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Abstract. We consider theoretical and computational issues associated with an aggregation-
based domain decomposition preconditioner applied to a Bi-CGSTAB iterative solver used to solve
both Laplace’s equation and an important nonlinear model from hydrology used to simulate un-
saturated flow, Richards’ equation. Theoretical results for Laplace’s equation provide estimates of
the condition number and the rate of convergence for a two-level Schwarz domain decomposition
preconditioner. Computational results for Laplace’s equation and Richards’ equation show excel-
lent scalability, although no theory is yet available to support the results for the difficult nonlinear
problem.
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1. Introduction. In this paper we report on a scalability study and derive condi-
tion number estimates for a two-level additive Schwarz preconditioner. In our previous
work we have applied this preconditioner to a set of problems in hydrology [8, 9, 7].
We build the coarse mesh problem with aggregation, an approach used in both alge-
braic multigrid [2, 21] and domain decomposition methods [11, 12, 13, 3]. In the case
of minimal overlap, we implement this as a simple unweighted sum of nodal values.
This implementation permits a simple construction of a two-level preconditioner on
unstructured grids.

Our methods were developed for use in the adaptive hydrology model (ADH)
[18], a production code being developed at the U.S. Army Engineer Research and
Development Center. The use of aggregation arose from necessity. In the applications
reported in [8, 9, 7] the subdomains were irregular, and a coarse mesh based on “hat
functions” over the subdomains was impractical. For the same reason, we needed
minimal overlap between subdomains. Unlike the method from [5], we do not need to
create a coarse mesh geometry or use geometric information about the subdomains.
Neither theoretical analysis of this algorithm applied to any problem nor in-depth
scalability studies have been performed to date to our knowledge.

The overall goal of this work is to advance our understanding of this aggregation-
based domain decomposition method. The specific objectives are (1) to develop esti-
mates of the condition number as a function of coarse and fine grid size for Laplace’s
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equation; (2) to evaluate computationally the scalability of this algorithm for Laplace’s
equation and to compare to theoretical estimates; and (3) to apply this algorithm to
a difficult and important problem in hydrology, the flow of water in the unsaturated
zone modeled by Richards’ equation [16]. The first two objectives will advance and
test the current theory of this algorithm for a simple equation, while the latter objec-
tive will provide some evidence of the applicability of this algorithm to a challenging
class of applications for which improved solution algorithms are badly needed. We
consider the theoretical analysis of this algorithm applied to Richards’ equation and
other nonlinear models as open issues and beyond the scope of this effort.

The use of smoothed aggregation elements in an additive Schwarz scheme was
originally proposed in [2, 3]. In these papers this idea was tested on a variety of
elliptic problems with complicated geometries. Construction of coarse mesh problems
by aggregation was critical to the results reported in [8, 9, 7], where computations
were done on unstructured grids in three space dimensions. Our coarse mesh basis
functions are nonsmoothed, which means that the square of theH1 bound on the basis

functions is O(H
d−1

δ ) instead of O(Hd−1). Note that we do, for generality, include
the possibility of overlap δ > h. The method in [2, 3], however, assumes a physical
overlap of O(h) and obtains the benefits of overlap (i.e., bounds on the condition
number independent of H and h) by smoothing the basis functions. These differences
lead to a change in the energy of the coarse mesh operator so that |Qu|2H1 ≤ CH

δ |u|2H1 .
Thus instead of having a condition number bound by a constant we get a condition

bound that is O(H
2

δ2 ).
In our previous work [8, 9, 7], we used nonsmoothed aggregation elements with

minimal overlap and exact subdomain solves. Similarly, in section 3 the overlap is h,
where h is the fine mesh length scale, and we solve the subdomain problems exactly
with sparse Gaussian elimination. The convergence results in section 2 allow for more
flexibility in overlap and subdomain solvers.

The analysis in section 2 uses the standard finite element framework from [17, 23].
The preconditioner also works well in the context of finite differences, however, as the
example in section 3.2 illustrates.

Richards’ equation [16] is a model of flow through unsaturated porous media. In
this paper we consider the head-based form of the equation and for a homogeneous
media in two space dimensions,[

∂θ

∂ψ
+
Ss
θs
θ

]
∂ψ

∂t
= ∇ · [Kskr∇ (ψ + z)] ,(1.1)

where ψ is the pressure head, θ is the volume fraction of the wetting phase, and kr
is the relative permeability of the wetting phase. The remaining terms are scalar
coefficients given in Table 1.1, along with their values for the test problem. θ and kr
are functions of ψ given by

θ = (θs − θr)(1 + |αψ̂|n)−m + θr,(1.2)

kr = (1 + |αψ̂|n)−m/2[1− |αψ̂|n−1(1 + |αψ̂|n)−m]2, and(1.3)

ψ̂ = min(ψ, 0),(1.4)

where m = 1 − 1/n. These functions are derived from the van Genuchten [20] and
Mualem [14] empirical relations among pressure, saturation, and relative permeability.
We discretize (1.1) in space with finite differences and integrate the resulting system
of differential algebraic equations in time with the fixed leading coefficient backward
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Table 1.1
Richards’ equation parameters.

Description Symbol Value
Saturated volume fraction θs 3.01× 10−1

Residual volume fraction θr 9.30× 10−2

Specific storage Ss 1.00× 10−6 (1/m)
Hydraulic conductivity Ks 5.04× 100 (m/day)
Mean pore size α 5.47× 100 (1/m)
Pore size uniformity n 4.26× 100

difference formulas of orders one to five [4, 10]. Within the implicit temporal inte-
gration is a Newton iteration, and we solve the nonsymmetric linear equation for the
Newton step with a preconditioned Bi-CGSTAB [19] linear iteration.

2. Theory for an elliptic model problem. The convergence theory in this
paper is for the weak form of an elliptic boundary value problem with Dirichlet bound-
ary conditions on a domain Ω ⊂ Rd with boundary Γ, with spatial dimension d. We
will restrict our attention to piecewise linear nodal finite element spaces.

The goal is to find u ∈ V such that

a(u, v) = l(v) for all v ∈ V ,(2.1)

where a is a strongly elliptic bilinear form on V , l is a linear functional on V , and V
is an appropriate function space.

We let V h ⊂ V be the appropriate space of piecewise linear functions. The
approximating problem at level h is to find uh ∈ V h such that

a(uh, v) = l(v) for all v ∈ V h.(2.2)

The problem (2.2) is equivalent to a linear system

Auh = f(2.3)

on V h, where a(u, v) = (Au, v) for all u, v ∈ V h. Here (·, ·) is the l2 inner product.
Schwarz preconditioners are designed to accelerate Krylov space iterative methods

for the solution of (2.3).

2.1. One-level method. We begin with the one-level additive Schwarz pre-
conditioner. We divide Ω into subdomains {Ωj}Jj=1 with an overlap width of δ and

assume that
⋃J

j=1 Ωj = Ω.

Let Rj be the restriction map from an element of V h to the subspace Vj of
functions in V h with support on Ωj . Let

Aj = RjAR
T
j

be the subdomain operator. We assume that Aj is nonsingular on Vj and define

Bj = R
T
j Ã

−1
j Rj ,

where Ãj is an approximation of Aj . The one-level additive Schwarz preconditioner
is

M =
J∑

j=1

Bj .(2.4)
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2.2. Two-level method. The two-level additive Schwarz method adds a coarse
mesh term

B0 = RT
0 Ã

−1
0 R0

to the one-level preconditioner. Here Ã0 is an approximation of A0. We let V H

denote the space of coarse mesh basis functions. If the coarse mesh restriction map
R0 and the coarse mesh operator A0 are well designed, the condition number of MA
is significantly reduced.

One way to define a coarse mesh problem is to discretize the continuous problem
on a coarser mesh. There are a few difficulties associated with forming the coarse
problem this way. First, for unstructured meshes, such as the ones considered in
[7, 9, 8], the interpolation operators between the fine mesh and the coarse mesh are
difficult to define. Second, a coarse mesh must be generated, stored, and parallelized.
Finally, the PDE must be discretized and recomputed on the coarse mesh.

Alternatively, the discretization of the coarse mesh operator may be defined in
terms of the existing fine mesh discretization. A Galerkin or variational coarse grid
correction uses the fine grid matrix to obtain the coarse grid operator as A0 = R0AR

T
0 ,

where RT
0 is the interpolation operator from the coarse mesh function space, and R0

is the restriction operator. If the coarse mesh basis functions are obtained from the
fine mesh basis functions, then the coarse mesh space V H is contained in the fine grid
space V h.

In this section we use the aggregation-based basis from [2, 3, 7, 8, 9], where one
coarse mesh basis function is defined for each subdomain as the sum of the fine mesh
basis functions for that subdomain.

To set the notation that we will need in section 2.4, let the expansion of a function
u ∈ V h in the finite element basis be

u =
∑
l

ulψl,(2.5)

where the ψl’s are the nodal basis functions for the fine mesh. A function uC ∈ V H

can be represented on the coarse mesh space as

uC =
∑
K

uCK
ΨK ,(2.6)

where the ΨK ’s are the basis functions for the coarse mesh space. Since V H ⊂ V h,
ΨK can be written as

ΨK =
∑
l

RKlψl.(2.7)

The index K represents the subdomain number. The value of RKl ≥ 0 is constrained
by the conditions that ∇ΨK = O(δ) and the requirement of the theory that the coarse
mesh basis functions provide a partition of unity, i.e.,∑

K

ΨK = 1.

In the case of minimal overlap, where δ = O(h), RKl = 1 if the support of the fine
mesh basis function ψl is contained in subdomain K; otherwise, RKl = 0.
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Further expanding the representation of uC gives

uC =
∑
K

uCK
ΨK ,

=
∑
K

uCK

∑
j

RKlψl,

=
∑
l

(∑
K

uCK
RKl

)
ψl,

=
∑
l

(
RTuC

)
l
ψl.

ThusRT is the operator which interpolates from the coarse mesh to the fine mesh. Any
function on the coarse mesh can be represented solely in terms of the already existing
fine mesh functions, making the formulation of a separate coarse mesh unnecessary.

2.3. Condition number estimate. In Assumption 2.1 we make precise the
idea that H is the characteristic diameter of a subdomain. In Assumption 2.2 we
make precise the overlap δ between the subdomains and the properties of the coarse
mesh basis functions. These assumptions are based on assumptions given in [2, 3],
but ours differ in the fact that an overlap parameter of δ is considered and the square

of the energy of our coarse mesh basis function is bound by Hd−1

δ instead of Hd−2,
where d is the dimension of the problem.

Assumption 2.1.

1. There is C > 0 such that diam(Ωj) ≤ CH for all j = 1, . . . , J .
2. There is c > 0 such that for all x ∈ Ω there exists j ≥ 1 such that x ∈ Ωj and

dist (x, ∂Ωj\∂Ω) ≥ cδ.

3. There are CR, C1, C2 > 0 such that for all x ∈ Ω the ball

B (x,CRH) = {y ∈ Ω : dist (y, x) ≤ CRH}

intersects at most C1 +C
d
2 subdomains Ωj (i.e., an object of diameter O (H)

intersects at most O(1) subdomains Ωi).
4. µ (Ωj) ≥ CHd, j = 1, . . . , J.

In Assumption 2.1, µ denotes the Lebesgue measure.

Assumption 2.2. Assume the basis functions Ψi of the coarse space satisfy the
following.

1. |Ψi|2H1(Ω) ≤ CHd−1

δ ,

‖Ψi‖2
L2 ≤ CHd.

2. There is a domain Ωint ⊂ Ω such that
∑

i Ψi (x) = 1 for every x ∈ Ωint and
dist(x, ∂Ω) ≤ Cδ for every x ∈ Ω\Ωint.

3. supp (Ψi) ⊂ Ω̄i.

In section 2.4 we prove the following theorem.

Theorem 2.1. Let V h =
∑J

j=0 Vj ⊂ C(Ω̄), and let Assumptions 2.1 and 2.2
hold. Assume that there is ω ≥ 1 such that

(v, v) ≤ (Ã−1
j Ajv, v) ≤ ω(v, v)
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for all v ∈ V h and 0 ≤ j ≤ J . Let

M =
J∑

j=0

Bj ;(2.8)

then there is C > 0, independent of H and h such that

κ(MA) ≤ Cω(1 + (H/δ)2).(2.9)

2.4. Convergence theory. The bound on the condition number for the system
preconditioned using two-level additive Schwarz methods is given in [23, 22]. We use
this theory to calculate our bound.

Theorem 2.2. Let K0 be a positive constant so that, for any v ∈ V h, there exists
a decomposition v =

∑J
i=0 vi such that vi ∈ Vi and

J∑
i=0

(Aivi, vi) ≤ K0 (Av, v) .(2.10)

Let

K1 = max
1≤j≤J

J∑
i=1

εij ,(2.11)

where, for 1 ≤ i, j ≤ J , εij = 0 if Vi⊥Vj; εij = 1 otherwise. Then

κ (MA) ≤ ωK0 (1 +K1) ,(2.12)

where

ω = max
0≤j≤J

λmax

(
Ã−1

j Aj

)
.

We assume that the energy norm is equivalent to the H1 seminorm, and we can
therefore replace (2.10) by

J∑
i=0

|ui|2H1(Ω) ≤ K0|u|2H1(Ω).(2.13)

Our estimate for K0 will be based on (2.13).
The value of K1 is an indicator of the number of subdomains which contain any

given point in Ω; we assume our partition is such that K1 = O(1). We solve the
subdomain problems exactly in our numerical results, so Ãj = Aj for all j and ω = 1
in section 3. Thus our condition number estimate is based on the estimate of K0,
which we obtain using Lemmas 2.3 and 2.4.

We define the coarse mesh projection Q : V h → V H by

Qu =
J∑

i=1

αiΨi, αi = αi (u) =
1

µ (Ωi)

∫
Ωi

u (x) dx,

where u ∈ V h.
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The value of K0 depends on the bound of the energy of Qu and on the L2 bound
of the error in the coarse mesh operator, i.e., u−Qu. These bounds are provided in
Corollary 2.3. This analysis is a modification of the results in [2, 3] for nonsmoothed
aggregates.

Here, as in the remainder of this section, C is a constant that is independent of
H and h. C may increase as the analysis progresses.

Corollary 2.3. If Assumptions 2.1 and 2.2 hold, then

‖u−Qu‖2
L2 ≤ CH2 |u|2H1 ,(2.14)

|Qu|2H1 ≤ CH
δ
|u|2H1 .(2.15)

Proof. We give here the main results where our work differs from that in [2, 3],
and we refer the reader to the details of the proof in those papers.

Since we have ‖Ψi‖2
L2 ≤ CHd by construction of our coarse mesh basis functions,

we get

‖Qu‖2
L2(Ω) ≤ C ‖u‖2

L2(Ω) .

Therefore, by Poisson’s inequality [6],

‖u−Qu‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖Qu‖L2(Ω) ≤ C ‖u‖L2(Ω) ≤ CH |u|H1(Ω) .(2.16)

Since by construction we also have |Ψi|2H1 ≤ CHd−1

δ , we obtain

|Qu|2H1(Ω) ≤ CH
δ |u|2H1(Ω) .(2.17)

We use these bounds in the following lemma.
Lemma 2.4. Under Assumptions 2.1 and 2.2, for every finite element function

u ∈ V h, there exists a decomposition {ui}Ji=0, ui ∈ Vi, such that

u =
J∑

i=0

ui,(2.18)

J∑
i=0

|ui|2H1(Ω) ≤ C
(
1 +
H

δ

)2

|u|2H1(Ω) .(2.19)

Proof. Define the fine mesh pointwise projection Ih : C(Ω) → V h by

Ih (u) =

n∑
l=1

u (xl)ψl,

where {ψl}nl=1 is the finite element basis on the fine mesh, and {xl}nl=1 are the fine
mesh nodal points. Let u be partitioned such that

u0 = Qu and ui = Ih (θi(u−Qu)) ,

where, as in [17], {θi} is a smooth partition of unity such that

θi = 1 if x ∈ Ωi ∪ Ωint, x �∈ Ωj for j �= i, and
θi = 0 if x �∈ Ωi.
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Hence |∇θi| ≤ 1
δ . Clearly, by construction, for all u ∈ V h,

J∑
i=0

ui = u.

The standard arguments [17] imply that

J∑
i=0

|ui|2H1(Ω) ≤ C
(

1

δ2
‖u−Qu‖2

L2(Ω) + |u−Qu|2H1(Ω) + |Qu|2H1(Ω)

)
.(2.20)

We complete the proof by applying Lemma 2.3 to estimate |Qu|2H1(Ω) and ‖u −
Qu‖2

L2(Ω).
If we let

K0 = C

(
1 +
H

δ

)2

,

we obtain the result in Theorem 2.1.

3. Numerical results. In the two examples we used minimal overlap. Hence
the coarse mesh problem is constructed by simply adding the matrix contributions
for the nodes in a subdomain. The matrix representation for the restriction operator
R0 given minimal overlap h is

R0 =




1 1 . . . 1 0 0 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 . . . 0
...


 ,

where the length of 1’s in row i is determined by the number of unknowns in subdomain
i.

Subdomain solves were exact, meaning that Ãj = Aj for all j and, therefore, that
ω = 1.

3.1. Laplace equation. In this section we consider the simple test problem

∇2u = 0(3.1)

on the unit square [0, 1]× [0, 1] with zero Dirichlet boundary conditions. We use the
function identically equal to one on the mesh as the initial iterate for a preconditioned
conjugate gradient iteration. We terminated the iterations when the residual had been
reduced by a factor of 10−4. This example fully conforms to the theory from section
2.4.

In Table 3.1 we report results for a piecewise linear finite element discretization
of (3.1). From the theory, one would expect the condition number κ to increase by
a factor of 4 as either H is doubled or h is halved and to remain constant along
the diagonals where H/h is constant. If, as is the case with the unpreconditioned
problem, the iteration count is O(

√
κ), we would expect the iteration count to double

if either H is held fixed and h is reduced by a factor of two or h is held fixed and H
is increased by a factor of two.

If the iteration count is proportional to the square root of the condition number,
as it is in the unpreconditioned case, then Table 3.1 shows that the growth in the
number of iterations for fixed H and decreasing h is slower than predicted by the
theory and is consistent with an O(H/h) growth in the condition number. The rate
of reduction in the iteration count as h is held fixed and as H is decreased is smaller
still.
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Table 3.1
Finite element discretization of Laplace’s equation.

H \ h 1/64 1/128 1/256
1/4 37 51 68
1/8 32 44 61
1/16 26 36 49
1/32 26 37

3.2. Richards’ equation. The test domain is the unit square [0, 1m]× [0, 1m]
with boundary and initial conditions

ψ(x, 0) = 0.0, x ∈ [0, 1], t > 0,

ψ(x, 1) = 0.1, x ∈ [1/3, 2/3], t > 0,

∂ψ

∂z
(x, 1) = −1.0, x ∈ [0, 1/3) ∪ (2/3, 1], t > 0,

∂ψ

∂x
(x, z) = 0.0, x = 0, 1 z ∈ [0, 1], t > 0,

ψ(x, z) = −z, x, z ∈ [0, 1]× [0, 1], t = 0.

(3.2)

3.2.1. Finite difference discretization with minimal overlap. We dis-
cretized (1.1) by applying cell-centered finite differences to the spatial operator, thereby
yielding the system of differential-algebraic equations,

Fi,j(t, ψ,
∂ψ

∂t
) =

(
dθ

dψ i,j

+
Ss
θs
θi,j

)
∂ψi,j
∂t

− 1

∆z2

[
Ki+ 1

2 ,j
(ψi+1,j − ψi,j)−Ki− 1

2 ,j
(ψi,j − ψi−1,j)

]
− 1

∆z
(Ki+ 1

2 ,j
−Ki− 1

2 ,j
)

− 1

∆x2

[
Ki,j+ 1

2
(ψi,j+1 − ψi,j)−Ki,j− 1

2
(ψi,j − ψi,j−1)

]
,

(3.3)

where i = 0, . . . , N − 1, j = 0, . . . , N − 1, ∆z = ∆x = 1/N , and

Ki± 1
2 ,j

= [(Kskr)i±1,j + (Kskr)i,j ] /2,(3.4)

Ki,j± 1
2
= [(Kskr)i,j±1 + (Kskr)i,j ] /2.(3.5)

The semidiscrete system was integrated in time over [0, 0.0149 days]. Order and
step-size were selected via local truncation error estimates, and the local truncation
error tolerance was set to 10∆x2, thereby balancing temporal and spatial truncation
error. A secondary effect of this choice is that the number of iterations needed for
convergence grows more slowly as ∆x is reduced than would be the case for a steady-
state problem. This effect is clearly visible in all the results reported in Tables 3.2,
3.3, and 3.4.

At a given step tn+1, the application of the integration method yielded a nonlinear
system of the form

F [tn+1, ψn+1, g(ψn+1)] = G(ψn+1) = 0,

where g(ψ) is a the backward difference formula for ∂ψ/∂t. We solved the nonlinear
system with an inexact Newton iteration that terminated when the 2-norm of the
nonlinear residual was reduced by a factor of 10−5.
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Table 3.2
Richards’ equation iteration statistics, 2-level Schwarz.

H\h 1/16 1/32 1/64 1/128 1/256
1/8 7 8 9 12 15
1/16 7 9 11 14
1/32 7 9 11
1/64 7 9
1/128 7

Table 3.3
Richards’ equation iteration statistics, 1-level Schwarz.

H\h 1/16 1/32 1/64 1/128 1/256
1/8 5 6 6 6 6
1/16 6 7 7 7 7
1/32 10 10 10 10
1/64 15 14 14
1/128 21 20
1/256 29

Table 3.4
Richards’ equation iteration statistics, no preconditioner.

h 1/16 1/32 1/64 1/128 1/256
31 56 84 129 193

At each Newton iteration we obtained the Newton step δm+1, by solving the linear
system [

∂G

∂ψ
(ψm

n+1)

]
δm+1 = −G(ψm

n+1)

with scaled, preconditioned BiCGstab. The scaling was obtained from the integration
method’s weighted root mean squared norm [15, 10, 1, 4]. In real applications, such a
scaling would allow termination of the linear iteration according to tolerances specified
by the integration scheme. However, for this test we computed the l2 norm of the
true linear residual for each linear iteration and terminated the linear iteration when
that norm had been reduced by a factor of 10−7. We did this both to more accurately
estimate the effects of the preconditioner and to insure that errors in the Newton step
were insignificant with respect to the Newton iteration and integration. The choices
of termination criteria for the linear and nonlinear solvers imply that the time steps
that the code uses are independent of the choice of preconditioner.

The preconditioner was two-level additive Schwarz using (3.1). The subdomains
had the minimal overlap of ∆x = 1/N . Table 3.2 gives the average BiCGstab iter-
ations per Newton iteration for two-level additive Schwarz. The iteration count is
constant as H and h are reduced simultaneously, as was the case with the simple
example from section 3.1.

The iteration counts in Table 3.2 increase more slowly than the theory would
predict if, as would be the case with a discretized elliptic problem and conjugate
gradient iteration, the iteration count increased as the square of the condition number.
In that case, if the condition number is O(1+H2/h2), then the iteration count would
double as either H doubled or as h was halved.

For comparison we include similar statistics for a one-level additive Schwarz pre-
conditioner in Table 3.3 and for no preconditioning in Table 3.4. Point Jacobi pre-
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conditioning is the H = h diagonal in Table 3.3. Neither of these scale well as H and
h are reduced together.

4. Conclusions. In the context of Richards’ equation, a model for subsurface
flow through the unsaturated zone, we have demonstrated the effectiveness of the two-
level additive Schwarz preconditioner using nonsmoothed aggregates for the coarse
space on a temporally dependent, nonlinear problem. Our convergence estimates for
a simpler model problem are consistent with the observations for Richards’ equation,
a problem to which the theory does not apply.

Acknowledgments. We wish to thank Marian Brezina, Jim Jones, Van Henson,
David Keyes, Andrea Toselli, Mary Wheeler, Carol Woodward, and Jun Zou for many
helpful discussions and Dave Klepacki, Matt Matthews, Mark Reed, Eric Sills, and
Bob Walkup for their help with the computations. We are particularly grateful to our
collaborators at the U.S. Army Engineer Research and Development Center: Charlie
Berger, Jackie Hallberg, Stacy Howington, John Peters, Joe Schmidt, and Alan Stagg.
We also wish to thank the referees for their helpful suggestions.

REFERENCES

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations, Classics Appl. Math. 14, SIAM, Philadel-
phia, 1996.

[2] M. Brezina, Robust Iterative Methods on Unstructured Meshes, Ph.D. thesis, University of
Colorado at Denver, Denver, CO, 1997.
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