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Abstract. The convergence of direct search methods for unconstrained minimization is exam-
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1. Introduction. Recent survey papers, [1], [7], [10] report on significant re-
newed interest in algorithms for derivative-free unconstrained optimization. Much of
this recent interest has been provoked by new convergence results, (see, for example,
[1], [6], [8], [9]). Most of the current derivative-free algorithms for which convergence
results have been established belong to one or more of three categories: line search
methods, trust region methods or grid-based methods. In this paper, the convergence
of derivative-free methods for unconstrained minimization is examined in the case
where the underlying method can be interpreted as a grid or pattern search over suc-
cessively refined meshes. Therefore, the methods discussed here are similar to those
studied in [6], [8], [9], but permit greater freedom in the orientation and scaling of
successive grids. Alternative approaches based on trust-regions or line searches can
be found in [1], [7] and the references therein.

The properties of grid-based methods are explored and it is shown that conver-
gence can be achieved for a quite general class of algorithm. An important aspect
of the main convergence result is that successive grids may be arbitrarily translated,
rotated, and sheared relative to one another, and each grid axis may be re-scaled
independently of the others. This flexibility allows second-order information to be in-
corporated into the shape of successive grids, for example by aligning grid axes along
conjugate directions or the principal axes of an approximating quadratic. The hope
is to construct non-derivative algorithms that possess useful properties of conjugate
direction or quasi-Newton algorithms, thus exploiting curvature information without
assuming the existence of second derivatives or the availability of first derivatives.

We present two optimization frameworks for unconstrained optimization of con-
tinuously differentiable functions that are bounded below. For the first framework,
in which finite searches are conducted along grid directions of descent, we establish
convergence of a subsequence of iterates to a stationary point of the objective func-
tion. For the second framework, under the stronger assumption that the algorithm
searches the grid direction of locally greatest descent at every iterate, we show that
the entire sequence of iterates converges to a stationary point.

The restrictions on the grids in our framework are much less severe than for
the pattern search methods of [6, 9] where a single set of grid axes is used, only
rational scalings of grids are permitted, and arbitrary translations are not allowed.
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Furthermore, the methods of [6, 9] do not allow scalings and realignments to reflect
curvature information. A more complete discussion of differences from the pattern
search methods of [6, 9] appears in Section 3.

The non-derivative method of [4] for bound-constrained optimization includes
curvature information through interpolating quadratics, but uses only nested grids
that are aligned with one another.

The great flexibility of the algorithm framework means that there is much work
to be done in determining the best algorithms which conform to this framework.
Extensive results for a specific algorithm conforming to the framework have not been
presented in this paper; to do so would shift the focus of the paper away from the
framework and onto that specific algorithm.

In the next section some properties of positive bases relevant to grid-based meth-
ods are introduced and in Section 3 an algorithmic framework for grid-based methods
is described which allows considerable flexibility in the design of algorithms of this
type. The main convergence results are established in Section 4 with further com-
ments and discussion given in the final section.

2. Grid-based methods and positive bases. The algorithms under consid-
eration seek a minimizer of the objective function f : Rn → R by examining f on a
sequence of successively finer grids. Each grid G(m) is defined by a set of n linearly
independent basis vectors V(m), where

V(m) =
{
v
(m)
i ∈ Rn : i = 1, . . . , n

}
.

The points on the grid G(m) are

G(m) =

{
x ∈ Rn : x = x(m)

o + h(m)
n∑

i=1

ηiv
(m)
i

}
.

where h(m) is a positive scalar and each ηi is any integer. The parameter h(m) is
referred to as the mesh size, and is adjusted as m is increased in order to ensure that
the meshes become finer in a manner needed to establish convergence. The point x

(m)
o

allows the grids to be offset relative to one another. The basis vectors in V(m) are
parallel to the axes of the grid G(m).

The set V(m) is used to form a positive basis V(m)
+ . There are two requirements

for a set V+ to form a positive basis:
(i) every vector in Rn can be written as a nonnegative linear combination of the

vectors in V+;
(ii) no member of V+ is expressible as a nonnegative linear combination of the

remaining members of V+.
It is shown in [3] that the cardinality p of any positive basis for Rn satisfies n + 1 ≤
p ≤ 2n. For example, if {v1, v2, . . . , vn} is a basis for Rn, then

{v1, v2, . . . , vn,−
n∑

i=1

vi}(2.1)

is a positive basis with n + 1 elements. At the other extreme,

{v1, v2, . . . , vn,−v1,−v2, . . . ,−vn}(2.2)

is a positive basis with 2n elements.
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Let p(m) denote the cardinality of V(m)
+ . We assume throughout that the first n

members of V(m)
+ are those of V(m), and that the remaining elements are given by an

integer linear combination of the members of V(m):

v
(m)
j =

n∑
i=1

ζ
(m)
ij v

(m)
i , j = n + 1, . . . , p(m)(2.3)

where each ζ
(m)
ij must be an integer so that if x ∈ G(m) and v ∈ V(m)

+ , then x+h(m)v ∈
G(m). Equation (2.3) requires the members of V(m)

+ to assume a specific order, and
positive bases satisfying (2.3) will be called ordered positive bases.

Use of ordered positive bases permits the formation of termination conditions for
the search on each grid, via the following theorem.

Theorem 2.1. If the set of vectors V+ is a positive basis, then

gT v ≥ 0 ∀v ∈ V+ ⇒ g = 0.

Proof. Let the members of V+ be vi for i = 1, . . . , |V+|. Then, for any g ∈ Rn

−g =
|V+|∑
i=1

ηivi where ηi ≥ 0 ∀i

therefore, if vT
i g ≥ 0, for i = 1, . . . , |V+|

0 ≥ (−g)T
g =

|V+|∑
i=1

ηiv
T
i g ≥ 0.

The only possibility is g = 0.
This theorem motivates the following definition
Definition 2.2. Grid local minimizer. A point x on the grid G(m) is defined as

a grid local minimizer with respect to the positive basis V(m)
+ if and only if

f(x + h(m)vi) ≥ f(x), ∀vi ∈ V(m)
+ .

This definition is motivated by the fact that

vT∇f ≥ 0 ∀v ∈ V(m)
+ ⇒ ∇f = 0.

The conditions which define a grid local minimizer are a finite difference approxima-
tion to this.

In order to establish convergence, some restrictions must be imposed on the form
of the ordered positive bases used to define the grid local minimizers. The follow-
ing definition allows these restrictions to be simply expressed as linear relationships
between the members of each ordered positive basis.

Definition 2.3. Structural equivalence. Two ordered positive bases {v1, . . . , vp}
and {w1, . . . , wp} are regarded as structurally equivalent iff

∀j > n, vj =
n∑

i=1

ζijvi ⇐⇒ wj =
n∑

i=1

ζijwi.
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Structurally equivalent positive bases necessarily have the same cardinality. As a sim-
ple example, the following two ordered positive bases for R3 are structurally equiva-
lent.

{e1, e2, e3,−e1,−2(e2 + e3)}, {e3, e1, e2,−e3,−2(e1 + e2)},
where ei is the ith unit co-ordinate vector.

An appropriate framework for optimization algorithms using ordered positive
bases is described and analysed in the following two sections.

3. The Algorithm Framework. The basic structure of the framework (listed
immediately below) consists of two asynchronous loops. The outer loop (steps 1–3)
selects each grid and checks the stopping conditions. The inner loop (step 2) conducts
finite searches using each member of V(m)

+ in turn until p(m) consecutive searches fail
to make progress. When this occurs a grid local minimizer has been found; the inner
loop then terminates and the outer loop selects the new grid.

Algorithm Framework A

Initialize m = 1, k = 1, and let x
(1)
o be the initial point x(1).

while (stopping conditions do not hold) do
1. Choose h(m) and V(m)

+ . Set i = 1 and r = 0. Set p(m) =
∣∣∣V(m)

+

∣∣∣.
2. while r < p(m) do

(a) Calculate f at a finite number of points on the grid G(m), including
x(k) + h(m)v

(m)
i . If any points lower than x(k) are found, set x(k+1)

equal to the lowest of these points, increment k, and let r = 0.
Otherwise increment r.

(b) Set i = i + 1. If i > p(m), set i = 1.
end

3. Set x̂(m) = x(k). Execute any finite process, and let x
(m+1)
o be the lowest

known point. If this finite process yields descent set x(k+1) = x
(m+1)
o

and increment k. Increment m.
end

In this framework r is the number of consecutive failed finite searches using the
members of V(m)

+ . When r = p(m) a grid local minimizer x̂(m) has been found and
the algorithm terminates the search over the current grid G(m). The next grid G(m+1)

has its origin x
(m+1)
o positioned at the lowest known point. The algorithm generates

a new iterate x(k) only when a new lowest point (one with a strictly lower function
value) is found. In contrast, it generates a new grid local minimizer x̂(m) every time
step 2 is completed. The sequence {x(k)} may have finitely many members, whereas
the sequence {x̂(m)} will always have infinitely many members (ignoring stopping
conditions) and may contain repetitions of some members of {x(k)}. However, ev-
ery member of the sequence {x̂(m)} is also a member of the sequence of iterates
{x(k)}. If, for example, x(1) is a global minimizer of f , then the sequence of iterates
is the singleton set {x(1)}, whereas the sequence of grid local minimizers is the set
{x(1), x(1), x(1), . . .}.

The finite process in step 3 is arbitrary. Many possible choices exist, including
a null process, or a finite ray search along an estimate of the direction of steepest
descent or along a quasi-Newton direction. In proving convergence, finiteness is the
only requirement for this process.
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It is only necessary that the finite search in step 2(a) inspect one point, namely
x(k)+h(m)v

(m)
i . No other point on G(m) need be examined; however, it would normally

be desirable to do so. For example, a search along the ray x(k)+αh(m)v
(m)
i , α > 0 could

be implemented, and the lowest grid point in that search taken as x(k+1) provided
descent is obtained. The option of examining a finite number of other grid points
in step 2(a) admits the possibility of an arbitrarily long step to a grid point at each
iteration of the inner while loop. For example, this could be exploited by examining
the grid point closest to a quasi-Newton step, and accepting that grid point if it is
sufficiently low. The intent behind such an approach would be to reduce the number
of iterations of the while loop needed to locate a grid local minimum.

Framework A is not a special case of the analysis of pattern search methods in
[6, 9]. In their notation, at each iteration [6, 9] examine a pattern of points x(k) +
∆kBCk, where ∆k is a scale factor, B is a fixed matrix independent of the iteration
number k, and Ck is an integer matrix. Three points should be noted:

(i) Because B is independent of k, all grids are aligned with one another, and the
grid alignment must be chosen at the start of optimization, before information
from function evaluations is available;

(ii) All grid axes at iteration k are scaled by the same factor ∆k, and ∆k+1 must
be a rational multiple of ∆k;

(iii) The only way to scale directions is through the matrix Ck. But since the
elements of Ck are integers, either the number of directions and scalings is
small or else the grid may need to be much finer than the step sizes consid-
ered. Furthermore, pattern search methods cannot reach an arbitrary point
or produce an arbitrary direction in a finite number of steps. For example,
if the initial pattern is aligned with the x1 and x2 axes in two dimensions
and ∆0 = 1, a pattern search method will require a very large number of
iterations to reach a small neighborhood of the point (0,

√
2), and it cannot

produce a direction at 30◦ to the x1 axis. Thus pattern search methods do not
possess the property of finite termination on convex quadratics that is stan-
dard with conjugate direction methods. By contrast, algorithms conforming
to Framework A can possess this finite termination property; see [2] for such
a method.

The analogues of ∆k, B, and Ck in our framework are less restricted than in
pattern search methods. For example, h(k) can be irrational, unlike ∆k; the bases
V(m) can be chosen independently from time to time, whereas B is fixed; and the
ability to consider other grid points in step 2(a) of the framework offers the same
level of freedom given by the matrices Ck. The techniques of [6, 9] are more general
than Framework A in that they require Ck to contain only one of a finite number
of integer positive bases, whereas we use exclusively the positive ordered basis V(m)

+ .
Framework A could be modified to use ordered positive bases other than V(m)

+ to
explore the grid G(m), but the flexibility in step 2(a), the choice of successive grids,
and the arbitrary finite process in step 3 are likely to lessen the benefits of such an
approach.

For Framework A, convergence can only be shown for subsequences of grid local
minimizers. This is because the finite searches in step 2(a) are opportunistic; the first
member encountered in V(m)

+ which gives descent leads to a new iterate. Convergence
of the full sequence of iterates can be shown for a more restricted framework, Frame-
work B (defined below), in which a thorough search is made along the member s(k)
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of V(m)
+ giving the “best drop” at x(k). The “best drop” member s(k) of V(m)

+ satisfies

f
(
x(k) + h(m(k))s(k)

)
≤ f

(
x(k) + h(m(k))v

)
∀v ∈ V(m(k))

+(3.1)

where m(k) is the number of the grid on which x(k) is placed. This determination of
s(k) requires p(m(k)) function evaluations. The search along each s(k) must evaluate f
at a sequence of points

x̃i = x(k) + αih
(m(k))s(k), i = 0, . . . ,(3.2)

where α0 = 1 and the integer sequence {αi}, i ≥ 1, satisfies

αi−1 + 1 ≤ αi ≤ βαi−1 with β ≥ 2.

The search may terminate only when an integer ` ≥ 0 is found such that f(x̃`) ≤
f(x̃`+1).

Algorithm Framework B

Initialize m = 1, k = 1, and let x
(1)
o be the initial point x(1).

while (stopping conditions do not hold) do
1. Choose h(m) and V(m)

+ . Set i = 1 and r = 0. Set p(m) =
∣∣∣V(m)

+

∣∣∣.
2. while x(k) not a grid local minimizer do

(a) Calculate the “best drop” direction, s(k), satisfying (3.1). If f (k) ≤
f(x(k) +h(m)s(k)), then exit step 2 as x(k) is a grid local minimizer.

(b) Starting with α0 = 1, choose successive integer values α1, α2, . . .
until

f
(
x(k) + α`+1h

(m)s(k)
)
≥ f

(
x(k) + α`h

(m)s(k)
)

where α`+1 ∈ [α` + 1, βα`].
(c) Calculate f at a finite number of grid points, and choose x(k+1) to

be the lowest of these points and x(k) + α`h
(m)s(k). Increment k.

end
3. Set x̂(m) = x(k). Execute any finite process, and let x

(m+1)
o be the lowest

known point. If this finite process yields descent set x(k+1) = x
(m+1)
o

and increment k. Increment m.
end

Framework B is a specialization of Framework A.

4. Convergence analysis. The convergence results for the methods discussed
in this paper are similar to those in [9], but the method of analysis is sufficiently
flexible to allow a myriad of other possibilities that may be more appropriate in
other cases. The first theorem proves convergence of the subsequence of grid local
minimizers for algorithms conforming to Framework A. This theorem is also applicable
to Framework B because any algorithm conforming to Framework B also conforms to
Framework A.

For the purpose of establishing convergence, it is assumed in this section that the
stopping conditions are never invoked. This permits examination of the full sequence
of iterates and grid local minimizers and their asymptotic properties. From a practical
point of view stopping conditions are essential which is why they are incorporated in
the general frameworks.
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Theorem 4.1. For any optimization algorithm conforming to Framework A,
assume that

(a) the sequence of iterates {x(k)} is bounded;
(b) f is continuously differentiable;
(c) there exist positive constants K and κ such that | det(v(m)

1 . . . v
(m)
n )| ≥ κ and

‖v(m)
i ‖ ≤ K for all m and i;

(d) h(m) → 0 as m → ∞; and
(e) there is a finite subset of B such that each member of B is structurally equiv-

alent to some member of this finite subset, where B denotes the sequence of
ordered positive bases {V(m)

+ }∞m=1.
Then the sequence {x̂(m)} of grid local minimizers has infinitely many members, and
each cluster point x̂(∞) of {x̂(m)} is a stationary point of f .

Proof. The proof is in two parts. The first part shows that Step 2 terminates,
and consequently the sequence of grid local minimizers, {x̂(m)}, is infinite. The main
part of the theorem is then established.

Firstly, by condition (a) of the theorem, there is a compact set F for which
{x(k)} ⊂ F . Hence the set F ∩ G(m) is finite. The sequence of function values is
strictly decreasing so each iterate is distinct from all others, and so only a finite
number of iterates is generated using G(m). Hence the finiteness of step 2(a) means
the algorithm generates only a finite number of points using each grid. The only way
the algorithm can change from the grid G(m) is if the last iterate generated using the
grid G(m) is a grid local minimizer. Hence {x̂(m)} is infinite.

Next, choose a specific cluster point x̂(∞) of {x̂(m)} and choose some S ⊂ B
such that S is an infinite subsequence of structurally equivalent bases and the corre-
sponding subsequence of {x̂(m)} converges to x̂(∞). Condition (e) ensures that one
or more subsequences like S exist, and that all but a finite number of members of B
belong to a subsequence like S. Now replace the sequence of iterates {x(k)}, and all
other sequences by the infinite subsequences of themselves which correspond to the
subsequence S. It then follows that

f
(
x̂(m) + h(m)v

(m)
i

)
≥ f

(
x̂(m)

)
∀i ∈ 1, . . . , p(4.1)

where p = p(m) for all m such that V(m)
+ ∈ S. Now

f
(
x̂(m) + h(m)v

(m)
i

)
= f

(
x̂(m)

)
+

∫ h(m)

t=0

[
g

(
x̂(m) + tv

(m)
i

)
− ĝ(m) + ĝ(m)

]T

v
(m)
i dt

= f
(
x̂(m)

)
+ h(m)

(
ĝ(m)

)T

v
(m)
i + E

(m)
i

where g(x) ≡ ∇f(x), where ĝ(m) = g(x̂(m)), and where

E
(m)
i =

∫ h(m)

t=0

[
g

(
x̂(m) + tv

(m)
i

)
− ĝ(m)

]T

v
(m)
i dt .

The bound on ‖v(m)
i ‖ in (c) yields

∣∣∣E(m)
i

∣∣∣ ≤ ∫ h(m)

t=0

KM
(m)
i dt = h(m)KM

(m)
i
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where

M
(m)
i = max

{∥∥∥g
(
x̂(m) + tv

(m)
i

)
− ĝ(m)

∥∥∥ : t ∈
[
0, h(m)

]}
.

The continuity of g and the compactness of F imply that g is also uniformly continuous
on F . The bound on ‖v(m)

i ‖ in (c) then ensures that M
(m)
i → 0 as m → ∞ by

condition (d).
Now x̂(∞) is a cluster point of the sequence {x̂(m)} of grid local minimizers, and

‖v(m)
i ‖ ≤ K for all m and i = 1, . . . , n, so there is a subsequence {x(m)} of {x̂(m)},

and corresponding subsequences {v(m)
i } of {v(m)

i } for i = 1, . . . , n which have unique
limits x̂(∞) and v

(∞)
i for i = 1, . . . , n. The structural equivalence of all members of S

implies that

lim
m→∞ v

(m)
i = v

(∞)
i ∀i = 1, . . . , p.(4.2)

Condition (c) implies that v
(∞)
1 , . . . , v

(∞)
n are linearly independent and v

(∞)
1 , . . . , v

(∞)
p

are bounded in norm by K. Hence {v(∞)
1 , . . . , v

(∞)
p } is an ordered positive basis which

is structurally equivalent to all members of S.
Now (4.1) implies

h
(m)

(
g(m)

)T

v
(m)
i + h

(m)
KM

(m)

i ≥ 0 ∀i = 1, . . . , p.

In the limit as m → ∞, condition (d) implies(
ĝ(∞)

)T

v
(∞)
i ≥ 0 ∀i = 1, . . . , p

and so ĝ(∞) = ∇f(x̂(∞)) = 0 by Theorem 2.1. The choices of S and of the cluster
point of the sequence of grid local minimizers were arbitrary, so every cluster point of
the sequence of grid local minimizers is a stationary point of the objective function.

Theorem 4.1 makes very few assumptions about how the sequence of grid local
minimizers is generated; all that is required is that this sequence be bounded and
have infinitely many members. Assumption (a) on the full sequence of iterates is only
needed to establish these two properties. This assumption is automatically satisfied if,
for example, the level set {x : f(x) ≤ f(x(1))} is bounded, an assumption frequently
made in convergence analyses, however, it may also be valid under much less restrictive
conditions. Assumption (c) is easily satisfied by choosing each V(m)

+ appropriately.
A very simple way to satisfy (d) is to halve h every time a grid local minimizer is
found. An example of a more complex scheme is given in [2]. Assumption (e) is
one of practicality and is easily enforced. We expect that most useful algorithms will
use only one or two types of structurally equivalent bases (corresponding to ordered
positive bases such as (2.1) or (2.2)); the proof is valid, however, for any finite number.
Theorem 4.1 is, therefore, applicable to a wide range of algorithms.

If stopping conditions are never invoked and the sequence of iterates x(k) has
finitely many members then its last member is necessarily a stationary point of f . In
the more usual case, when an infinite sequence of iterates is generated, we now show
convergence of the full sequence of iterates under the stricter Framework B.

Theorem 4.2. If the conditions of Theorem 4.1 hold then algorithms conform-
ing to Framework B generate sequences of iterates which converge to one or more
stationary points of f .
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Proof. The proof is by contradiction. Let x(∞) be a cluster point of the sequence
{x(k)} for which g∞ = ∇f(x(∞)) is non-zero. Following the proof of Theorem 4.1,
replace {x(k)} by a subsequence of itself with x(∞) as its unique limit, for which the
corresponding subsequence of ‘best drop’ directions {s(k)} (defined by (3.1)) has a
unique limit s(∞), and for which all ordered positive bases are structurally equivalent
and have a unique limit V(∞)

+ . The structural equivalence of these ordered positive
bases, condition (c) of Theorem 4.1, and (4.2) show that V(∞)

+ is also an ordered
positive basis.

First it is shown that gT∞s(∞) < 0. Now

∀k, ∀vi ∈ V(m(k))
+ , f

(
x(k) + h(m(k))vi

)
− f (k) ≥ f

(
x(k) + h(m(k))s(k)

)
− f (k)

where m(k) is the number of the grid on which x(k) is placed. Taylor’s series expan-
sions on both sides yields

vT
i g(k) + Lk ≥

(
g(k)

)T

s(k) − Lk ∀vi ∈ V(m(k))
+

where Lk is defined as

Lk = K max
{
‖g(x) − g(k)‖ : x ∈ F and ‖x − x(k)‖ ≤ Kh(m(k))

}
.

In the limit as k → ∞, Lk → 0 by the uniform continuity of g on F . Hence

gT
∞v

(∞)
i ≥ gT

∞s(∞) ∀i = 1, . . . , p.(4.3)

However, g∞ 6= 0 so there exists a v ∈ V(∞)
+ such that gT∞v < 0. Clearly gT∞s(∞) < 0

by inequality (4.3).
Next, define the closed ball Bε about x(∞) via

Bε =
{

x : ‖x − x(∞)‖ ≤ ε
}

and similarly for Bδ, where δ < ε. The continuity of g(x) and the convergence of s(k)

to s(∞) imply

∃N > 0, ∃ε > 0, such that ∀k > N, ∀x ∈ Bε,

gT (x)s(k) ≤ 1
2
gT
∞s(∞) < 0 and ‖s(k)‖ ≤ 2‖s(∞)‖.(4.4)

Now choose a specific k > N such that x(k) ∈ Bδ. The C1 continuity of f implies

f (k) ≤ f (∞) + Mδ(4.5)

where M is an upper bound for ‖g(x)‖ over Bε. The first inequality in (4.4) implies
that f is strictly descending along the line segment

x(k) + αh(m(k))s(k) for 0 ≤ α ≤ (ε − δ)
h(m(k))

∥∥s(k)
∥∥ .
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The restrictions on successive α values in the ray searches mean that the final α value
for the ray x(k) + αh(m(k))s(k), α > 0, is at least (ε − δ)/(βh(m(k))‖s(k)‖). Hence

f (k+1) = f (k) +
∫ α

t=0

h(m(k))
(
s(k)

)T

g
(
x(k) + th(m(k))s(k)

)
dt

≤ f (k) +
αh(m(k))

2
gT
∞s(∞)

≤ f (k) − ε − δ

2β
∥∥s(k)

∥∥
∣∣∣gT

∞s(∞)
∣∣∣ .

Then the last inequality in (4.4), and (4.5) imply

f (k+1) ≤ f (∞) + Mδ − ε − δ

4β
∥∥s(∞)

∥∥
∣∣∣gT

∞s(∞)
∣∣∣ .

As k → ∞, δ can be made arbitrarily small, implying that f (k) < f (∞) for k large.
The continuity of f and the monotonicity of {f (k)} imply that x(∞) cannot be a
cluster point of the sequence of iterates.

An example of an existing method which conforms to Framework A is that of
Hooke and Jeeves [5]. Their method does not explicitly impose an upper bound on
the step length, which appears to be at odds with Theorem 4.1. The applicability
of Theorem 4.1 follows on noting that if condition (a) of the theorem holds (the
sequence of iterates is bounded) then the maximum step length must also be bounded.
Satisfaction of condition (a) of Theorem 4.1 is ensured if at least one iterate lies
within a bounded level set. Although the method of Hooke and Jeeves conforms to
Framework A, it makes little use of the flexibility afforded by that framework. An
algorithm that exploits the flexibility allowed by Framework A is presented in [2],
where numerical results are given for standard test functions; the authors expect
further improvements to follow with more research into algorithms conforming to this
framework.

5. Summary. We have presented two general algorithmic frameworks for uncon-
strained optimization methods based only on function values, and have shown that,
under mild conditions, such algorithms generate sequences of grid local minimizers
that are guaranteed to converge to stationary points. There is much scope for improv-
ing efficiency within Framework A through the choice of the ordered positive basis
V(m)

+ and the finite process in step 3, which could, for example, allow a quasi-Newton
step or a step to the minimizer of an interpolating quadratic. An efficient algorithm
that uses this flexibility to align grid axes along conjugate directions is described in [2].

The authors believe that Theorem 4.1 is applicable to many effective grid search
methods, and much work remains to be done in examining the properties of these
algorithms.

Acknowledgements: The authors would like to acknowledge the contribution
of John Dennis for providing the initial stimulus for this work, Margaret Wright for
her many helpful comments and suggestions, and two anonymous referees.



GRID-BASED OPTIMIZATION METHODS 11

REFERENCES

[1] A. Conn, K. Scheinberg, and P. L. Toint, On the convergence of derivative-free methods for
unconstrained optimization, in Approximation theory and optimization, M. D. Buhmann
and A. Iserles, eds., Cambridge, 1997, Cambridge University Press, pp. 83–108.

[2] I. D. Coope and C. J. Price, A direct search conjugate directions algorithm for unconstrained
minimization, research report no. 188 (Nov. 1999), Department of Mathematics, Canterbury
University, Christchurch, New Zealand.

[3] C. Davis, Theory of positive linear dependence, American Journal of Mathematics, (1954),
pp. 733–746.

[4] C. Elster and A. Neumaier, A grid algorithm for bound-constrained optimization of noisy
functions, IMA Journal of Numerical Analysis, 15 (1995), pp. 585–608.

[5] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems,
Journal of the Association for Computing Machinery (ACM), 8 (1961), pp. 212–219.

[6] R. M. Lewis and V. Torczon, Rank ordering and positive bases in pattern search algorithms,
Tech. Rep. 96-71, Institute for Computer Applications in Science and Engineering, Mail Stop
132C, NASA Langley Research Center, Hampton, Virginia 23681-2199, 1996. In revision for
Mathematical Programming.

[7] M. J. D. Powell, Direct search algorithms for optimization calculations, Acta Numerica, 7
(1998), pp. 287–336.

[8] V. Torczon, On the convergence of the multidirectional search algorithm, SIAM Journal on
Optimization, 1 (1991), pp. 123–145.

[9] , On the convergence of pattern search algorithms, SIAM Journal on Optimization, 7
(1997), pp. 1–25.

[10] M. H. Wright, Direct search methods: once scorned now respectable, in Proceedings of the
1995 Dundee Biennial Conference in Numerical Analysis, Addison-Wesley, Reading, MA
and Longman, Harlow, UK, 1996.


