 , hence, that xk → x̄.

(b) We now check that ρk = 1 for k large enough. Define

Hk := 2

∫ 1

0

(1− σ)∇2f(xk + σdk)dσ.

Then,

f(xk)− f(xk + dk) = −∇f(xk)tdk − 1

2
(dk)tHkd

k.

If xk is close enough to x̄, dk is then close to 0 as was already observed; hence, Hk is
close to ∇2f(x̄). We deduce that

−(dk)tHkd
k ≥ −(dk)t∇2f(x̄)dk − ε0

2
‖dk‖2,

with ε0 given by (SCC). As a consequence,

f(xk)− f(xk + dk) ≥ −∇f(xk)tdk − 1

2
(dk)t∇2f(x̄)dk − ε0

4
‖dk‖2,

= f(xk)− ϕk(dk) +
1

2
(dk)t(Mk −∇2f(x̄))dk − ε0

4
‖dk‖2.

So, by (1), the unit step will be accepted if

(1− γ)(f(xk)− ϕk(dk)) +
1

2
(dk)t(Mk −∇2f(x̄))dk − ε0

4
‖dk‖2 ≥ 0.(14)

Using (5), Lemma 3.2 with ε = ε0/2 (where ε0 is given by (SCC)), (SCC), and
Lemma 3.4, we get

f(xk)− ϕk(dk) =
1

2
(dk)tMkd

k + νkδ
2
k,

≥ 1

2
(dkT )tMkd

k
T −

ε0

4
‖dkT ‖2 −

K(ε0)

2
‖dkN‖2 + νkδ

2
k,

≥ 1

2(2− γ)
(dkT )t∇2f(x̄)dkT −

K(ε0)

2
‖dkN‖2 +

ε0

4
‖dkT ‖2 + νkδ

2
k,

≥ 1

2(2− γ)
(dkT )t∇2f(x̄)dkT +

νk
2
δ2
k.
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Similarly, by defining K ′(ε) := sup
k∈N

K(ε,Mk −∇2f(x̄)), we obtain

1

2
(dk)t(Mk −∇2f(x̄))dk ≥ 1

2
(dkT )t(Mk −∇2f(x̄))dkT −

ε0

4
‖dkT ‖2 −K ′(ε0)‖dN‖2,

≥ γ − 1

2(2− γ)
(dkT )t∇2f(x̄)dkT −K ′(ε0)‖dkN‖2 +

ε0

4
‖dkT ‖2.

Combining these inequalities and using Lemma 3.4 again, we get

(1− γ)(f(xk)− ϕk(dk)) +
1

2
(dk)t(Mk −∇2f(x̄))dk − ε0

4
‖dk‖2

≥ (1− γ)
νk
2
δ2
k − (K ′(ε0) +

ε0

4
)‖dkN‖2 ≥ 0.

We have proven (14) as required. It follows that the unit step is accepted, hence, dk

vanishes, as was to be proved.
We now check that if Mk is close to ∇2f(x̄) in a very weak sense (see (16) below),

then the following holds:∑
k

(‖xk − x̄‖+ ‖λk − λ̄‖+ ‖µk − µ̄‖) <∞.(15)

Theorem 3.6. Assume that the hypotheses of Theorem 3.1 hold and, in addition,
that x̄ satisfies the strict complementarity condition. If xk → x̄ (hence, ρk = 1 by
Theorem 3.1) then there exists ε1 > 0 such that

‖(Mk −∇2f(x̄))dkT ‖ ≤ ε1‖dk‖(16)

implies (15).
Let us note that Newton’s method satisfies (16). Note that if we assume Mk −→

∇2f(x̄), then we may violate the positive definiteness requirement onMk since∇2f(x̄)
need not be positive definite.

Proof. Denote

I := I(x̄), Ī := {1, . . . , n} − I.

The proof is based on the mapping

ψ(x, λ) :=

 (∇f(x) +Atλ)Ī ,
Ax− b,
xI .

It follows easily from (SSOC) and (H3) that ψ(x, λ) has an invertible derivative
at (x̄, λ̄); hence, there exists some a1 > 0 such that

‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖ ≤ a1‖ψ(xk+1, λk+1)‖.(17)

(a) Let us prove that

∃ K1,K4 ; ‖ψ(xk+1, λk+1)‖ ≤ nK1νk+1 + nK4νk + ‖xk+1 − xk‖/(4a1).(18)
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Indeed, from the convergence of {xk} to x̄ and (H3) and by using Lemma 2.3 (iv)
and (2), it follows that (λk, µk) → (λ̄, µ̄). Now, multiplying (2) by Xk and recalling
that νk‖X−1

k dk‖ = νkδk, we get

‖Xk(∇f(xk) +Mkd
k +Atλk+1)‖ = νkδk.

Using the strict complementarity hypothesis and the relation |zi| ≤ ‖z‖, we ob-
tain, for some K1 > 0,

xki ≤ K1νk, i ∈ I,(19)

|(∇f(xk) +Mkd
k +Atλk+1)i| ≤ K1νk, i 6∈ I.(20)

Now choose ε1 in (16) as ε1 = 1/(8a1n).
We have

∇f(xk) +Mkd
k = ∇f(xk) +∇2f(x̄)dk + (Mk −∇2f(x̄))dk,

= ∇f(xk+1) + rk + (Mk −∇2f(x̄))dk,(21)

where the term rk for xk close to x̄ satisfies

‖rk‖ ≤ ‖dk‖/(8a1n).(22)

Also, by (16) and as {Mk} is bounded, we get for some K2 > 0

‖(Mk −∇2f(x̄))dk‖ ≤ ‖(Mk −∇2f(x̄))dkT ‖+K2‖dkN‖,

≤ ‖dk‖/(8a1n) +K2‖dkN‖.(23)

Using (21), (22), (23), and Lemma 3.3, we obtain for some K3 > 0

‖∇f(xk) +Mkd
k −∇f(xk+1)‖ ≤ ‖dk‖/(4a1n) +K3

∑
j∈I
|dkj |.(24)

Now we prove (18). As µ̄ = − lim
k→+∞

νkX
−2
k dk, using the strict complementarity

hypothesis for k large enough and for all j ∈ I, we get dkj < 0, hence, |dkj | ≤ xkj . So,
combining this with (19), (20), and (24), we get for some K4 > 0

|(∇f(xk+1) +Atλk+1)i| ≤ K4νk + ‖dk‖/(4a1n), i 6∈ I.(25)

So, by (19) and (25), we get (18).
(b) On the other hand, by (5), the linesearch rule, and the fact that ρk = 1, we

have

f(xk)− f(xk+1) ≥ γ(f(xk)− ϕk(dk)) ≥ γνkδ2
k.

Hence, as δk ≥ δ > 0,

ν :=
∞∑
k=1

νk <∞.(26)
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Hence, using (17) and (18), we get

k̄∑
k=k0

(‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖) ≤ a1n(K1 +K4)ν +
1

4

k̄∑
k=k0

‖xk+1 − xk‖.

Now, by using

1

4

k̄∑
k=k0

‖xk+1−xk‖ ≤ 1

4

k̄∑
k=k0

(‖xk+1− x̄‖+‖xk− x̄‖) ≤ 1

2

k̄∑
k=k0

‖xk+1− x̄‖+
1

4
‖xk0− x̄‖,

we deduce that

k̄∑
k=k0

(‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖) ≤ 2a1n(K1 +K4)ν +
1

2
‖xk0 − x̄‖.

Finally, we obtain (15), noticing that by (2)

µk+1 − µ̄ = O(‖xk − x̄‖+ ‖λk+1 − λ̄‖+ ‖dk‖),

= O(‖xk+1 − x̄‖+ ‖xk − x̄‖+ ‖λk+1 − λ̄‖).
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[21] J. J. Moré, Recent developments in algorithms and software for trust region method, in Math-
ematical Programming, the State of the Art, A. Bachem, M. Grötschel, and B. Korte, eds.,
Springer-Verlag, Berlin, New York, 1983, pp. 258–287.

[22] M. J. D. Powell, Algorithms for nonlinear constraints that use Lagrangian functions, Math.
Programming, 15 (1978), pp. 224–248.

[23] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[24] D. C. Sorensen, Newton’s method with a model trust region modification, SIAM J. Numer.

Anal., 19 (1982), pp. 409–426.
[25] J. Sun, A convergence proof for an affine-scaling algorithm for convex quadratic programming

without nondegeneracy assumptions, Math. Programming, 60 (1993), pp. 69–79.
[26] T. Tsuchiya, Global Convergence of the Affine Scaling Algorithm for Primal Degenerate

Strictly Convex Quadratic Programming Problems, Math. Oper. Res., 47 (1993), pp. 509–
539.

[27] Y. Ye and E. Tse, An extension of Karmarkar’s projective algorithm for convex quadratic
programming, Math. Programming, 44 (1989), pp. 157–179.


