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PATTERN SEARCH METHODS FOR LINEARLY CONSTRAINED MINIMIZATION

ROBERT MICHAEL LEWIS * AND VIRGINIA TORCZON

Abstract. Wc extend pattern search methods to linearly constrained minimization. We develop a

general class of feasible point pattern scarch algorithms and provc global convergence to a Karush-Kuhn-

Tucker point. As in the case of unconstrained minimization, pattern search mcthods for lincarly constrained

problems accomplish this without explicit rccoursc to the gradicnt or the directional derivative. Key to the

analysis of the algorithms is the way in which the local search pattcrns conform to the geometry of the

boundary of the feasible region.
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Subject classification. Applied and Numerical Mathematics

1. Introduction. This paper continues the line of development in [5, 6, 11] and extends pattcrn search

algorithms to optimization problems with linear constraints:

minimize f (x )

(1.1) subjcctto g_Ax_u,

where f :/R" --_/R, x E/R n, A c QmX_, g, u E//_m, and g < u. We allow the possibility that some of the

variables arc unbounded cither above or below by pcrmitting gi, ui = :i:c_, i E {1,..., m}. We also admit

equality constraints by allowing gi - u_.

We can guarantee that if the objectivc f is continuously differentiablc, then a subsequcncc of the iterates

produced by a pattern scarch method for lincarly constrained minimization converges to a Karush-Kuhn-

Tucker point of problcm (1.1). As in the case of unconstrained minimization, pattern search methods for

linearly constraincd problems accomplish this without explicit recourse to the gradient or thc directional

derivative. Wc also do not attempt to estimate Lagrangc multiplicrs.

As with pattern search methods for bound constrained minimization [5], the pattern of points over which

we must search in thc worst case will, when wc are close to thc boundary, conform to the geometry of the

boundary. The general idca, which also applies to unconstrained minimization [6], is that the pattern must

contain search directions that comprise a set of generators for the cone of feasible directions. Wc must bca

bit more careful than this; wc must also take into account the constraints that are almost binding in order

to be able to take sui_icicntly long stcps. In the bound constrained casc this turns out to be simple to ensure

(though in §8.3 wc will sharpen the results in [5]). In the case of general linear constraints the situation is

more complicated.
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Practically, wc imagine pattern search mcthods being most applicable in the case where there arc rela-

tively few linear constraints besides simple bounds on the variables. This is true for the applications that

motivated our investigation. Our analysis does not assume non-degeneracy, but the class of algorithms we

propose will bc most practical when the problem is nondegcnerate.

2. Background. After we presented this work at the 16th International Symposium on Mathematical

Programming in Lausanne, Robert Mifflin brought to our attention the work of Jerrold May in [7], which

extended the derivative-free algorithm for unconstrained minimization in [8] to linearly constrained problems.

May proves both global convergence and superlinear local convergence for his method. To the best of

our knowledge, this is the only othcr provably convergent derivative-free method for linearly constrained

minimization.

Both May's approach and the methods described here use only values of the objective at feasible points

to conduct their searches. Moreover, the idea of using as search directions the generators of cones that

are polar to cones generated by the normals of faces near the current iterate appears already in [7]. As

our analysis will indicate, this is unavoidable if onc wishes to be assured of capturing any possible feasible

descent in f using only values of f at feasible points (as would be the case in a derivative-free feasible point

minimization method).

On the other hand, there are significant differences between May's work and the approach we discuss

here. May's algorithm is more obviously akin to a finite-difference quasi-Newton method. Most significantly,

May enforces a sufficient decrease condition; pattern search methods do not. Avoiding a sufficient decrease

condition is useful in certain situations where the objective is prone to numerical error. The absence of

a quantitative decrease condition also allows pattern search methods to be used in situations where only

comparison (ranking) of objective values is possible.

May also assumes that the binding constraints are never linearly dependent i.e., non-degeneracy. Our

analysis, which is based on the intrinsic geometry of the feasible region rather than its algebraic description,

handles degeneracy (though from a practical perspective, degeneracy can make the calculation of the pattern

expensive). On the other hand, we must place additional algebraic restrictions on the search directions since

pattern search methods require their iterates to lic on a rational lattice. To do so, we require that the

matrix of constraints A in (1.1) bc rational. This mild restriction is a price paid for not enforcing a sufficient

decrease condition.

May's algorithm also has a more elaborate way of sampling f than the general pattern search algorithm

we discuss here. This and the sufficient decrease condition he uses enables May to prove local superlincar

convergence, which is stronger than the purely global results we prove here.

Notation. We denote by R, Q, Z, and N the sets of real, rational, intcgcr, and natural numbers,

respectively. The ith standard basis vector will be denoted by e_. Unless otherwise noted, norms are

assumed to be the Euclidean norm. Wc will denote the gradient of the objective by g(x).

VV_ will use _ to denote the feasible region for problem (1.1):

_={xelR" I g<_Ax<_u}.

Given a convex cone K we denote its polar cone by K°; K ° is thc set of v 6 //_n such that (v,w) < 0

for all w 6 K, where (v, w) denotes the Euclidean inner product.

If Y is a matrix, y 6 Y means that the vector y is a column of Y.

3. Pattern Search Methods. We begin by defining the general pattern search method for the linearly

constrained problem (1.1).



3.1. The Pattern. Thepatternforlinearlyconstrainedminimizationisdefinedin awaythat isonly
slightlylessflexiblethanforpatternsin theunconstrainedcase.In [11],at eachitcrationthepatternPk is

specified as the product Pk = BCk of two components, a fixed basis matrix B and a generating matrix Ck

that can vary from iteration to iteration. This description of the pattern was introduced in the unconstrained

case in order to unify the features of such disparate algorithms as the method of Hooke and 3eevcs [4] and

multidirectional search (MDS) [10]. In the casc of bound constrained problems [5], we introduced restrictions

on the pattern itself rather than on B and Ck independently, but maintained the artifice of the independence

of the choice of the basis and generating matrices.

For linearly constrained problems, we will ignore the basis i.e., we will take B = I and work dircctly

in tcrms of the pattern Pk. We do this because, as with bound constrained problems, we need to place

restrictions on Pk itself and it is simplest just to ignore B.

A pattern Pk is a matrix Pk E Z nxpk . Wc will specify Pk in §3.5; for now we simply note that Pk > n + 1.

Therc is no upper bound on Pk. Wc partition the generating matrix into components

(3.1) Pk = [ Fk Lk ].

Wc require that Fk C Z nxrk belongs to a finite set of matrices F with certain geometrical properties described

in §3.5, and that Lk C Z _x (Pk--rk) contains at least one column, a column of zeroes. The inclusion of a column

of zeroes is simply a formalism to allow for a zero step, i.e., Xk+l = Xk. Again, we will fully specify rk in

§3.5, but for now we note that n + 1 < rk < Pk.

• i
Given A k E /_, Ak > 0, we define a trial step s*k to be any vector of thc form s'k = Akc_, where c k

denotes a column of Pk =- [c_.. • cpklkj. We call a trial step sik feasible if (xk 4- s_) E f_. At iteration k, a trial

point is any point of the form x_ -- xk 4- s_, where xk is the current iterate.

3.2. The Linearly Constrained Exploratory Moves. Pattern search methods proceed by conduct-

ing a series of exploratory moves about the current iterate Xk to choose a new iterate Xk.1 = Xk 4- sk, for

some feasible step sk dctermined during the course of the exploratory moves. The hypotheses on the result

of thc linearly constrained exploratory moves, given in Fig. 3.1, allow a broad choice of exploratory moves

while ensuring the properties required to prove convergence. In the analysis of pattern search methods, these

hypotheses assume the role played by sufficient decrease conditions in quasi-Newton methods. Note that the

1. sk e AkPk = Ak [Fk Lk].

2. (xk + sk) e f_.

3. If min { f(xk 4- y) ] y E /kkFk and (Xk + y) • a } < f(Xk),

then f(xk + sk) < f(xk).

FIG. 3.1. Hypotheses on the result of the linearly constrained exploratory moves.

only change from the unconstrained case is the requirement that the iterates must be feasible.

3.3. The Generalized Pattern Search Method. Fig. 3.2 states the general pattern search method

for minimization with linear constraints. To define a particular pattern search method, we must specify the

pattern Pk, the linearly constrained exploratory moves to bc used to produce a feasible step sk, and thc

algorithms for updating Pk and Ak.

3.4. The Updates. Fig. 3.3 specifies the rules for updating A k. The aim of the update of Ak is to force

decrease in f(x). An iteration with f(xk + sk) < f(xk) is successful; otherwise, the iteration is unsuccessful.



Let x0 c fl and A0 > 0 be given.

For k = 0,1,...,

a) Compute f(xk).

b) Determine a step Sk using a linearly constrained exploratory moves algorithm.

c) If f(xk + sk) < f(Xk), then xk+l = xk + sk. Otherwise xk+l = xk.

d) Update Pk and Ak.

FIG. 3.2. The general pattern search method for linearly cor_trained problems.

As is characteristic of pattern search methods, a step need only yield simple decrease, as opposed to sufficient

decrease, in order to be acceptable.

Let r c Q, T > 1, and {Wo,Wl,'",WL} C Z, w0 < 0, and wi > 0, i = 1,-..,L. Let 0 = T wo, and

,,Xk• A = {rw', ... , "rw" }.

a) If f(xk + sk) >_ f(xk), then Ak+l = OAk.

b) If f(xk + sk) < f(xk), then Ak+l = AkAk.

FIG. 3.3. Updating Ak.

Thc conditions on0 andA ensurcthat 0 < 0 < 1 and A, _> 1 for allA_ E A. Thus, if an iteration is

successful it may bc possible to incrcasc thc step length paramctcr Ak, but Ak is not allowed to decrease.

Thesc conditions arc identical to those for the unconstrained casc.

3.5. Geometrical restrictions on the pattern. In the case of linearly constrained minimization the

pattern Pk must reflect the geometry of the feasible region when the itcrates are ncar the boundary. Pattern

search methods do not approximatc thc gradient of the objective, but instead rely on a sufficient sampling of

f(x) to cnsure that feasible descent will not bc overlooked if the pattern is sufficiently small. We now discuss

the geometrical restrictions on the pattern that makc this possible in the prescncc of linear constraints.

3.5.1. The geometry of the nearby boundary. We begin with the relevant features of the boundary

of the fcasiblc rcgion near an itcratc. Let aT bc the ith row of the constraint matrix A in (1.1), and define

A,, = { x [ aT x=g,}

A_,={x I aYx=u,}"

These are the boundaries of the half-spaces whose intersection defines f_. Set

0flt,(e)= {x•f_ I dist(x,A&)__%c},

012m(¢ )={x•[2 I dist(z,A_,)_¢},

and

m

= U
i--1

Given x • _ and c > 0 we define the index sets

(3.2) Zt(x,H = { i

(3.3) Iu(x,e) ---- { i



For i E It(x, E) we define

(3.4) ut,(x,¢) = -a,

and for i E I_(x,¢) wc define

(3.5) t/u, (x, c) = a_.

These arc the outward pointing normals to the corresponding faces of ft.

Given x C 12 wc will define thc cone K(x,e) to bc the cone generated by the vectors v_,(x,6) for

i E I_(x,e) and _u,(x,e) for i C Iu(x,c). Recall that a convex conc K is called finitely generated if there

exists a finite set of vectors {vl,..., vr } (the generators of K) such that

K= v I v= )_vi, )_ > 0, i= 1,...,r .
i=1

Finally, let PK(_,c) and PKO(z,E) bc the projections (in the Euclidean norm) onto K(x,s) and K°(x,E),

respectively. By convention, if K(x,e) = 0, then K°(x,e) = 1R '_. Observe that K(x,O) is the cone of

normals to ft at x, while K °(x, 0) is the cone of tangents to ft at x.

The cone K(x, E), illustrated in Fig. 3.4, is the cone generated by the normals to the faces of the boundary

within distance e of x. Its polar K ° (x, 6) is important because if e > 0 is sufficiently small, wc can proceed

from x along all directions in K°(x, 6) for a distance 5 :> 0, depending only on 6, and still remain insidc the

feasible region. This is not the case for directions in the tangent conc of the feasible region at x, since the

lattcr cone does not reflect the proximity of the boundary for points close to, but not on, the boundary.

3.5.2. Specifying the pattern. We now state the geometrical restriction on the pattern Pk. Wc

require the core pattern Fk of Pk to include generators for all of the cones K°(xk, E), 0 < E < c*, for some

6" > 0 that is independent of k.

In §3.1 we required I_k to be one of a finite set of integral matrices F that is independent of k. Thus F

will contain generators for all of the cones g°(xk, _)_ 0 __ _ < c*. Note that as E varies from 0 to 6" there is

only a finite number of distinct cones g(xk, _) since there is only a finite number of faces of ft. This means

that the finitc cardinality of F is not an issue. There remains the question of constructing sets of generators

that are also integral; we address the issue of constructing suitablc patterns in §8. However, we will see that

the construction is computationally tractable, and in many cases is not particularly difficult.

If xk is "far" from the boundary in the sense that K(xk,s) = 0, then K°(xk, e) = /R n and a set of

generators for K°(xk, 6) is simply a positive basis for/R '_ [2, 6]. (A positive basis is a set of generators for

a cone in the case that the cone is a vector space.) Thus, if the iterate is suitably in the interior of f_, the

algorithm will look like a pattern search algorithm for unconstrained minimization [6], as it ought. On the

other hand, if Xk is near the boundary, K(xk, _) _ 0 and the pattern must conform to the geometry of the

boundary, as depicted in Fig. 3.4.

The design of the pattern reflects the fundamental challenge in the development of constrained pattern

search methods. We do not have an estimate of the gradient and consequently we have no idea which con-

straints locally limit feasiblc improvement in f(x). In a projected gradient method one has the gradient and

can detect the local interaction of the descent direction with the boundary by conducting a line-search along

the projected gradient path. In derivative-free methods such as pattern search we must have a sufficiently

rich set of directions in the pattern since any subset of the nearby faces may be the ones that limit the fea-

sibility of the steepest descent direction, which is itself unavailable for use in the detection of the important

nearby constraints.



K ° (xk, c)

FIG. 3.4. The situation near the boundary.

4. Convergence analysis. The following hypotheses underlie our analysis:

HYPOTHESIS 1. The constraint matrix A is rational.

The rationality of A is a simple way of cnsuring that we can find a rational lattice that fits inside the feasible

region in a suitable way.

HYPOTHESIS 2. The set Ln(x0) = { x C f_ [ f(x) <_ f(xo) } is compact.

HYPOTHESIS 3. The objective f(x) is continuously differentiable on an open neighborhood D of Ln(xo).

Let Pn be the projection onto f_. For feasible x, let

q(x) =p_(x - g(x)) - x.

Note that because the projection Pn is non-expansive, q(x) is continuous on _. The following proposition

summarizcs properties of q that wc will need, particularly the fact that x is a constrained stationary point

for (1.1) if and only if q(x) = O. The results are classical; see §2 of [3], for instance.

PROPOSITION 4.1. Let x C _. Then

II q(x)1[ < 1[g(x) H

and x is a stationary point for problem (1.1) if and only if q(x) = O.

We can now state the first convergence result for the general pattern search method for lincarly con-

strained minimization.

THEOREM 4.2. Assume Hypotheses 1 3 hold. Let {xk} be the sequence of iterates produced by the

generalized pattern search method for linearly constrained minimization (Fig. 3.2). Then

liminf IIq(xk) II = O.

We can strcngthen Theorem 4.2 in the same way that we do in the unconstrained and bound constrained

cases [5, 11], by adding the following hypotheses.

HYPOTHESIS 4. The columns of the generating matrix Ck remain bounded in norm, i.e., there exists
i

C > 0 such that for all k, C > IlCkll, for all i = 1,...,pk.

HYPOTHESIS 5. The original hypotheses on the result of the linearly constrained exploratory moves are

replaced with the stronger version given in Fig. 4.1.

HYPOTHESIS 6. We have limk--.+o¢ Ak = 0.



1. sac AaPa = Ak [Fk Lk].

2. (xk + sk) C ft.

3. Ifmin{f(xk+y) t YCAkFk and (xk+y) Eft}<f(xk),

thcnf(xk+sk) <_ min { f(xk + y) I Y E AkFk and(xk+y) Eft}.

FIG. 4.1. Strong hypotheses on the result of the linearly constrained exploratory moves.

Note that we do not require step lengths to bc monotone non-increasing.

Then we obtain the following stronger result.

THEOREM 4.3. Assume Hypotheses 1 6 hold. Then for the sequence of iterates {xk} produced by the

generalized pattern search method for linearly constrained minimization (Fig. 3.2),

lim IIq(xk)ll = O.

5, Results from the standard theory. We will nccd the following results from the analysis of pattern

search methods in the unconstrained case. For the proofs, see [11]; these results generalize to the linearly

constrained case without change. Theorem 5.1 is central to the convergence analysis for pattern search

methods; it allows us to prove convergence for these methods in the absence of any sufficient decrease

condition.

THEOREM 5.1. Any iterate XN produced by a generalized pattern search method for linearly constrained

problems (Fig. 3.2) can be expressed in the following form:

N-1

(5.1) = zo + -rv,') ZXoB
k=0

where

xo is the initial guess,

_/a =-- r, with a, t3 c N and relatively prime, and v is as defined in the rules for updating Ak

(Fig.3.3),
rLB and rub are integers depending on N,

Ao is the initial choice for the step length control parameter,

B is the basis matrix, and

• zkEZ'_,k=O,...,N-1.

Recall that in the case of linearly constrained minimization, B = I.

The quantity Ak regulates step length as indicated by the following.

LEMMA 5.2. (i) There exists a constant _, > O, independent of k, such that for any trial step s_ _ 0

produced by a generalized pattern search method for linearly constrained problems we have II sik tl >--(*Ak"
i(ii) If there exists a constant C > 0 such that for all k, C > Hck[I, for all i = 1, . . " ,pk, then there exists

a constant ¢, > O, independent of k, such that for any trial step s*k produced by a generalized pattern search

method for linearly constrained problems we have Ak >>_¢, IIs_ll.

6. Results concerning the geometry of polyhedra. We nccd a number of results concerning the

geometry of polyhedral and convex cones. Wc begin with a classical result on the structure of finitely

generated cones.



THEOREM 6.1. Let C be a finitely generated convex cone in 1R '_. Then C is the union o] finitely

many finitely generated convex cones each having a linearly independent set of generators chosen from the

generators of C.

Proof. See Theorem 4.17 in [12]. D

COROLLARY 6.2. Let C be a finitely generated convex cone in IR n with generators {vl,'" ,vT}. Then

there exists c6.2 > O, depending only on {vl,---,vr}, such that any z E C can be written in the form
v

z = E,:_ _,v, with _ >_0 and N_ II< _.2 Itz II.

Proof. Theorem 6.1 says that we can write z in the form z = y_rj'_l "_i, vi, whcrc rz <_ r, Aij >__0, and

the matrix V: = [vii "" • v,r. ] has full column rank. The full column rank of Vz means that the induccd linear

transformation is one-to-one, so if V + is the pseudoinverse of Vz, then (,/il, • "-, Ai_)T = V+z. If wc define

A via

hi= _ Aij ifi=ij,

{ 0 otherwise,

then A _> 0, z -- VA, and II a II -< I] Vz + [I II z II. Since the matrix Vz is drawn from a finite set of possibilities

(e.g., the set of all subsets of {Vl,.-., vr}), we can find the desired constant c6._, independent of z. 0

Let C be a closed convex cone in/i_ _ with vertex at the origin and let C ° be its polar. Given any vector

z, we will denote by zc and zoo the projections of z onto thc cones C and C °, respectively. The classical

polar decomposition of z [9, 13] allows us to express z as

Z = ZC + ZC o ,

where ( zc , Zoo) = O.

PROPOSITION 6.3. Suppose the cone C is generated by {Vl,... ,v_}. Given "_ > O, there exists c6.3 > O,

depending only on { vt , . . . , v_ } and _, such that if It zc [I >- "_ I[ z [I, z ¢ O, then

zTvi

max _> C6.3.

Proof. By Corollary 6.2, we have c_.2 > 0, depending only on {vl,.--, v_}, such that we can write zc as

zc = }--_=t ,kivi with II_ II-<c_.2tlzc IIand A_>0, Then

so for some i wc must have

Since II _ I[ <: c6.2 II zc II, we obtain

If we let

zTzc : _ )_izTvi_

i=1

1 T 1
)_izTt_i _ --Z Z c = -[I ZC I12.

r r

z%, >_1__1 IIz_ II-
r C6. 2

v" = max Irvi rl
l<:i<r



and apply the hypothesis [] zc I[ -> _' ]]z [], we obtain

zTvi > 1 1 1
_ _; _--_ v_ IIv, IIJlz II

and the desired result. []

COROLLARY 6.4. Given _ > O, there exists c6.4 > 0, depending only on A and _, for which the following

hold. For any x C f_ e > O,

1. If l[ Zg(x,c) 11_>_/II z II, z ¢ O, then

zTyi

max

l<i<r IIz IIIIvi [I
> 0--6.4.

where {vl,..., vr} are the generators of K(x, e) defined in (3.3) (3.5).

2. If II z/(o(=,c) el -> _ IIz II, z _ o, then

zTvi
max
_<,<, IIz IIIIv, II

C6,4.

where {vl,... ,vr} are the generators of K°(x,e) required in §3.5.2 to be in the set F.

Proof. The corollary follows from the observation that since K(x, e) is generated by subsets of the rows

of A, K(x,e) can bc one of only a finite number of possible cones. Consequently K°(x, e) will also be one

of only a finite number of possible cones. Applying Proposition 6.3 to each of these cones in turn (with the

generators (3.4) (3.5) for K(x, e) and the generators in r for K°(x, e)) and taking the minimum yields the

corollary.

Let

_* = max {11a, I]}
l<i<m

a. = min {11a_ II}.
l<i<rn

We may assume, without loss of generality, that a. > 0. The next proposition says that if x E f_ is close to

the boundary of f_ and a sufficiently long step in the direction w remains feasible, then w cannot be "too

normal" to 0f_ near x.

PROPOSITION 6.5. Given _ > 0 there exist R > 0 and c6.5 > O, depending only on A, such that if

0 < e < R, x • 0Ft(e), IIw li -> rl, and (x + w) • Q, then IIPtco(=,_)w el -> c6.5 IIw II-

Proof. A simple calculation shows that the distance from any point x to the affine subspace defined by

_Tz = b is [ b - aTx 1/II a, II. Thus, if the distance from x to arz = b is no more than e, then

(6.1) b-ellai el-< aTx<-b+ellai II.

Also note that the distance from the affine subspaec aTx = fi to aTx = ui is

Ui -- fi

IIa, II

Now let c6.4 > 0 be the constant from Corollary 6.4. Set

c6.4a,
R-

a* 2

and consider any e such that 0 < e < R.



By our convention, if K(x, e) = 0, then K°(x, e) = /R n and the proposition holds with c6.5 = 1 since

the projection onto K°(x, e) is the identity. Thus wc nccd only consider the case where K(x, ¢) _- 0. From

(6.1), if x c 0f_(e) then for i e Ie(x, ¢) U I,,(x, e) wc have either

or

This gives us two cases to consider:

e, < aTx < e, + _ IIa, n

1. Suppose gi _< aTx _< ei + e 11ai II, Since (x + w) • fl, we have

where w = WK + WKo is the polar decomposition of w, whence

0 < a]'x - ei + ariwK + a_WKo <_e]l a_ II+ ariwK + a" I1WKo IP"

Since in this case ul, (x, e) = -a, (see (3.4)), we have

(6.2) U_WK_<e IIa, II+ a* IIw_o II-- a*(_+ IIWKoII)'

2. If, on the other hand, ui - e 1[ai 11--%a_x <_u,, then, since (x + w) • _,

yields

o <_,,, - aT__ _TwK_ _TWKo<_eIIa, II -- '_T_K+ a* IIWKoIt"

In this case v_, (x, e) = a, (see (3.5)), so

(6.3) -TwK __%ell ai II+a* IIwKoI[--<a*(e+ IIW_oII).

Now consider the generators _e_, vu, for K(x, e). If we apply Corollary 6.4 to K(x, e) and z = wK (with

_f = 1), then for one of the generators, which we will simply call _, we have _,TwK _> c6.4 I1WK II [I V [1' From

(6.2) and (6.3) we obtain

c_.4II_'IIIIwK II--<_'TwK--<a*(e+ IIWKOII)

a*

-- (e4- IIwK0 II).
c6.46,

or

IIWKII

Since IIw II-<IIWKII4-IIwKo II,we have

a*

IIw II -<-- (e+ il _KOII)4-IIWKOIt
C6.4a.

By our choice of e and the hypothesis IIw [[ -> 7/, we obtain

°')Ilwll-<_+ l+c6_a. IIwKoll

(o)<llwll+ 1+ IIwK°lt
-- ---_-- _. '

10



and finally

( a')I[wll_<2 1+--}IWKo II ,
c6.4a,

giving us the desired bound. D

The next proposition relates the global geometry of f_ and the local geometry of fl near a feasible point

x. It is an elaboration of the observation that a convex set lies on one side of a hyperplane tangent to its

boundary. The result is also true without the restriction of x to a compact subset of _, but this assumption

shortens the proof.

PROPOSITION 6.6. Given _/ > O, 7? > O, and a compact set S q _, there exist R > 0 and c_.6 > 0 such

that for all x • S and all c, O < _ < R, if ll w lI _ "y and ll P_(x + w) - x l[ >- 77, then

II Pl>-cooII Ir.(x + w)- x) H,

Proof. Suppose the proposition is not true. Then, for all j, trying c_.6 = R = 1/j, we can find xj • S,

ej for which 0 < Ej < 1/j, and wj for which ]1 wj II <- _/ and II P,(xj + wj) - xj II >- _7, such that

1

For convenience, let zj = Pn(xj + wj) - xj; then II zj ]1 -< It wj II (see Proposition 4.1).

Applying the compactness of S and the boundedness of the sequences {wj }, {z i }, wc may find a sub-

sequence for which xj, ---+ x. • S, wjk -+ w., and zjk -+ z., where II w. II -< 7, ]] z. ]l -> 7?, and H z. II -< 7.

Note z. = P_(x. + w.) - x. by the continuity of thc projection P_.

Furthermore, since there are only a finite number of possible cones K(xj_, ¢)k), there exists a cone K.

such that K. = K(xjk,ejk) infinitely often. By selecting this further subsequence, we may assume that

K. : K(xjk , cjk) for all k.

Next we will show that K. C K(x.,O). By construction, K. is generatcd by a subset of {=]=ai}, i •

{1,...,m}. If -a_ • K. = K(xj_,cj,), then

for all k, so

dist(xjk, At,) <_ ¢Jk <- 1/jk

dist(x., At,) - } ti -- aTx. ]
IIa, I1

- II II I}a, II

= dist(xj_,Ae,)+ [aTxj_ --aTx* I

Taking the limit as k -+ oo we see that dist(x., At, ) = 0, so -ai • K(x., 0). A similar argument, substituting

u_ for g_, shows that if a_ • K., then a_ • K(x., 0). Since K(x., 0) contains the generators of K., it follows

that K, C K(x.,0), as desired.

Consequently, K. ° _D K ° (x., 0) and, since K: = K ° (xjk , cjk), wc havc

11



from which we conclude that

<- Itw. - wjk II+ PKo(xj_._j_)zj_ /jk

<- IIw. - wj_ II+ IIzj, II/jk

<- IIw. - wj_ II+ 7/Jk,

IIPKo¢x.,o>w.11=o.

This means that w. is normal to _ at x.. However, it would follow that z. = 0, a contradiction. F1

As we noted at the introduction of K°(x, c), we can proceed from x along all directions in K°(x, ¢) for

a distance 6 > 0, depending only on s, and still remain inside the feasiblc region. The following proposition

is the formal statement of this observation. Define

Ui -- _i

(6.4) h = min --.

This is the minimum distance between the faces of Ft associated with the constraints that are not equality

constraints.

PROPOSITION 6.7. Given _ > O, c < h/2, there exists _6.7 > 0 such that for any x E f_, if w E K°(x,v)

and [I w Jl <- 56.7, then (x + w) Efl.

Proof. Let

C

5 = 5_.7 = -
2

and consider any index i E {1,..., m}. We will show that x + w is feasible with respect to the ith constraint.

If x _ 0_e, (_) U OFt_,, (e), then gi + _ ]1ai [I < aTx < ui - e ]1ai ]1, so

and

aTx + ate, < u, - _ II a, II+ II _, II II w II <-'.', - (E- 5)II a, tl -<u_.

On the other hand, suppose x E Oft_,(e) U Of_,,(e). There are three cases to consider. First suppose

x E f_t. (e) and x E 0_, (e). Since E < hi2, this means that gi =- ui (i.e., the constraint is an equality

constraint). Then, if w E K°(x,c), wc have both (w , -ai) < 0 and (w, ai) < 0, so (w, ai) = 0. Thus

Next suppose x E 0£tg_ (¢) but x ¢ O_u, (e). If w E K°(x, e), we have (-ai, w) _<0. Applying (6.1) we obtain

gi <- a Tx + aTw <--gi + ¢II ai [I + II a, II II w II < .e,+ II ai II (e + (f) _< ui.

Finally, ifx E Oflu_(¢) but x ¢ 0_t,(¢), then, ifw E K°(x,c), (ai,w) _< 0, so

Thus (x + w) satisfies the constraints for all i E {1,.-. ,m}, so (x + w) E _. 13
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7. Proof of Theorems4.2and 4.3. GivenaniterateXk, let gk = g(xk) and qk = Pa(xk -- gk) -- Xk.

Let B(x, 6) bc the ball with center x and radius 5, and let w denote the following modulus of continuity of

g: given x e L_(xo) and E > 0,

_(x, _) = sup { a > 0 I B(x, 5) c D and I[9(Y)- g(=) II< _ for all y • B(x, 5) }.

Then wc have this elementary proposition concerning descent directions, whose proof we omit (scc [5]).

PROPOSITION 7.1. Let s • _n and x • Ln(xo). Assume that g(x) _ 0 and g(x)Ts < --e tl s I1" Then,

if 11s II < w(x, _),

E

f(x + s) - I(x) <_-_ II_ It.

The next result is the crux of the convergence analysis. All the results of §6 arc brought to bear to show

that if we are not at a constrained stationary point, then the pattern always contains a descent direction

along which we remain feasible for a sufficiently long distance.

Let F* bc the maximum norm of any column of the matrices in the set F, where r is as in §3.1 and §3.5.
i i

If A < a/F*, then I1 Sk II < _ for all s k • Pk.

PROPOSITION 7.2. Let _ > O. Then there exists c7.2 > 0 and 67._ > 0 such that if IIqk II >-- 71 and

Ak < 57.2 then there is a trial step s i defined by a column of AkI'k for which (Xk + s_) • f_ andk

" i-ffs > <2 ,i t,II II.

Proof By hypothesis, II gk II is bounded on La(x0); let 9" be an upper bound for I[ gk [l' Consider e > 0

sufficiently small that

1. e < rain(e*, h/2), where e* was introduced in §3.5.2 and h is given by (6.4), and

2. both Proposition 6.5 and Proposition 6.6 hold,

where we invoke Proposition 6.6 with _ = g* since we intend to apply it to w = -9k.

If xk • O_(e), then, since (xk + qk) • a and 1)qk I] ) 7], by Proposition 6.5 we have

(7.1) II PKo(_k,=)qk It -> c6.5 IIqk II.

This bound also holds if x _ 0_(_), since then K(x, _) = 0 and K°(x, E) =/R '_, and necessarily c6.5 < 1.

Meanwhile, Proposition 6.6 says that

so from (7.1) we obtain

(7.2)

(7.3) _.5_.6nIIgk II/g'.

We require the core pattern Fk of Pk to include generators for all of the cones K°(xk,e), e < E*.

Therefore some subset of the core pattern steps s_ forms a set of generators for K°(xk, E). The lower bound

(7.3) allows us to apply Corollary 6.4 with z = -gk and K°(xk,c). If we do so and apply (7.2), we see that

for some s_ • AkI'k,

i(-gk, s_) > c_.4II -9_ IIIIsk I]
i>_ IIPg°(=k,_)(-gk)II II II
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Thus wc are assured of a descent direction inside the pattern.

Now wc must show that we can take a sufficiently long step in the direction of this descent direction and

remain feasible. Proposition 6.7 allows us to do this; given _ > 0 wc can find 5 such that once A < 5/F*,

i K°(Xk,_) and 5, have (xk + s_) E _2.then,sine° c II II< we
We now show that if we arc not at a constraincd stationary point, wc can always find a step in the

pattern is both feasible and yields improvement in the objective.

PROPOSITION 7.3. Given any _l > O, there exists _ > O, independent of k, such that if Ak < _ and

]1qk t] > rl, the pattern search method for linearly constrained minimization will find an acceptable step sk;

i.e., f(xk + sk) < f(xk) and (zk + sk) C fL

If, in addition, the columns of the generating matrix remain bounded in norm and we enforce the strong

hypotheses on the results of the linearly constrained exploratory moves (Hypotheses _ and 5), then, given any

77> O, there exist 57. 3 > 0 and a > O, independent of k, such that/f Ak < 57.3 and IIqk [I > _1, then

f(xk+l) < f(xk) - a II qk IIII sk II.

Proof. Since g(x) is uniformly continuous on L_(xo) and L_(xo) is a compact subset of the open set D

on which f(x) is continuously differentiablc, there exists w. > 0 such that

for all k for which IIqk [I > _7. Also define

c7.2

= 57.3 = min (57.2, w./F*).

Now suppose II q_ It > r/and Ak < _. Since Ak < 57.2, Proposition 7.2 assures us of the existence of a

step s_ defined by a column of AkFk such that (xk + s_) C f/and

gTs_ < --C7.2 11qk 1[II 11

At the same time, wc also have

Hence, by Proposition 7.1

_ - -II IIII It.

Thus, when Ak < d, f(xk + s_) < f(xk) for at least one feasible s_ E AkFk. The hypotheses on linearly

constrained exploratory moves guarantee that if

min{f(xk+y) ] yEAkFk, (xk+y) cf_}<f(zk),

then f(xk + Sk) < f(xk) and (xk + sk) C fZ. This proves the first part of the proposition.

If, in addition, we enforce the strong hypotheses on the result of the linearly constrained exploratory

moves, then we actually have

f(xk+l)- f(xk) < c7,2 II qk II IIs_ II.
- 2
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Part (i) of Lemma 5.2 then ensures that

C7.2 _ __

f(Xk+l ) _ f(Xk ) -- --_'-_* /_k II qk 11"

Applying part (ii) of Lemma 5.2, we arrive at

C7.2 . --

Y(Zk+l) _< f(zk) -- --ff-¢.W. II qk II II Sk II "

This yields the second part of the proposition with a = (c7._/2)_.¢.. [q

COROLLARY 7.4. If hminfk_+_ IIqk I[ ¢ o, then there exists a constant A, > 0 such that for all k,

A k > A..

Proof. By hypothesis, there exists N and rl > 0 such that for all k > N, I1qk II > rl' By Proposition 7.3,

we can find _ such that ifk > N and Ak < _, then we will find an acceptable step. In vicw of the update of Ak

given in Fig. 3.3, we are assured that for all k > N, A k > 0& Wc may then take A. = rain{A0 ... , AN, 0J}.

U

The next theorem combines the strict algebraic structure of the iterates with the simple decrease condi-

tion of the gcneralizcd pattern search algorithm for linearly constrained problems, along with the rules for

updating Ak, to tell us the limiting behavior of Ak.

THEOREM 7.5. Under Hypotheses 1 3, liminfk_+_ Ak = 0.

Proof. The proof is like that of Theorem 3.3 in [11]. Suppose 0 < ALU < A k for all k. Using the rules

for updating Ak, found in Fig. 3.3, it is possible to write Ak as Ak = rTk A0, where rk E Z.

The hypothesis that ALB < A k for all k means that the sequence {_-T_} is bounded away from zero.

Meanwhile, we also know that the sequence {Ak} is bounded above because all the iterates xk must lie

inside the set Ln(xo) = { x e f_ I f(x) < f(xo) } and the latter set is compact; part (i) Lcmma 5.2 then

guarantees an upper bound AuB for {A k }. This, in turn, means that the sequence {_-_k} is bounded above.

Consequently, the sequence {7 TM} is a finite set. Equivalently, the sequence {rk} is bounded above and

below.

Next wc recall the exact identity of the quantities rLB and rub in Theorem 5.1; the details arc found in

the proof of Theorem 3.3 in [11]. In the context of Theorem 5.1,

If, in the matter at hand, we let

rLB= min.{rk} rub = max {rk}.
0<k<N O<k<N

max {r k ,(7.4) rLB-_ min {rk} rUB 0<k<+o¢ }
0<k<+_

then (5.1) holds for the bounds given in (7.4), and we see that for all k, Xk lies in the translated integer

lattice G generated by x0 and the columns of _L'a-rw AoI.

The intersection of the compact set L_(xo) with the lattice G is finite. Thus, there must exist at least

one point x. in the lattice for which xk = x, for infinitely many k.

We now appeal to the simple decrease condition in part (c) of Fig. 3.2, which guarantees that an iterate

cannot be revisited infinitely many times since we accept a new step sk if and only if f(xk) > f(xk + sk) and

(xk + sk) C 12. Thus there exists an N such that for all k > N, Xk = x., which implies f(xk) = f(xk + sk).

We now appeal to the algorithm for updating A k (part (a) in Fig. 3.3) to sec that A k --_ 0, thus leading

to a contradiction. D
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7.1. The Proof of Theorem 4.2. The proof is like that of Theorem 3.5 in [11]. Suppose that

liminfk_+_ II qk ]1 _ O. Then Corollary 7.4 tells us that there exists A, > 0 such that for all k, Ak > A..

But this contradicts Theorem 7.5.

7.2. The Proof of Theorem 4.3. The proof, also by contradiction, follows that of Theorem 3.7 in

[11]. Suppose limsupk_+ _ ][qk I[ _ 0. Let e > 0 bc such that there exists a subscquence [I q(xm,) f] > e.

Since

liminf I1qk II = O,
k_+c_

given any 0 < _ < e, there exists an associated subsequcncc l_ such that

II qk II > r/ for rni < k < li, II q(xt, ) II < 7.

Since Ak _ 0, wc can appeal to Proposition 7.3 to obtain for mi < k < li, i sufficiently large,

f(xk) - f(xk+l)

where a > 0. Summation then yields

f(xm,) - f(xl,) _>

-> _ltqkllltskll >-- o'lllsklt,

liEk=m, _ LIsk IL >- c' IIxm, - z, II.

Since f is bounded below, f(xm,) -f(xt,) ---*0 as i --* +oc, so IIXm, - x_, II _ 0 as i _ +_. Then, because

q is uniformly continuous, II q(xm,) - q(xz,) [I < r/, for i sufficiently large. However,

(7.5) IIq(xm,) II <-- IIq(xm,) - q(xt,) II+ IJq(x;,) II -< 2_.

Since (7.5) must hold for any r/, 0 < r/< e, we have a contradiction (e.g., try r/= _).

8. Constructing patterns for problems with linear constraints. In this section we outline prac-

tical implementations of pattern search methods for linearly constrained minimization. The details will bc

the subject of future work. In thc process we also show that under the assumption that A is rational, onc can

actually construct patterns with both the algebraic properties required in §3.1 and the geometric properties

required in §3.5.

8.1. Remarks on the general case. We begin by showing that in general it is possiblc to find rational

generators for the cones K°(x, e). By clearing denominators we then obtain the integral vectors for F as

required in §3.1. The construction is an elaboration of the proof that polyhedral cones arc finitely gcnerated

(sec [12], for instance). The proof outlines an algorithm for the construction of generators of cones. Given

a cone K wc will usc V to denote a matrix whose columns are generators of K:

K={_ I x=V_,_>o}.

PROPOSITION 8.1. Suppose K is a cone with rational generators V. Then there exists a set of rational

generators for K °.

Proof. Suppose w E K°; then (w, v) < 0 for all v C K. Let v = VA, A > 0. Then

(w , v) = (PAc(v'r)w + P._'(vT)±w, V) 0 < O,

where PN(vr) and P(Ar(vr))_ are the projections onto the nullspacc Af(V T) of V T and its orthogonal

complement .Af(vT) ±, respectively. Since JV'(vT) ± is the same as the range 7_(V) of V, wc have

(w, ,)= (p_(.)_, v_) < o.
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Let N and R be rational bases for Af(V T) and 7E(V) respectively; these can be constructed, for instance,

via reduction to row echelon form since V is rational.

Lct {Pl,'",Pt} be a rational positive basis for A/'(vT). Such a positive basis can be constructed as

follows. If N is n x r then if II is a rational positive basis (with t elements) for _ (e.g., Il = [I - I]), then

Nil is a rational positive basis for Af(vT).

Meanwhile, if R is a rational basis for T_(V), then for some z wc have

Pn(v)w = Rz,

whence

(w , v) = (Rz , VA) <_0.

Since ATVTRz < 0 for all A > 0, it follows that VTRz < O. Let e = (1,"., 1) T and consider

c = { z I Y <-o, e VTRz > -1 }

Since C is convex and compact, it is the convex hull of its cxtreme points {cl,..-, cs }. Fhrthermorc, note that

the extreme points of C will define a set of gencrators for the cone { z I VTRz -< 0 }. The extreme points

of C are also rational since vTR is rational; the extreme points will be solutions to systems of equations with

rational coefficients. These extreme points, which are the vertices of the polyhedron C, can bc computed by

any number of vertex enumeration techniques (e.g., see [1] and the rcfercnccs cited thcrcin).

Returning to w E K °, we see that we can express w as a positive linear combination of the vectors

{Pl, • • ", Pt, cl, • ' ", cs }. Moreover, by construction the latter vectors are rational. I:]

8.2. The nondegenerate case. As we have seen, the construction of sets of generators for cones

is non-trivial and is related to the enumeration of vertices of polyhedra. However, in the case of non-

degeneracy r the absence of any point on the boundary at which the set of binding constraints is linearly

dependent we can compute the required generators in a straightforward way. This case is handled in [7] by

using the QR factorization to derive the scarch directions. Because we require rational search directions, wc

use the LU factorization (reduction to row cchelon form, to be more precise) since the latter can bc done in

rational arithmetic.

The following proposition shows that oncc we have identified a cone K(xk, 5) with a linearly independent

set of generators, we can construct generators for all the cones K(xk, ¢), 0 < s < 5.

PROPOSITION 8.2. Suppose that for some 6, K(x, 5) has a linearly independent set of rational generators

V. Let N be a rational positive basis for the nullspace of V T.

Then for any _, 0 < _ < 5, a set of rational generators for K°(x, E) can be found among the columns of

N, v(vTv) -1, and--v(vTv) -1

Pro@ Supposew e K°; then (w,v) < 0 for ally EK. Let v= VA, A >0. Since V has full column

rank, wc have

(w,v) = ((I- v(vTv)-IvT)y3--_ v(vTv)-IvTw, V_) < 0

or (VTw, X) < 0 for all A > 0. Let _ = VTw; then we have (_,,k) < 0 for all X > 0, so _ < 0.

The matrix N is a positive basis for the range of I - v(vTv)-IV T, since the latter subspacc is the

samc as the nullspace of V T. Then any w E K ° can bc written in the form

w = Ni - V(VrV)-l_
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where _ > 0 and _ >_0. Thus the columns of N and --v(vTv) -1 are a set of generators for K °.

Moreover, for e < g we obtain/_ = K(x, c) by dropping generators from V. Without loss of generality

we will assume that we drop the first r columns of V, where V has p columns. Then consider w E /_°.

Procecding as before, we obtain (VTw, A) < 0 for all ,k > 0, Al,'",Ar = 0. If we oncc again define

= VTw, then we see that _r+l,"" ,_p _< 0, while _1,"" ,_r are unrestricted in sign. Hence we obtain a set

of generators for /_o from the columns of N, the first r columns of v(vTv) -1 and their negatives, and the

last p - r columns of --v(vTv) -1. [2

Proposition 8.2 leads to the following construction of patterns for linearly constrained minimization.

Under the assumption of non-dcgeneracy, we know there exists ¢* such that if 0 < ¢ < ¢*, then K(x,e)

has a linearly independent set of generators. If wc knew this _*, it would bca convenient choice for the _*

required in §3.5. The following algorithm implicitly estimates ¢*: it conducts what amounts to a safe-guarded

backtracking on e at each iteration to find a value of Ek for which K(xk, _k) has a linearly independent set

of generators.

Given ¢, indepcndent of k, choose ek _>¢,. Then

1. Define the cone K(xk, ¢k) as in §3.5.

2. Let V represent the matrix whose columns are the generators _'[(xk, Ek) and v_'(xk, ek) of K(xk, ¢_)

(defined in (3.4)- (3.5)). Determine whether or not V has full column rank. If so, go to Step 3.

Otherwise, reduce ek just until IIt(xk, ¢k)l + lIu(xk, e_)l is decreased. Return to Step 1.

3. Construct a rational positive basis N for the range of I-v(vTv) - 1V T. This can bc done via reduc-

tion to row echelon form, or simply by taking the columns of the matrices ± (I - v(vTv) -1 vT).

4. Form the matrix Fk = [N v(vTv) -1 - v(vTv)-I].

Under the assumption of non-dcgcncracy, ck will rcmain bounded away from 0 as a function of k, implicitly

giving us the E* introduced in §3.5.2.

8.3. The case of bound constraints. Matters simplify enormously in the case of bound constraints,

previously considcred in [5]. We will briefly discuss the specialization to bound constrained minimization

and in the process sharpen the results in [5].

In the case of bound constraints we have

(8.1) minimize f(x)
subject to l<x<u.

Again, we allow thc possibility that some of the variables are unbounded either above or bclow by permitting

tj,uj = ±c_, j c {1,...,n}.

In the case of bound constraints wc know a priori the possiblc generators of the cones K(x, E) and

K°(x,¢). For any x E fl and any _ > 0 the cone K(x,e) is generated by some subset of the coordinate

vectors =t=ei. If K(x,_) is generated by _i_,'",_'i_, where vii E {eij,-eij}, then K°(x,¢) is generated by

the set -Pi_, "• ", -Pi_ together with a positive basis for the orthogonal complement of the space spanned by

v_,. • •, _,i. This orthogonal complement simply corresponds to the remaining coordinate directions.

This simplicity allows us to prescribe in advance pattcrns that work for all K(x, E). In [5] we gave

the prescription Fk -=--[I- I]. This choice, independent of k, includes generators for all possible K°(x, _).

However, if not all the variables arc bounded, then one can make a choice of Fk that is independent of k

but more parsimonious in the number of directions. Let xi_, • • •, xi_ be the variables with either a lower or

uppcr bound; then Fk should include the coordinate vectors +ei_,.-., ±ei_ togcthcr with a positive basis for

the orthogonal complement of the linear span of ei_, • • •, ei_ ; a positive basis for the orthogonal complement

can have as few as (n - r) + 1 elements.
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The choice of Fk = [I - I] in [5] requires, in the worst case, 2n objective evaluations per iteration. The

more detailed analysis givcn here leads to a reduction in this cost if not all the variables arc bounded. If only

r < n variables arc bounded, then we can find an acceptable pattern containing as fcw as 2r + ((n - r) + 1) =

n + r + 1 points.

Finally, note that if gcneral linear constraints arc present but A has full row rank (i.e., there arc no more

than n constraints and they arc all linearly independent), then one can carry out a construction similar to

that for bound constraints.

9. Conclusions. We have introduced pattern search algorithms for solving problcms with general lin-

ear constraints. Wc have shown that under mild assumptions we can guarantee global convergence of pattern

search methods for linearly constrained problems to a Karush-Kuhn-Tucker point. As in the case of uncon-

strained minimization, pattern search methods for linearly constrained problems accomplish this without

explicit recourse to the gradient or the directional derivative. In addition, wc have outlined particular in-

stances of such algorithms and shown how the general approach can be greatly simplified when the only

constraints are bounds on the variables. The effectiveness of these techniques will bc the subject of future

work.
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