
r 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 
.4rgonne, Illinois 60439 

GLOBAL CONTINUATION FOR DISTANCE GEOMETRY 
PROBLEMS 

Jorge J.  Mor& and Zhijun Wu 

Mathematics and Computer Science Division 

Preprint MCS-P505-0395 

March 1995 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

Work supported by the Office of Scientific Computing, U.S. Department of Energy, under 
Contract W-31- 109-Eng-38 and by the Argonne Director's Individual Investigator Program. 

The submitted manuscript has been authored 
by a contractor Of the U. S. Government 
under contract No. W-31-10SENG-38. 
Accordingly, the U. S. Government retains a 
nonexclusive, royalty-free license to publish 
or reproduce the published form of this 
contribution, or allow others to do EO, for 
U. S. Gwernment wrwsec. 1" 





ABSTRACT 

Distance geometry problems arise in the interpretation of NMR data and in the deter- 
mination of protein structure. We formulate the distance geometry problem as a global 
minimization problem with special structure, and show that global smoothing techniques 
and a continuation approach for global optimization can be used to determine solutions of 
distance geometry problems with a nearly 100% probability of success. 
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1 Introduction 

k molecule with m atoms can be described by specifying the positions 51,. . . z, in R3 
of ad the atoms in the molecule. If we are given bond lengths &,j between a subset S of 
the atom pairs, it is important to determine whether there is a molecule that satisfies these 
bond length constraints. We pose this problem in terms of finding 2 1  , .. . , 2, such that 

If there is no solution 21,. . . , z, to these constraints, then the bond length specification 
must be in error. This can happen, for example, if the triangle inequality 

is violated for atoms {i, j ,  k} with bond length constraints. 
Distance geometry problems that arise in the interpretation of NMR data and in the 

determination of protein structure are usually associated with the more general problem of 
finding positions z1 7 .  . . , z, in R3 such that 

where Z;j and ui,j are lower and upper bounds on the distance constraints, respectively. 
For surveys of work in this area, see Crippen and Havel [4], Havel [9], Kuntz, Thomason, 
and Oshiro [16], and Briinger and Nilges [l]. We do not consider the general problem 
(1.2) because the aim of this paper is to show that algorithms based on the continuation 
approach for global optimization can be used to determine solutions of (1.1) with a nearly 
100% probability of success. The techniques of this paper can be extended to  (1.2)? but the 
theory is not as elegant. 

Distance geometry problems are NP-hard. Crippen and Havel [4] proved this result 
when all the atoms are restricted to R1 by reducing the distance geometry problem to the 
set partition problem: Given positive integers sl,. . . , s,, determine a partition of these 
integers in sets SI and S2 such that 

s; = s;. 
;€SI i d 2  
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The proof is instructive. Given an instance of the set partition problem, consider a distance 
geometry problem in Rf with m + 1 atoms, where 

If the distance geometry problem has a solution, then Sl,m+l = 0 implies that zm+l = 21, 
and thus m 

-&+I - 2;) = zm+l - 21 = 0. 
i=l 

Since 12;+1--iI = s;, the sets 5'1 = {i : z;+1 - z; 2 0} and S2 = {i : zi+l - 2; < 0} solve the 
set partition problem. For a general discussion of the complexity of the distance geometry 
problem in Rd, see Saxe [all. 

We formulate the distance geometry problem (1.1) in terms of finding the global mini- 
mum of the function 

2 
f(.) = w,j (IIG - zCjll2 - b t j )  7 (1-3) 

i , j d  

where wi,j are positive weights. Clearly, 2 E R" solves the distance geometry problem 
if and only if f(z) = 0. We could use any global optimization algorithm (see [20], [12], 
and [5] for global optimization background) in the search for a global minimum o f f ,  but 
these general algorithms do not take advantage of the structure in the distance geometry 
problem. Other algorithms used in the solution of distance geometry problems (for example, 
Hendrickson [lo, 111, Have1 [9], and Glunt, Hayden, and Raydan [7, 81) must also rely on 
general techniques, such as multistarts or simulated annealing, to claim convergence to a 
global minimizer. 

The continuation approach for global optimization hinges on the ability to gradually 
transform the original function into a smoother function with fewer local minimizers. An 
optimization algorithm is then applied to the transformed function, tracing their minimizers 
back to the original function. The idea of transforming a function into a smoother function is 
appealing; the main approaches include the diffusion equation method of Piela, Kostrowicki, 
and Scheraga [19], the packet annealing method of Shalloway [24, 231, and the effective 
energy simulated annealing method of Coleman, Shalloway, and Wu [2, 31. In the diffusion 
equation method the transformation can be written (see [13, 141 for details) in the form 

where T is a parameter (time). The smoothing properties of this transformation have been 
studied by the researchers in Scheraga's group, often in connection with the search for 
the lowest energy conformation of a molecule (see, for example, [13, 14, 15, 221). The 
transformation used in the packet annealing method and in the effective energy simulated 
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annealing method can be written in the form 

where zB is the Boltzmann constant, t is a parameter (temperature), and A is a nonsin- 
gular matrix (the sampling scale). Other transformations used in molecular conformation 
problems are reviewed by Straub [25]. In this paper we follow the work of Wu [26] by devel- 
oping the general properties and use of (1.4) in continuation algorithms for the solution of 
large global optimization problems, since this transformation seems to have the strongest 
mathematical properties. 

We feel that (1.4) is likely to play an important role, not only in the molecular conforma- 
tion problem, but in the solution of a wide variety of global optimization problems. For this 
reason Section 2 introduces the term Gaussian transform to denote this transformation. 
We also illustrate the smoothing properties of the general Gaussian transform on a sim- 
ple two-dimensional problem. This example also provides motivation for the continuation 
approach. 

Section 3 presents some of the more interesting properties of the Gaussian transform. 
We study, in particular, the computation of the Gaussian transform for the decomposable 
functions. This is an important class of functions because many of the functions that arise 
in applications are decomposable. This class of functions was introduced by Wu [26] under 
the term generalized multilinear functions; we are using the term decomposable to avoid 
confusion with the use of multilinear for a function that is linear in each argument. 

Our approach for solving the distance geometry problem is outlined in Sections 4 and 5. 
We compute the Gaussian transform of function (1.3) as a special case of more general 
results in Section 4, while Section 5 presents the basic ideas behind global continuation 
algorithms. We concentrate on an approach based on choosing a predetermined sequence of 
smoothing parameters, since this approach already brings out the power of the continuation 
algorithm. In future work we plan to address more sophisticated approaches for choosing 
the smoothing parameters. 

In Section 6 we consider a typical distance geometry problem and compare a basic global 
continuation algorithm with a multistart method for global optimization. We are interested 
in the solution of problems with a large number of atoms, and thus we performed our 
numerical testing on the Argonne IBM SP system. This system has 128 nodes, each node 
an IBM RS/6000-370 with 128 MB of memory. Our main conclusion from the numerical 
results is that the continuation algorithm finds the solution of the distance geometry problem 
in all cases but that the multistart method becomes increasingly unreliable and expensive 
as the number of atoms increases. The reliability of the multistart method drops below 10% 
for problems with m 2 64 atoms. 
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2 Continuation for Global Optimization 

In the continuation approach for global optimization, the original function is gradually 
transformed into a smoother function with fewer local minimizers. An optimization al- 
gorithm is then applied to the transformed function, tracing the minimizers back to the 
original function. In this section we define the transformation and provide motivation for 
the continuation approach. 

The transformed function depends on a parameter X that controls the degree of smooth- 
ing. The original function is obtained if X = 0, while smoother functions are obtained as X 
increases. 

Definition 2.1 The Gaussian transform ( f ) ~  of u function f : Rn w R is 

We are using the term Gaussian transform because we can view (f)x(z) as the expected 
value of f(z) with respect to the Gaussian density function 

1 exp (-q) . 
PdY) = ,n/zXn 

The value (f)~(z) of the Gaussian transformation is an average of f(x) in a neighborhood of 
z, with the relative size of this neighborhood controlled by the parameter A. The size of the 
neighborhood decreases as X decreases so that when X = 0, the neighborhood is the center 
z. We explore additional properties of the Gaussian transformation in the next section. 

We illustrate the transformation process with the problem of finding the global maxi- 
mizer for a function that is a linear combination of four Gaussian functions. The function 
in the top left corner of Figure 2.1 is of the general form 

where ai = 0.5 for 1 5 i 5 4, al = 1.5, and CY; = 1 for i = 2,3,4; the centers x; are the 
vertices of the square [-0.5,0.5] x [-0.5,0.5]. As can be seen in Figure 2.1, the function has 
four maximizers in [-2,2] x [-2,2]. The Gaussian transforms of (2.3) for three values of X 
also appear in Figure 2.1. The top right corner corresponds to X = 0.2, and in the bottom 
row we have X = 0.3,0.4. 

Figure 2.1 clearly shows that the original function is gradually transformed into a 
smoother function with fewer local maximizers, and that the smoothing increases as X 
increases. We can view the Gaussian transform of a function as a coarse approximation to 
the original function, with small and narrow maximizers being removed while the overall 
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Figure 2.1: The Gaussian transform of a function. The original function (A = 0) is in the 
top left corner, with X = 0.2 in the top right corner, X = 0.3 in the bottom left corner, and 
X = 0.4 in the bottom right corner. 

structure of the function is maintained. This property allows an optimization procedure 
to skip less interesting local maximizers and to  concentrate on regions with average high 
function values, where a global maximizer is most likely to be located. 

Another point that is apparent from Figure 2.1 is that a continuation process based on 
the Gaussian transform will find the global maximizer. In general, we cannot expect that 
the continuation process will succeed on an arbitrary function. In particular, the Gaussian 
transform eliminates tall, narrow hills; hence, if the global maximizer lies in one of these 
hills, the continuation approach is likely to fail. 
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3 The Gaussian Transform 

We have defined the Gaussian transform for a function f : R" H R by (2.1). In many cases 
it is preferable to make the change of variables y H z + Xu in (2.1) to obtain that 

(3.1) 

In this section we explore some of the properties of this transformation. 

transformation is defined if f is continuous almost everywhere and if 
The Gaussian transform is defined for a large class of functions. In particular, the 

for positive constants ,& and ,&. These assumptions guarantee that f is bounded on compact 
sets, but allow for unbounded f on R". In the development that follows, we assume that f 
satisfies assumptions (3.2). 

An important property of this transformation is that (f)x is a linear operator in the 
sense that 

( 4 x  = 4 f ) x ,  (fl + f 2 ) x  = ( f d x  + (f2)x 
for any scalar cy and functions f1 and 1 2 .  Also note that the Gaussian transform of the 
identity function is unity; this result depends on the result 

More generally, if p1 5 f(x) 5 p2 for all z E R", then p1 5 (f)x(z) 5 p2 also holds for 
all x E R". In particular, this shows that i f f  is bounded below, then ( f ) ~  is also bounded 
below. 

Theorem 3.1 The Gaussian transform (f)A is a continuous function. 

Proof. The proof is a direct consequence of general results (see, for example, Lang [17, 
Chapter 131) on the continuity of functions of the form 

where the mapping h is continuous in z and integrable in y. 1 

Theorem 3.1 helps to support our claim that ( f ) ~  is a smoother version of f. Indeed, 
Theorem 3.1 is a special case of a more general result that establishes (f)x as an infinitely 
differentiable function. This result can be established by showing that the mapping h 
defined by 

h ( w )  = f ( d P A ( Z  - Y>, 
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where p~ is given by (2.2), is infinitely differentiable with respect to 2, and all the derivatives 
are integrable. 

We now show that if f is convex, the Gaussian transform is also a convex function. 
This property is reassuring because it shows that the transformation does not introduce 
difficulties if none exist. 

Theorem 3.2 I f f  : R" H R is convex, then ( f } ~  is also convex. 

Proof. The result follows from (3.1) because the convexity o f f  implies that 

for any 21 and 22 in R". I 
A serious drawback to the general use of the Gaussian transform for minimization is that 

computing ( f ) ~  for a general function defined on R" is not possible because this requires 
the computation of n-dimensional integrals. However, there is a large class of functions for 
which the computation of the Gaussian transform is reasonable. 

Definition 3.3 A function f : R" H R is decomposabEe iff can be written in the fomn 
m n 

f(.> = f k ( Z ) ,  f k ( x )  = fk,j(zj), (3.3) 
k = l  j=1 

for  some set of functions { f k , j } ,  where f k , j  : R H R. 

This class of functions was introduced by Wu [ZS] under the term generalized multilinear 
functions; we are using decomposable to avoid confusion with the use of multilinear for a 
function that is linear in each argument. 

The decomposable functions are of interest with respect to the Gaussian transform 
because computing the Gaussian transform of a decomposable function requires the com- 
putation of only one-dimensional integrals. Indeed, a computation shows that i f f  is defined 
by (3.3), then 

Thus, computing ( f ) ~  for a decomposable function requires the computation of only the 
one-dimensional integrals for each ( f k , j ) X .  

Table 3.1 shows the Gaussian transformation of several elementary functions. We will 
justify the correctness of the entries later; here we note that the Gaussian transform of any 
decomposable function with component functions drawn from this table can be calculated 
explicitly. For example, using these results, we can show that if f is the general quadratic 

f ( x )  = i x T Q s  + c T x 
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Table 3.1 : The Gaussian transformation of elementary functions 

for some Q f Rnxn and c f R”, then 

X 

2 2  + f P  
sin(z) exp(-$X2) 

cos(z) exp(-+X2) 

exp(x) exp(+X2) 

In particular, this shows that (f)~(z) = f(x) for linear functions. 

functions with an easily computable Gaussian transform. For example, 
Table 3.1 includes only the most commonly occurring functions; there are many other 

is the Gaussian transform of f(z) = exp(-z2). 

functions, that is, functions that are linear combinations of terms of the form 
In addition to quadratic functions, the decomposable functions include the polynomial 

for arbitrary integer powers pi 2 0. The following result is needed to compute ( f ) ~  for a 
polynomial function. 

Theorem 3.4 Iff : R H R is the monk  polynomial f(x) = xk, then 

Proof. Since f is a polynomial we can expand f(x + Xu) in (3.1) and obtain that 
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and since the integrals with odd powers vanish by symmetry, 

We can complete the proof if we show that 

This identity can be established by defining I21 to be the integral in (3.5) and noting that 
integration by parts yields 

21- 1 (22)(22- 1) 
121-2- 42 

121 = - 121-2 = 

An induction argument, based on this relationship and using the result 10 = 1, shows that 
(3.5) holds, and thus completes the proof. I 

Theorem 3.4 was obtained by Kostrowski and Piela [13], but with a completely different 
approach. We will elaborate on this point below. 

We can extend Theorem 3.4 by noting that if f is analytic, the Taylor series of f(z + Xu) 
as a function of u converges for all Xu. Thus we can proceed as in the proof of Theorem 3.4 
to obtain 

Hence, (3.5) shows that 

This relationship holds, in particular, for the functions in Table 3.1. A short computation 
shows that this expression justifies the entries in this table. 

Expression (3.6) was used by Piela, Kostrowski, and Scheraga [19] to define the trans- 
formation for the diffusion equation method. A disadvantage of this definition is that it 
requires an analytic f ,  while (3.1) requires only the integrability of f .  On the other hand, 
as we have noted, this expression is quite useful for determining the Gaussian transform of 
several important functions. In particular, Kostrowski and Piela [13] obtained Theorem 3.4 
with this approach. 

The Gaussian transform for functions that are related by a scaling or a translation of 
the variables can be computed by noting that if 

for some scalar CY and vector 20, then 
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For example, if f ( z )  = sin(az), then 

This result suggests that ( f ) ~  tends to dampen the high-frequency components in a function, 
since if cr is large, then the exponential term produces a larger damping effect. See Wu [26, 
Section 41 for a discussion of the effect of the Gaussian transform on the high-frequency 
components of a general function. 

We have defined the Gaussian transform of a real-valued function f : R" H IR by 
(3.1), but this definition extends immediately to vector-valued functions. This remark is 
of interest because in addition to transforming the function, we could also transform the 
gradient and the Hessian of f .  We now show that the Gaussian transform of the gradient 
(Hessian) is the gradient (Hessian) of (f)~. This result can be deduced by differentiating 
under the integral sign in (3.1) to obtain that 

which is the desired result for the gradient. If we repeat the process, we obtain that 

so that the Gaussian transform of the Hessian matrix is the Hessian of ( f )x .  

that V2 f is continuous almost everywhere and that 
We guarantee the validity of differentiating under the integral sign in (3.8) by assuming 

holds for some positive constants 71 and 72.  This result requires a technical lemma. 

Lemma 3.5 Iff : R" I+ R is twice diflerentiable on R" and (3.9) holds for some positive 
constants 71 and 72,  then 

IlVf(4ll I 2Pl exp (P2ll.ll) 7 I f ( 4  5 3P1 exp (P2Il4l) 7 

where P i  2 max{71, IlVf(O)ll, If(o)l} and P2 2 2 + 7 2 .  

Proof. The standard estimate 

l IVf(4 - Vf(0)II I SUP l lV2f(411 114 
O S T < l  

together with the estimate llzlI 5 exp(llz11), implies that 

IlVf(.>ll 5 IlVf(O)ll+ 71 exP(72ll.ll)ll~ll 5 P1 + PI exp( ( l+  rz)ll4I), 
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and thus 

which is clearly of the desired form. We complete the proof by using this estimate and 
repeating the above argument, but with Of is replaced by f. In this case we obtain 

as desired. I 
We now show that the assumption (3.9) guarantees that (3.7) and (3.5) hold. 

Theorem 3.6 Iff : R” H R is twice continuously diflerentiable almost everywhere on R” 
and (3.9) holds for some positive constants y1 and y2, then 

Proof. Assumption (3.9) guarantees that the function 

is bounded by an integrable function, for any k e d  x and A. The validity of (3.8) now 
follows from standard results that guarantee differentiation under the integral sign (see, for 
example, Lang [17, Chapter 131). Lemma 3.5 shows that the same argument can be used 
to  validate (3.7). I 

Theorem 3.6 was stated informally by Wu [26]; the above argument supplies the pieces 
needed to give a formal proof of this result. Theorem 3.6 is of interest from a computational 
viewpoint because optimization algorithms require the gradient and Hessian of (f)~. This 
result shows that the gradient and Hessian of ( f ) ~  are also smooth functions in the sense 
that they are obtained by transforming the gradient and Hessian, respectively. 

In this section we have concentrated on obtaining explicit expressions for the Gaussian 
transform of various functions. We have also experimented with other approaches. In one 
of the approaches, the Gaussian transform is approximated by a Gaussian quadrature. This 
approach hinges on the ability to evaluate Gaussian integrals efficiently with ORTHOPOL 
(Gautschi [SI). Another approach is based on approximating the function by a decom- 
posable function and using the Gaussian transform of the decomposable function as an 
approximation to the Gaussian transform of the original function. We plan to pursue these 
approaches in future work. 

4 The Gaussian Transform for the Distance Geometry Problem 

Our continuation algorithms for the distance geometry problem are based on the function 
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where w;,j are positive weights, and 6;,j are distances. Computing the Gaussian transform 
of (4.1) is not difficult because f is decomposable. In fact, f is a polynomial function in 
the components of z. The development below shows that f has considerable structure and 
that this structure can be used to simplify the computation for the Gaussian transform. 

In the standard formulation of the distance geometry problem, the components z; E IR3. 
We assume that zi E RP because this assumption does not lead to extra complications. We 
thus consider the general problem where f is of the form 

and h;,j : RP H R is defined by 

The following result shows that computing the Gaussian transform of (4.2) requires only 
the Gaussian transform on hi,j. 

Theorem 4.1 I f f  : Rn H R and h : RP c-) R are related by 

for some matrix P E RnXp such that P T P  = a21, then 

Proof. Define Q E R(n-P)xn such that 

is an orthogonal matrix. By definition, 

so that if we make the change of variables u H Rv in (3.1), we obtain 

since R is an orthogonal matrix. Now note that PTR = a ( I  
integral reduces to an integral over Rp, that is, 

0), and thus the above 

I 
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The application of Theorem 4.1 to the distance geometry problem requires that we 
specify how the vectors z; are related to z. Let the i-th component of the vector zj be 
the c ( i , j )  components of z. In other words, c ( i , j )  specifies how the components of z j  are 
stored in z E R”. Another way of defining c ( i , j )  is by the relationship 

With this choice we can set 

p = ( % ( I $ )  - %(l,j) ,  * * * 7 %(p, i )  - q p , j ) )  

and obtain PTz = z; - xj. In particular, PT P = u21, where u2 = 2. 
As an application of these results, note that Theorem 4.1 implies that 

(f)x(z) = (h)Jix(zi - z j ) .  

is the Gaussian transform of f(z) = h(s; - z j ) .  We can apply this result to  the distance 
geometry problem, where h is given by (4.3), by computing the Gaussian transform of the 
functions f1 : RP w R and f2 : RP H R defined by 

Since f1 is a quadratic, 
(fdx(4 = 11412 + ;PA2 

(f2)xtz) = 11414 + [3 + (P - 1)]x211.112 + i P ( P  + 2 p 4 .  

is just a special case of (3.4). We now claim that Theorem 3.4 shows that 

We prove (4.5) by noting that 

and thus Theorem 3.4 implies that 
P P 

( f 2 ) x ( z )  = (z: + 3 x 2 4  + z x 4 )  + c ((z: + fx”(z3 + 3x2)). 
i=l t f 3  

Identity (4.5) is now a direct consequence of this expression. 

Theorem 4.2 If h : R P  H R is defined by 

then 

(4-4) 

(4-5) 



Proof. Since 
h(z )  = f 2 ( 4  - 2d2fi(2) + fi4, 

the result follows from (4.4) and (4.5). I 
The computation of the Gaussian transform for the distance geometry problem now 

follows from the results that we have obtained. 

Theorem 4.3 Iff : R" H R is defined by (4.2) and (4.3), then 

where y is the constant 

Proof. Recall that we can write f in the form 

where Plf3P;j = m21,  with u2 = 2. 1 
Theorem 4.3 shows that the Gaussian transform of the distance geometry function de- 

fined by (4.2) and (4.3) can be computed quite easily. Moreover, this result also shows that 
the gradient and the Hessian matrix of the Gaussian transform are also readily computable 
at a fractional increase in cost. 

We conclude this section by discussing the relationship between Theorem 4.1 and the 
anisotropic Gaussian transform defined by Wu [26]. Given a nonsingular matrix .A E E"'", 
the anisotropic Gaussian transform o f f  is defined by 

Clearly, this transformation generalizes Definition 2.2, where A = X I .  
From a computational viewpoint , the anisotropic transformation is important when A 

is a diagonal matrix, and is closely related to the isotropic transformation when f is a 
decomposable function. In particular, if f is defined by (3.3) and A = diag(Xj), then 

(f>A(z> = k=l 2 ( j=1 f i ( . , j > A J ( . j ) )  - 

The following result, a generalization of Theorem 4.1, provides further motivation for the 
anisotropic transformation. 
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Theorem 4.4 Iff : R" w R and h : RP w R are related by  

f (  z) = h( P T z )  

for some matrix P E RnXp such that PTP = DTD,  where D is a diagonal matrix, then 

Proof. The proof follows that of Theorem 4.1. In this case we define Q E R ( n - P ) x n  such 
that 

Q >  

is an orthogonal matrix, and obtain that 

The result now follows from the definition of the anisotropic transformation because the 
change of variables y ,-, 2 + Du in (4.6) shows that 

is the anisotropic transformation of h. 1 

5 Continuation Algorithms 

The basic idea behind the continuation approach is to trace a curve {.(A) : X 2 0}, where 
each .(A) is a minimizer of ( f )x .  In the simplest approach we choose a sequence {Xk} of 
smoothing parameters that converges to zero, and compute a minimizer xk of each ( f ) ~ , .  
A more sophisticated approach is to rely on a differential equation to trace the curve. For 
this approach, we define h : R" x R R by 

and note that, since .(A) is a stationary point of (f)~, 

&h[z(A), A] = 0. 

We now differentiate with respect to X to obtain 

This differential equation, together with an initial value zo, defines a curve if the coefficient 
matrix dzzh[x(X) ,  A] is nonsingular. In this paper we concentrate on the approach based on 
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choosing a predetermined sequence of smoothing parameters, since this approach already 
brings out the power of continuation algorithms. 

We wish to analyse the ideal situation where we are able to determine a global minimizer 
z k  of (f)x, for some sequence {Xk} converging to zero. This requires that we show that 
the function h : R" x R w R defined by (5.1) is continuous on Rn x R. Without loss of 
generality we show continuity at (z*,O). We had previously noted the continuity of h with 
respect to x and A; we now establish the joint continuity with respect to (2, A). 

Lemma 5.1 Assume that f : R" H R is continuous on R" and satisfies (3.2). If (Xk} 
converges to x* and {A,} converges to zero, then 

P.roof. Let B, be the ball of radius r centered at the origin, and let C, be the complement 
of B,, that is, 

c, = {z E R" : 11x11 > r } .  

We first show that for any E > 0 we can choose T > 0 and ko so that 

Assumption (3.2) implies that there is a constant p > 0 such that 

if Ak 5 f and T 2 1. This estimate proves (5.2) because, if T is sufficiently large, the integral 
of exp ( - f ~ ~ ~ ~ ~ ~ )  over C, is arbitrarily small. Now note that the continuity of f  at z* shows 
that for given T and ko we can choose kl 2 ko so that 

This estimate and (5.2) imply that 

which is the desired result. I 

A variation on Lemma 5.1 would be to show that the gradient and Hessian matrix of h 
are continuous. The proof of this variation would be entirely similar to that for Lemma 5.1. 
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Theorem 5.2 Assume that f : Rn I+ R is continuous on Rn and satisfies (3 .2) .  Let {Xk} 

be any  sequence converging to zero. If X k  is a global minimiter of (f)x, and { X k }  converges 
to x*, then xf is a global minimizer of f. 

Proof. Since xk is a global minimizer of (f)~,, 

(f)X,(Q) I (f)x,(z), 2 E R". 

Lemma 5.1 now implies that f(z*) I f(z) for any x E R". Hence, x* is a global minimizer 
o f f .  i 

Given Ah, we need an algorithm to determine a minimizer xk of (f)x,- A trust region 
version of Newton's method based on the work of Mor6 and Sorensen [18] is an attractive 
choice because it has strong global and local convergence properties. 

At each iteration of a trust region Newton method for the minimization o f f  : R" w R, 
we have an iterate zk, a bound A k ,  a scaling matrix Dk, and a quadratic model qk : R" H IR 
of the possible reduction f(%k+w)- f ( x k )  for ilDkwll 5 Ak. The developments in Section 4 
show that the gradient and Hessian matrix can be easily obtained for the distance geometry 
problem. Thus 

qk(W) = V f ( z k ) * W  f a W T V 2 f ( s k ) W  

is our choice for the quadratic model. 

is an approximate solution to the trust region subproblem 
An important ingredient in a trust region method is the choice of step sk. In general s k  

{qk(W) : l lDkWll 5 Ak} 
with qk(sk) < 0. We use the algorithm described by Mor6 and Sorensen [lS] because it 
provides an approximate global solution to the subproblem. In particular, if xk is a saddle 
point so that Vf(xk) = 0 and V2f(zk) is indefinite, we still have qk(sk) < 0. 

Given the step s k ,  the test for acceptance of the trial point X k  + sk depends on a 
parameter 70 > 0. The following algorithm summarizes the main computational steps: 

For k = 0,1,. . . maxiter 
Compute the quadratic model qk .  

Compute a scaling matrix Dk. 
Compute an approximate solution sk to the trust region subproblem. 
Compute the ratio pk of actual to predicted reduction. 
Set zk+1 = Zk + sk if pk 2 70; otherwise set Xk+l = xk. Update Ak. 

Given a step sk such that IIDkskll 2 Ak and q k ( s k )  < 0, the rules for updating the iterate 
Zk and the bound Ak depend on the ratio 
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of the actual reduction in the function to the predicted reduction in the model. See, for 
example, Mor6 and Sorensen [18] for details on these rules. 

The trust region method outlined above is attractive for the distance geometry problem 
provided the number of molecules m is moderate, say m 5 50. For larger problems we can 
still use the trust region method provided the set S in (4.1) is sparse and the computation 
of the step sk makes use of sparsity. We plan to address this case in future work. 

6 Numerical Results 

Consider a molecule with m = s3 atoms located in the three-dimensional lattice 

{ ( i l , i 2 , i 3 )  : 0 5 i t  < s, 0 5 i 2  < s, 0 2 i3 < s} 

for some integer s 2 1. Figure 6.1 shows a molecule with 64 atoms (s = 4). We specify an 
ordering for the atoms in this molecule by letting atom i be the atom at position (il, ia, i3), 
where 

i = 1 + il + si2 + s2i3. 

Given a subset S of the pairwise distances & j  between atoms i and j ,  we consider the 
distance geometry problem 

where the set S is defined in terms of an integer r by 

With this definition the set S is sparse in the sense that it contains only r m  pairs, out of a 
possible m2 pairs. Figure 6.2 shows an 8-atom problem defined by a sparse S with r = 3. 

The construction of our model problem is realistic in the sense that distance constraints 
are imposed only on nearby atoms. A computation shows that for the model problem 

Our construction shows that the distance geometry problem defined by (6.1) and (6.2) 
always has at least one solution. 

We attack the distance geometry problem by using the global continuation approach to 
obtain a global minimum of the function 
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Figure 6.1: An example lattice structure of 64 atoms 

where S i j  is the distance between atoms i and j in the lattice. We need the Gaussian 
transform of f and, for the trust region Newton method, the gradient and Hessian matrix 
of the transform. Theorem 4.3 shows that 

is the Gaussian transform of f ,  where y is a constant. The gradient and Hessian matrix 
can be obtained from this expression. 

For this problem, to determine X so that (f)x is convex, we study the dependence of 
( f ) x  on X in terms of the function 

Note that if h is convex, then z t- h(11z; - zjII) is convex, and thus ( f ) ~  is also convex. If 
we choose X so that h is convex, then 

h”(r) = 12r2 - 8S2 + 20X2 

shows that we must have X 2 (?)‘l2S = 0.635. In particular, for a fixed value of A, terms 
with a smaller S have smaller regions of nonconvexity than those with larger values of 6. 
Also note that if 

2 max : ( i , j )  E SI, 

then (f)x is convex. 
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Figure 6.2: An example lattice structure with sparse distance constraints 

In this paper we have shown that the continuation method has strong theoretical prop- 
erties. We now use numerical results to show that the continuation method is superior to 
the multistart approach, a standard procedure for finding the global minimizer of f. 

We are interested in the solution of problems with a large number of atoms, and thus 
we performed our numerical testing on the Argonne IBM SP system. This system has 128 
nodes, each node an IBM RS/6000-370 with 128 MB of memory. 

In the multistart method we choose a random starting point z, and use the trust region 
method from this starting point to determine a local minimizer zz. If zz satisfies 

111zi - "jll - S i j  1 5 € 7  G,d E s, (6.5) 

for some tolerance E ,  then zz is declared to be a solution to the distance geometry problem 
(6.1), and we terminate the multistart method. If z: does not satisfy (6.5), we repeat the 
procedure with another starting point. The multistart method fails if (6.5) is not satisfied 
after trying ten starting points. 

The global continuation method that we use is similar to the multistart method, except 
that the continuation algorithm of Section 5 is used to determine a local minimizer z: of 
f. We start the continuation algorithm with the random starting point x, and A0 > 0. We 
compute p major iterations, where p is the number of continuation steps. The k-th major 
iterate 5/, is computed by applying a trust region algorithm, with Zk-1 as a starting point, 
to the transformed function (f)~,, where 
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Table 6.1: Performance of the multistart and continuation methods (2, E rand(B)) 

m r 

27 9 

Multistart Continuation 

nfev ngev nfev ngev 

573 472 255 216 1 64 16 ~ F1211 1009 1 !ii i!! 
125 25 1810 1461 

216 36 F3397 2782 

27 9 

64 16 

Table 6.2: Performance of the multistart and continuation methods (xs E 2 rand(B)) 

273 229 221 188 

1102 917 863 698 

I Multistart I Continuation 

125 25 

216 36 

[ rn r [ nfev ngev [ nfeu ngeu 

1600 1324 410 322 

F3416 2802 446 337 

Since A, = 0, the find major iterate x, is a local minimizer of f , so we set zf = x,. 
In Tables 6.1 and 6.2 we present the results obtained by the global continuation method 

and the multistart method on two sets of starting points. The number of molecules in these 
tables are of the form m = s3 for 3 5 s 5 6. The parameter T in (6.2) was set to T = s2. 

Since the solution of the distance geometry problems defined by (6.1) and (6.2) lie in 

B = {X E Rn : 0 5 X; 5 s - I} , 

it is reasonable to choose the starting points randomly in B by setting each component of 
the starting point to a random number in (0,s - 1).  These results appear in Table 6.1. 
Similarly, for the results shown in Table 6.2 we choose the starting point randomly in 2B. 

For these results we used A0 = 0.5 and p = 10 continuation steps. (Later we consider 
how the performance of the continuation method depends on A0 and p . )  

Performance is measured in terms of the number of function and gradient evaluations, 
nfev and ngev, used to find a global minimizer. The results marked by are the cases 
where no global minimizer was found after trying 10 starting points. 

We have not included execution times in Tables 6.1 and 6.2 because the distance ge- 
ometry problems under consideration give rise to sparse minimization problems, but the 
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Table 6.3: Probability of success of the multistart and continuation methods 

m P Multistart Continuation Muitistart Continuation 

27 9 10% 100% 60% 100% 

64 16 0% 70% 10% 50% 

125 25 10% 100% 10% 100% 

216 36 0% 100% 0% 100% 

2, E r a n d ( B )  2, E 2 r a n d ( B )  

algorithm that we have used does not take advantage of sparsity. Our concern in this pa- 
per is mainly with the ability of the continuation method to solve these problems with a 
reasonable number of function and gradient evaluations. In future work we will consider 
problems with more atoms and the use of algorithms that take advantage of sparsity. 

These results show that the continuation method finds a global minimizer in all cases, 
and with fewer function and gradient evaluations than the multistart method. Moreover, 
the performance of the continuation method seems to be relatively insensitive to  the choice 
of starting point. The multistart method, on the other hand, requires a large number of 
function and gradient evaluations to determine a global minimizer, and is unable to  find a 
global minimizer for problems with m = 216 atoms. Also note that the performance of the 
multistart method seems to be sensitive to the choice of starting point. 

The reliability of the continuation and multistart methods can be measured by the 
probability of success of these methods, that is, the percentage of successful runs (the 
global minimizer is found) in all ten starting points. The results in Table 6.3 clearly show 
that the multistart method had little success in finding a global minimizer, especially for 
problems with m 2 64 atoms. However, the continuation method succeeded 100% in most 
of the cases. Even for m = 64, the probability of success is much higher for the continuation 
method. 

One might wonder why the continuation method was not able to find the global mini- 
mizer for m = 64 in all ten runs. A simple answer to this question is that the initial A0 = 0.5 
value was too small for smoothing the function in this problem. Therefore, we repeated the 
runs for the problem with m = 64 atoms, but with A0 = 1 and p = 20. The continuation 
method then found the global minimizer for all ten starting points. 

The results in Table 6.4 compare the average performance of the multistart and the 
continuation method when A0 = 1 and p = 20. When m = 64 and 2, E rand(B), the 
multistart method fails in all cases, so the results in Table 6.4 measure the effort required 
to find a local minimizer. In contrast, the continuation method succeeds in all cases, so the 
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Table 6.4: Average performance for the multistart and continuation method (Ao = 1, p = 20) 

m r 

27 9 

64 16 

125 25 

216 36 

Multistart I Continuation 1 Multistart I Continuation I 
n f e v  ngev n f e v  ngev n f e v  ngev n f e v  ngev 

61.2 50.5 251.1 211.1 57.4 98.7 240.9 200.9 

121.1 100.9 267.9 212.4 118.3 98.7 272.2 217.0 

241.2 197.3 328.4 249.2 212.1 176.5 344.9 265.5 

339.7 278.2 446.9 340.8 341.6 280.2 472.6 361.7 

2, E rand(B) 2, E 2 rand(B) 

results measure the effort required to find a global minimizer. This is interesting because, 
in general, we expect the effort required to find a global minimizer to be much larger than 
the effort needed to find a local minimizer. A similar conclusion is reached when m = 64 
and z, E 2 rand(B), since in this case the multistart method only succeeds in one case. 
When m = 216, the effort (measured by the number of function and gradient evaluations) 
required to find a global minimizer is less than 30% more than the effort required to find a 
local minimizer. 
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