
_:,_. • / , ji

RESIDUAL DISTRIBUTION SCHEMES FOR CONSERVATION LAWS VIA ADAPTIVE

QUADRATURE

TIMOTHY BARTH" AND RI_,MI ABGRALL t

Abstract. This paper considers a family of nonconservative numerical discretizations for conservation laws which retains

the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our

analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch [14]. For a specific family of

nonconservative discretizations, it is shown under mild assumptions that the error arising from nonconservation is strictly smaller

than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown

to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of

van der Weide and Deconinck [31] is developed for first-order systems of conservation laws. The modified form of the N-scheme

supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of

gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using

an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct
weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the

N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws

equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g.

magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic

and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.
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1. Motivations. Discrete conservation has become a standard design criteria in the development of

numerical discretization techniques for conservation laws that admit discontinuous solutions. Prom the Lax-

Wendroff theorem [21], the ingredients of consistency, stability, and discrete conservation yield convergent

approximations of conservation laws in divergence form for both smooth and discontinuous solutions that
are valid weak solutions in the sense of distribution theory. Even so, the development of stabilized numerical

discretizations often also utilizes the quasilinear form (a.k.a. nonconservative form) of the conservation law

system to approximate simple or plane wave solutions for use in upwind stabilization mechanisms. As we
will illustrate later, the use of quasilinear forms is often at odds with the requirement of discrete conservation

unless specialized mean-value linearized variants of the discrete quasilinear form are used. As a practical
matter, obtaining simple expressions for these mean-value linearizations in closed form is often extremely

complicated or even impossible. In addressing this difficulty, our goal is to develop a general framework that

avoids these complications while still insuring that valid weak solutions of the conservation law system are

obtained in the limit of mesh refinement.

As a motivating example, consider the scalar Cauchy problem in one space dimension and time

u,t + (f(u)),_ = 0 for (x,t) 6 _ x IR+ (1.1)0) =  o(x)

with u E IR and f(u) : IR _-_ IR. In this equation uo(x) is assumed to be periodic or compactly supported

data. Let AXj+l/2 = xj+l - xj denote a general nonuniform partitioning of space so that uj represents the

numerical approximation u(xj, t). Next, consider the prototype conservative semi-discrete scheme

du--A+ hi+l�2 -- hi-l�2 = 0 (1.2)
dt Axj

with hi±l�2 the numerical flux. This prototype scheme is conservative in space due to the mutual telescoping
of numerical fluxes. A first order accurate upwind scheme is easily obtained via the flux function

1 1

hj+l/ (uj,uj+l) = (f(uj) + -  lab+l/2 - (1.3)
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with aj+l/2 an approximation of the flux Jacobian df/du at Xj+l/2. Observe that whenever the exact
mean-value linearizations are used, e.g.

f(Uj+l) -- f(uj) .-_ (a)j+ll2 (Uj+l -- _tj) (1.4)

so that aj+i/2 : (a)j±l/2, the first order upwind scheme can be written equivalently as

C_Uj la\_ Uj+I _U___j -I- US -- Uj--1
0-"_ + + (a)j_l/2 .... 0 . (1.5)/i+1/2 Axj+U2 Axj_l/2

Note that this discretization is nonconservative in space unless the exact mean-value linearization (1.4)

is used. Nonconservative schemes of this form are known to converge to incorrect weak solutions. More

precisely, Hou and Le Floch [14] have shown (in I-D) that if the nonconservative scheme (1.5) converges, it
converges to a solution of

u,t-F(f(u)),x= lz

where # is Borel measure source term that is expected to be zero in the regions where u is smooth and

concentrated where u is not smooth. The construction of an exact mean-value linearization is readily

accomplished in 1-D by the general path integration

_BB _UB
f(UB) --f(UA) = d f = a(u) du

A A

f_B du= a(u(_)) -_ d_ . (1.6)
.4

Without loss of generality, one can restrict u(_) to the space of polynomials, Pk. A particularly convenient

choice are Pt linear polynomials since

fc_s du If(UB) -- f(UA) = a(u(_)) -_ d_
A u(_)eP1

= f_Sa(u(_))d _ (UB -- UA)
A u(_)EPx _B _A

(1.7)

so that the following mean-value speed is obtained

1 _B u(_)EP1(a) (UA, UB) -- _B -- _A a(U(_)) d_ (1.8)
A

In Harten, Lax, and van Leer [13] this expression is interpreted as an integration in state space pararneterized

along the line 7ru(_) = ua + _ (un -- ua), _ E [0, 1].

/o'(a)(UA, UB) : a(Tru(_))d_ .

When the locations A and B are not coincident, one can equivalently interpret this as an integration in

physical space assuming the P1 Lagrange interpolant

Try(x) = It a q- T, -- _a (_B -- _I'A), X E. [XA,XB]
XB -- 2A

so that (-- _ and
2B--Z A

1 _xB- -- a(Tru(x)) dx . (1.9)(a)(uA,,,B) xB - A



This latter interpretation is useful since it generalizes the mean-value contruction to simplices and more

arbitrary regions. Next consider an approximation of Eqn. (1.9) using NQ-point numerical quadrature

NQ

<a)(I_A,UB) = Z_! a(Trlt(ql)) q- RNQ+I (1.10)

I=.l

where w_ are quadrature weights, qt quadrature positions, and RNQ+I is the numerical remainder term. This

renders the scheme (1.5) nonconservative in space. In later sections, we derive (under suitable assumptions)

the same result as Hou and LeFloch and are able to characterize more precisely the Borel measure p. In

particular, the dependency of/_ with respect to the number of quadrature points is given. If an adequate

number of quadrature points is taken, the error terms due to nonconservation are shown to be comparable

or smaller than the discretization error of the scheme. In addition, a discrete entropy inequality is formally

obtained in the limit of mesh refinement. From the practical point of view, these results are important with

the following consequences

• Exact mean-value linearization is no longer needed. This is useful when solving systems of conser-

vation laws for which exact mean-value linearizations are not known in closed form, e.g. magneto-

hydrodynamics, Euler equations with certain forms of chemistry, etc.

• General finite element shapes are permitted, e.g. tetrahedra, hexahedra, prisms, pyramids. Previous

exact mean-value linearizations in closed form have been restricted exclusively to simplex shapes.

The new nonconservative formulation suggests an adaptative strategy, whereby the number of quadrature

points depends on the local smoothness of the numerical solution. This strategy is undertaken in Sect. 3.

2. Background. In this section, we briefly review a number of well known constructions and analytical

results that we utilize later in the development and analysis of our nonconservative formulations.

2.1. Conservation Laws and Symmetric Hyperbolic Forms. Consider the Cauchy problem for

m coupled conservation laws in d space dimensions and time

w,t + _ fi(w),_, = 0 for (x,t) E IRd X IR+ (2.1)
i----1

w(x, 0) = wo(x)

where w E IRm denotes the vector of conserved variables and f(w) : IRm ___ iRm×a a flux vector. In addition,

Eqn. (2.1) is assumed to be equipped with a convex entropy extension so that the additional scalar inequality
holds

d

u, + GI ,_<0 (2.2)
i=l

with H(w) : IRm _ R the convex entropy function and G(w) : IRm×a ___ iRa the entropy flux vector for the

system. Solutions of Eqn. (2.1) satisfying (2.2) are generally of two types [22]:

• (Classical Solutions) Smooth solutions satisfying the quasilinear form of Eqn. (2.1)

d

w.t + Zai(w) w,,, = 0, Ai(w) = f/w • (2.3)
i----1

As part of the symmetrization theory for first-order conservation laws developed by Godunov [11],

Mock [23] and others, it is known that the existence of a convex entropy extension insures that the
quasilinear form (2.3) is symmetrizable via a change of variables w _-r v where v = H T E iRm

,W

denotes the so-called entropy variables for the system. As consequences of symmetrization theory,

performing the change of variables

d

¢i0v, + = 0 , (2.4)
i=l
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yields the matrix Ao = w,v = (H,w,w) -1 symmetric positive definite and the matrices Ai = f/,,, =

Ai,40 symmetric. For brevity, the functional dependency of the matrices Ai and .4i has been omit-

ted. Motivated by the energy analysis given in subsequent sections, we assume the basic solu-

tion unknowns are the entropy v-variables so that the shorthand notation Ai(w) should be inter-

preted as Ai(w(v)). It is useful for later developments to define the real-valued matrix combination

A(w,w) = wiAi(w), ¢z e R_ and similarly the symmetric matrix A(w,w) = Wi2_i(W). Observe

that symmetry of A(w, w) implies that A(w, w) has m real eigenvalues, Al < A2 < .-" < Am and rn

real eigenvectors rk (w, w) E IRm satisfying the standard eigenvalue problem

A(w,w)rk(w,w)= )_k(w,w)r_(w,w), k=l,2,...,m

since the identity

_ol/2A(w, w)d_/2 = dol/2_Cw, W)_o 1/2

shows that A(w, w) is similar to a real-valued symmetric matrix.

Our keen interest in the quasilinear form (2.3) comes from its use in the construction of upwind

discretizations such as variants of Godunov's method [10] utilizing approximate Riemann solvers

[32, 26] and the multi-dimensional fluctuation splitting scheme described in the following section.

Specifically, the quasilinear form (2.3) admits nonlinear simple wave solutions of the following form

for a given direction vector w:

171

w(x, t) = _ akW k (a(w. x - A_ (W k, w) t)) (2.5)
k=l

where W k (a, w) G IR"_ satisfies the differential relation

d_ k
= rk (142k(a, uJ), w) (2.6)

da

for the self-similar real-valued parameter a. In Eqn. (2.5), c_k G IR are expansion coefficients to

be determined by matching initial data. When the matrix A(w) is assumed locally independent of
w, then local plane wave solutions are obtained. Historically, mean-value linearized variants of the

quasilinear form (2.3) have been used in 1-D to construct approximate Riemann solutions [26] for

eventual use in upwind discretizations. In Sect. 2.2, we consider a multi-dimensional upwinding

strategy which also uses plane wave information originating from a mean-value linearized form of

Eqn. (2.3).

(Discontinuous Solutions) Weak solutions of the divergence form (2.1) satisfying a jump condition
on space-time hypersurfaces, S, with space-time normal vector fi = (nt, nT) T

d

n,[w]+_ + n,[e] +_ = 0 (2.7)
i=l

with [arg((x, t))] + = lim,_o (arg((x, t)s + eft) - arg((x, t)s - eft)). In Sect. 3, a Lax-Wendroff-like

theorem is presented which addresses the convergence to weak solutions of a family nonconservative
discretizations using approximate mean-value linearization.

Note that in the remainder of the paper, the notation I1"11will denote a pointwise norm over m variables

unless otherwise indicated. When the argument is dimensionally comparable with the v-variables, the

natural norm is not the standard Euclidian norm Ilxll = _ but rather the dimensionally consistent
matrix norm [15]

Ilzll o - zTAoz (2.8)

where -4o is the inverse of the Hessian matrix of the entropy, Ao = (H,w,w)-l.



2.2. The Residual Distribution Scheme on Simplicies. In the remaining sections, we assume a

triangulation 7_ in R d of a polygonal spatial domain _ composed of nonoverlapping simplices Ti, n = UTi,

T_ f'ITj = 0, i _ j. A simplex T in R d is uniquely described by d+ 1 vertices T(M1,M2,...,Md+I). For

purposes of analysis, the triangulation is assumed to be shape regular with maximum simplex diameter h.

From the triangulation 7_, the geometric dual tessellation Ch is constructed by connecting gravity centers of

the simplices and the mid-points of the edges as shown in Fig 2.1. In this figure, the dual cell C_ surrounds the

triangulation vertex Mi. We also define piecewise linear and piecewise constant spaces on the tessellations

i

Fro. 2.1. Dual cell Ci associated with triangulation vertex M, in R2

Tn and Ch respectively

Vh = {Vh;Vh E CO(]l_d)rn,vn[T E ('_l)rn,v T E 7_}

xn = {vh;valc e (Po)",V C e Ca} .

Let Vi E R 'n denote the nodal degrees of freedom located at Mi which uniquely describes va in both

spaces }2a and Xa. For example, if Ni (x) denotes the standard piecewise linear basis function for triangulation

Th such that Ni(Mj) = 5ij, then for va E Vh

Vh(X)= E Ni(x)Vi .
MiETh

Similarly, if Xi(x) denotes the characteristic function for the dual cell Ci E Ca,

X'(x)={0 xx E C'¢.C,

then for v_ E Xa

x,(x)v, .
Mi ETc.

Finally, for brevity of notation, we shall write wa --- w(va) and Wi - w(Vi) to denote the corresponding
conserved variable forms.

Using these definitions, we can state the simplest prototype residual distribution scheme (explicit in

time) used in discretizing (2.1).

Residual Distribution Scheme: For all Mi E 7_ and n > 0

At E O_,T (2.9)
W_ +l =W? ICd T,M,_T

W ° = w0 (Mi)
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where@7"ERm represents a discretization of the negated time evolution term integrated in the simplex T

@T -- -- fT(Wh),t dx (2.10)

with @i,T an as yet unspecified sum decomposition of @T among the d + 1 vertices of the simplex T in Rd

¢_T = ¢_1,T + "'" "{- ¢_d+l,T • (2.11)

In the special case of Eqn. (2.1), _r is expressed equivalently in terms of the spatial flux divergence

_T "= _I,T -}-''" -}- _d+l,T :-_ fgT dx .
(2.12)

The residual distribution scheme encompasses a number of well known weighted residual methods that have

residual decompositions which reduce to following form for P1 linear elements:

_i,T = _ + _i,T _T

X--. d+ twhere _ E R m×m is an nonsingular matrix such that z__i=l _ -- 0. Some examples of weighted residual

methods for solving (2.1) include

• The streamline diffusion method of Johnson and coworkers [17, 18].

• The streamline upwind Petrov-Galerkin (SUPG) and Galerkin least-squares finite element methods

of Hughes and coworkers [15, 16].
• The cell vertex finite volume methods of Ni [25] and Morton et al. [24, 7]

The residual distribution formula also describes a family of monotone and positive coefficient schemes for

scalar conservation laws due to Roe [27, 28] and Deconinck [8] and the system extension due to van der

Weide and Deconinck [31] described later in Sect. 5. Fundamental to these residual distribution schemes is

the mean-value linearization of the flux divergence formula (2.12).

T f_(w),_, dx = (A)i w_, dx (2.14)

To facilitate this calculation, we follow the 1-D example of Sect. 1 by introducing an auxilliary mapping

z(v) : Rm _-> IRm and restricting z to the space of piecewise linear Lagrange interpolants denoted by 7rhz.

ST fi(w(Trhz),_, dx = (A)i w0rhz),_ , dx (2.15)
\i=I i=l

For the Euler equations of gas dynamics, the choice z = (v/p,vfPV, v_Ht) T with p the fluiddensity,17the

fluidvelocity,and Ht the fluidtotalenthalpy yieldsclosedform expressionsforthe mean-value linearization

of the fluxdivergence [30].A strikingproperty of thislinearizationisthat the linearizedsystem

d

w,t + E(A),w.z, = 0 (2.16)
i----1

is hyperbolic. Unfortunately, no other z variable is known to give simple and closed form formulas leading to

a hyperbolic linearized system. In addition, this approach is limited to simplices, while in many applications

hexahedral brick meshes would be desirable for accuracy reasons.

From a theoretical and practical point-of-view, there is motivation to work directly with the entropy

variables since the corresponding mean-value linearized form

fi(w),,, dx = E(J), v,,, dz (2.17)
i=1 i=1



would necessarily produce a hyperbolic linearized system due to the symmetry of (A)i. Using symmetric

forms, we also show in subsequent analysis the satisfaction of an entropy inequality in the limit of mesh

refinement. Our general strategy is to utilize a piecewise linear representation of the entropy variables

themselves so that vh E _;h and

T f_(w(va)),x, dx = Z(A), (vh),z, dx --ITI Z(,4),(vh),z, (2.18)
i=1 i----1 i=1

with

(.4/, - N ii,(,,h) dx . (2.19)

Following the 1-D motivational example of Sect. 1, Eqn. (2.19) is approximated by quadrature formula so

that componentwise

NQ

(Li), - _,_i,(vh(q_)) + n_q+l . (2.20)
/----1

Since Vh[T E PI(T), Eqn. (2.18) has used the fact that the gradient component are constant within a

simplex. Consequently, the quadrature formula used in (2.20)

NQ

TH(X) dx = ITI Z U(ql) + O(h _+1) (2.21)OJl

/----1

should at least be exact for H(x) E P_:(T) and k > 1. In addition, the O(h TM ) error is assumed to have the

following behavior for use in later analysis: there exists C independent of the simplex T such that

hk+! ITO(h k+l) __ C(Th) (k + 1)! ]IDk+IH(x)H dx (2.22)

where h is the maximum diameter of the T, C(Th) is a geometrical parameter that only depends on 7_, and

DkH(x) = [ Oxen, lal = k

Note that the use of numerical quadrature permits generalization of the techniques to non-simplicial elements,

e.g. brick elements (Q), using the form

@,a = IQI _ wq .4_(vh(qt))(Vh(ql)),x, + RNQ+I • (2.23)

Hence, we are interested in residual distributive schemes that fullfil the approximate conservation relation

'_l,r +.." + '_+_,r = Irl _, _,(,,_(q_l)(v,(q_)).z, (2.24)
1=1 --

In Sect. 5, a particular residual scheme known as the N-scheme is considered [30] as generalized to

systems of conservation laws by van der Weide and Deconinck [311. This system N-scheme assumes an

exact mean-value linearization via the parameter vector. We then propose a variant of the system N-scheme

which utilizes a piecewise linear space consisting of the entropy variables and approximates the mean-value

linearization via quadrature. Analyzing this new scheme for systems of conservation laws, we show that in

the limit of mesh refinement that numerical solutions satisfy an entropy inequality. We then show a similar

result for the system N-scheme when the linearization is approximated via quadrature.



3. Weak-* Convergence, a Lax-Wendroff Result. Consider the numerical scheme (2.9). The

nodal variables W n are assumed to map uniquely via v(w) and w(v) to and from V n which are the degrees

of freedom in the spaces/Th and Xh at time t,, --- nAt, n E [0, N]. In addition, the as yet unspecified residual

decomposition @_,T and V_ are assumed to satisfy the following conditions :

ASSUMPTION 1 (H1). Let 7"h be a shape regular triangulation. For C E R and any fixed n, there exists

C'(C) e R which depends on the triangulation 7-_ such that V v_ G rh and Ilv_llLoo(R_)m _ C

@n _ C' hd-' (3.1)II ,,TII< live'- v:'ll, VT E 7_ and VM, E r.
Mj ET

This is a continuity assumption on the residual decomposition in a simplex T in terms of the local nodal

values of V_, Mi E T. In particular, whenever v'_ is constant in T we then require that @_,T = O.

ASSUMPTION 2 (H2). For all v_ E Vh and fixed n

=-. V n ,
cI_" Z+_,T ITI_--_w, ,4i(v_ (q,)) ( a (q,)),z, q, eT

i:l |=1

(3.2)

where Ai = _,, and NQ denotes the number of quadrature points. In addition, the quadrature error in the
flux divergence calculation is assumed to be of the .following form for all n and a given integer k > 1

-- /Till Czi(Vr_) <_ C(7"h)_ D_ -1-1 _z_i(v_)( h),zi

(3.3)

by using a sufficient number of quadrature points.

REMARK 1.

(i) Observe that vh E Vh is C O continuous, consequently for neighboring simplices sharing a common spatial

edge, Fjk = {x I OTj n OTk i_ 0},

d d

_jk =jk (3.4)P(v_(xlllT,-n, = _f'(v_(xllIT_.n_ , x e rik
i=1 i=1

where _jk is a directed normal on F jk.
(ii) For any constant C and fixed n, there exists C'(C) such that Vv n E Vh; Ilv_llL_(Rd) _ C. Consequently,

for shape regular T E Th

el

I1+_11_<T _ IIV_-Vi_ll g

Mi ,Mj ET

(3.5)

(iii) Lastly, for any sequence (v_)h such that (v_) is bounded in L°°(R d x R+ ) m independantly of h and N

and converges in L2oe(R _ x R+ )m to v, we have

lim IIP(v )- P(V)IILL, CRd×R+)--= 0, i = 1,2,...,d .
h--+0

(3.6)

Our first principle result is a generalization of the Lax-Wendroff theorem to residual distribution schemes

for systems of conservation laws using numerical quadrature. Note that since the mapping H(w) is smooth
and wh is bounded, assumptions on wh are equivalent to the same assumptions on vh defined by the nodal

values Vi.

THEOREM 3.1. Consider an initial condition v0 E L_(R_) "n for time v > O. Let Wi be the nodal

approximation for all Mi E 7"h given by (2.9) from which Vi are obtain via Vi - v(Wi). Assume that the



schemesatisfiesassumptions(H1)and(H2) and that there exists a constant C that depends only on Vo and

functions V E L2(R d × R+) m and vh such that for Vh E 12h

supsup IIv^(x, t)ll < C, lim IIv,, - VlIL,_o,(R,,×R+),,.= 0 . (3.7)
h z,t -- h--_O

Let Q = UT be a bounded domain of Ra and r > 0 a bounded time. Assume that there exists a locally

bounded, positive measure I_ such that IIDvhll tends to l_ in the sense of distributions as h _ O. Then v(x, t)

satisfies

fQ×[0,_l (_ w(v(x' d )t)) + _ _(x,t). t'(w(,,(x, t)))
i=l

dx dt +
fQ _(_:, o) w(vo (:0)

C('7'_, f)

<- (k+l)! (1_1,_')

(3.8)

where k is a integer as described in Assumption (H2) and C(7_,f) is a constant that depends on Th and
k+lIIDv f,vll-
This results applies when the limit is piecewise smooth, as it is in practical applications. The proof is

inspired by [20] then [2].

4. Proof of Theorem 3.1. The proof of Theorem 3.1 appeals to a sequence of lemmas that are

somewhat classical but are tailored here specifically to residual distribution schemes and the use of numerical

quadrature for element interior integrations. For simplicity, we assume an evolution to time % an N integer

multiple of At, i.e. r = N At, although the generalization to arbitrary bounded values of _- is straightforward.

LEMMA 4.1. Let Q = UT denote a bounded domain of Rd and r > 0 a bounded time. Further, let (Vh) h

denote a sequence such that vh (., nAt) E Vh for any n < N. Assume there exists a constant C independant

of h and N and a function v E L2( Q x [0, r]) such that

supsupllv,,(x,t)ll < C, lim IIv,,- vllL,_oo(¢;×[o,_-l),,,= 0 . (4.1)
h z,t -- h-_O

Under these assumptions, the following limits and bound are obtained
1. limh-_0 _-']_n=o At _-']_VTeQ ITI _M,,Mj_r IIv - vTII= 0

N n2. limb--,0 At _-'_VTeQ ITI EM,,Mj_T Ilvr - vj II2= 0
3. limb--,0 h IIDzvhlIL2(Q×t0,_I)_ = 0.
4. There exists C' independant of h and n such that hllDzvhllL_(Q×[o,d)- < C'.

Proof. To prove this Lemma, one needs only consider real-valued functions. For any simplex T and

open time interval I" =]tn__,t_[, two piecewise constant functions can be constructed which are useful in
analysis, namely

Vh(X,t)lr×1-= _ XC,nr(z) V_
MIET

(4.2)

and the shifted variant

_,,(z,t)lr×,- = _ XC,_T(x) V_"(,) (4.3)
MIET

where a(i) denotes a cyclic permutation of the index i and XCinT is the characteristic function of Ci n T
with Ci the dual cell at node Mi. This defines two functions on Q x [0, r] that are bounded independantly

of h and N. Moreover, the following useful identity holds for these functions in a simplex T for arbitrary

p_O

ITI _ IIV_'-V_ll" = (d+ 1) frllvh--_hll_'dz (4.4)
M_,MiET
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where the "d + 1" factor comes from the definition of dual cells in Ra. Integrating in time

N r

E ITI E IIV?- VTII= L .,<of IIv,,-  ,,llaxdt . (4.5)
n=O VT6Q. MI,MiET T)6Q

The sequence (vn)h is bounded, therefore a function v' 6 L°°(Q x [0, r]) m exists such that vh _ v' for the

weak-, topology. From the previous assumptions, vh --+ v in L_o c which implies v = v' since Q x [0, r] is

bounded and C_°(Q x [0, r]) is dense in L l (Q x [0, r]). Similarly, there exists a function _ 6 L°°(Q x [0, r])",

such that _h _ _ in the weak-, topology. Our next task is to show that _ = v and thus finally _ = v = v'.

To do so, let _(x, t) 6 C_ ° (R a x I_+ ), integrate _ vh in Q x [0, r], and use the definition of the shifted function

USo z z_vh dxdt = At V _XCINT dxdt

lri=O VT6 Q Mi 6T

= _vh dxdt + __, At _., V 7 _XC, nT dx- qOXC_,,)nT dx (4.6)
n=O Mi E T

where a-l(i) denotes the inverse cyclic index permutation such that a(a-l(i)) = i. Due to use of gravity

centers and edge mid-points in the definition of the dual cells Ci,

STXC_nTdx=STXC=_I(,)dx=ICifGTI, i= 1,2,...,d+l . (4.7)

Using the integral mean-value theorem, points _i and _ 6 T can be found such that

iT_xc, or dx= IC, nTIqv(Z,), STqOXC'-"° dx= IC, nZl_(N) . (4.8)

Since IID_II is bounded on Q x [0, T] and Vh is bounded,

iLrSQ LTSQ dxdt
qoVh dx at - qa_¢h < Ch (4.9)

where C is independant of h and N. Hence in the limit _ = v and finally _ = v = v'.

Let Vh, vh' and v'h denote scalar components of the respective vector-valued functions Vh, Vh' and v_.

By the same technique, we see that the components (v_) and (v_) have the same weak-* limit. It will now

be shown that this limit is v 2. Once again appealing to the density of C_°(Q x [0, r]) in LI(Q x [0, r]) and

the fact that v_, is bounded independantly of h and N, we will take test functions _ in C_°(Q x [0, r]). The

function qv is bounded in Q x [0, r] and Vh _ v in L_oc(Q x [0, r]), thus

and consequently

fQ _olv -- vht 2 dxdt _ O,
×[o,T]

(4.10)

fQ qav2dxdt-2SQ ¢pvvhdxdt+fQ qov2hdxdt--_O. (4.11)
×[0,_l × [o,_] × [o,_1

By the Cauchy-Schwarz inequality and _0v 6 Li(Q x [0, r]), the second term converges to

Qx[0,r] v2 dx dt (4.12)qa B

Hence, v_, -@ v 2 in L a° weak-.. We are free to choose qo = 1 combined with the limit v_ _ v 2 in L °° weak-*,

yielding

SQ t_h -- vl 2 dxdt _ 0 (4.13)
×[o,Tl
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andfinally

Q I_h- Vhl 2 dxdt --_ 0
×[o,d

(4.14)

Interpreting this equation of the form (4.4) gives the asserted limit (1) of Lemma 4.1. The limit (2) of Lemma

4.1 is then clear: Q × [0, 7"] is bounded thus L2(Q × [0, r]) C L 1(Q × [0, 7"]). To prove limit (3) of Lemma 4.1,
consider Fig. 4.1 which shows a simplex with inward pointing normals scaled by the edge length. In IRa, the

normal ffi is the inward pointing vector pendicular to the (d - 1)-dimensional simplex facet opposite vertex

X--,d+l _i = 0. Using this notationMi,i = 1,2,...,d+ 1 scaled by the measure of this facet so that z_,i=l

3

FiG. 4.1. Depiction of inward pointing normals, 6i, for a simplex in R 2.

d-t-1 d-t-1
1 1

OzVhtz -- (d + 1)ITI _ a1Vi - (d + 1)ITI _ a1 (vi - V,) .
j=l i=2

(4.15)

Integrating in time and space

N N

d_dt=EAt E ITIII(D=vD:II_<--C_E At E E ITIIIv_-v?ll _
n=0 VTEQ n=0 "¢TEQ Mi,MjET

because the the gradient is constant within a simplex and the triangulation is regular. Limit (3) of Lemma
4.1 is then obtained from the application of limit (2). To obtain the bound (4) of Lemma 4.2, we again

consider Eqn. 4.15 assuming bounded V 1

h max 1_11 max Vj <C h_ max Ir_J1 (4.16)
h IID*vhlIL=(Q×tO:I)" < (d + 1) ITI l_<i<_a+l x<_j_<d+l - (d + 1) IT[ l<j_<d+l

which is bounded from above by a constant independent of h and N for shape regular triangulations. This

concludes the proof of Lemma 4.1. 17

LEMMA 4.2. Let _o(x,t) E Clo(R a × IR+). With the assumptions of Theorem 3.1, we have

N

E _xt E
n=0 Mi E "l-a

[Cilqo(Mi,tn) (W n+l --wn)+ fRa×R+ "_'xoq0(x't) wh(x't) dxdt+ fRd _O(X,0)W0(X)dx-+0

(4.17)

when h _ O. The proof is classical, see for example Krhner [19], p. 377.

LEMMA 4.3. If vh(x,t) E Yh satisfies the assumptions of Theorem 3.1, then for any bounded Q and

smooth qo(x, t),
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where 7rh qO(ZT, tn) is the midpoint value of the linearly interpolated qo function in simplex T for constant tn

and C(7"h, f) is a bound on IID_+Xf,v(vn)ll for bounded Vh.

Proof. Using the bound IID_+_fv[I < C(7_, f) together with the observation that DzVh is constant in a

simplex T

d d

k+l k+l
h IIO_ (_--_.A,(vh)(vh),_,)ll = hk+XllO_+t(_-':_A,(vh))((vh),_,)_+Zll

i=1 i=l

< hk+XllO_+XA(vh)l I IIO_vhll k+z
< C(7_, f,v)[ID_vhll • (4.19)

Using again the fact that DzVh is constant in a simplex, it follows that

h k+l u
EE
n=0 VTE Q

fTIID_ A(vh)ll IID_vhl dx <_ C(Th, f) _ E 17rhqol(xr't") IIDzvhll dx7rhqo(XT, tn) k+X - Ik+l
n=0 VTE Q

N

= C(7_,f) E Efr I_rnq°l(zr't_)llDzvnll dz .
n=0 VTE Q

(4.20)

The function [qo[ is bounded and continuous on a bounded domain so in the lim suPh__.0 limit, the right-

hand-side integral in Eqn. (4.20) approaches the measure-valued function (Iqo[,/_) which completes Lemma

4.3. I']

LEMMA 4.4. Let qo(x,t) E C_(R a x R+) and assume that vh satisfies the conditions of Theorem 3.1.

The following measure-valued bound exists for h --+ 0

limsup y_At _ rrh_(xr,t.) y_ _,T+ (x,t) t4(Vh(x,t)) dzdt _< (k+l)! (M,_)
h--+0 h dxR+

n=0 VTEQ MIET "=

(4.21)

where C(7_,f) is a constant that depends on Th and IID_+_f,_ll.
_7-,d+ 1

Proof. Choose _o(x, t) such that supp(_o) C Q x [0, T]. Recall that @_. = _--,i=x @_,T represents an
in a simplex T. By direct calculationapproximation of the flux divergence integrated

N [d-4- I i]_ n

/n=0 VTEQ \i=1

+

N d

:,tE [ f:.(v.),. i4.22)
n=0 VT6Q JT i=1

N d

n=0 VTEQ i=1

N d

n=0 VTEQ i=1

(4.23)

where e(hk) is the quadrature error in calculating the flux divergence. From Assumption (H2), this quadrature
error is assumed to be of the form

II_k)ll = Efi,(v_)dx--_-_@_,T <C(Th)_ D_ +1 .4i(v_)( h),X, (4.24)
i=1 i=1 i=1

consequently for rrh_o(x, t) bounded by a constant absorbed into C(7_)

_ Ai(v_) (vh),,, (4.25)
At E rrh_O(XT,t,) e(_) < C(7"a) (k + 1)! At Ok +' n

VT6 Q
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Combining this result with Lemma 4.3 formally bounds the quadrature error term

N Ilimsup E At E lra_(xT't")e(k) dx <__
h'--_O n=O VTE (_

c(7_, r)
(k + 1)! ([_l, #) • (4.26)

Next, apply Green's formula in each simplex to the first right-hand-side sum appearing in Eqn. (4.23)

N d

E E c,(v.) d=
n=O VTEQ i=l

= lrh_Cz, tn) _ fL, (vh) dx dt (4.27)
n=O " V i=l

n=O n V i=l

N d

n=O '_ VTEQ JOT i=1

Recall that 7rhqo and f are both bounded and continuous functions. Upon utilizing Remark 1 (i) and the

compact support of _, it follows that the second right-hand-side sum of Eqn. (4.28) vanishes identically.

Examining the remaining right-hand-side term in Eqn. (4.28), observe that

(4.29)

The first right-hand-side sum of Eqn. (4.29) is equal to ][f(vh) -- f(v)llc,(Q×[0,Tl) and converges to 0 as

h --+ 0, see Remark 1 (iii). Since Vh stays bounded and f continuous, f(vh) stays bounded by a constant.

The second right-hand-side sum of Eqn. (4.29) is bounded from above by IlDzTrhqo -- D=_[IL,(Qx[0,T] ) which

also converges to 0 as h --+ 0. Thus, it is concluded that

h_O i_10_iifi(v) dxdt =0

and consequently

N d N d OqO

lim_-'_At E /TTrh_O(x't')Eff='(vh)dx=--E f E fTE_fi(v) dxdt"h-+O
n=O VTEQ i=1 n=O "VTEQ i=1

Considering the second right-hand-side sum term in Eqn. (4.23), from Remark 1 (ii) it follows that

f',_,(h) <At _ (lrh_o(xT.t.) -- 7rhvCx, t.)) _. " v"
In=O VTEQ i=1

where

 -cE A, E
n=O VT6 Q

IIvT-wll
Mi ,Mj ET

(4.30)

(4.31)

(4.32)

Since IID=Trh_ll is assumed bounded by a constant,

XT -- X [hdx < C hd
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where C is independant of h. Inserting this bound yields

N d I N

" ° I ch'E ,Z Z_-'_ At 17r._CzT,t.,l--rh_(z,t.)l _f?,=,(v.) dz <
n=0 VTEQ T i=1 n:0 VTEQMI,MjET

so that

f 0 (4.34)lim Z At (7rhtp(xT'tn) -- 7rhtp(X'tn)) Z " n =

h---_0 n=0 VTEQ T i=1

Rearrangement of the bounded terms as h _ 0 completes Lemma 4.4. n

Proof. (Theorem 3.1) Multiply Eqn. (2.9) by _(M.t,,)IGI, where qa(x,t) is a test function in

C_ (]1{d x [0, +_[), such that supp(_o) C Q x [0, r]. Summation on the indices n and i over time slabs
and vertices, respectively, yields

N N

__, Y_ ICilq_(Mi,t,) (W'_+X-W'_)+_ At Z y]_ _o(M,,t,)@_.T=O. (4.35)
n=0 MIETh n:-O MiETh T;MIET

From Lemma 4.2,

lim E Z IC,I_(M, t.)(W7 +'- Wr)=- O-T . "
h---_0 ' dxR+

rl:0 Mi _. Th

The space term is rewritten

N N

n:0 Mi ETh T;Mi ET n:0 VTE Q Mi ET

N

+ E At Z Z (qa(M{, tn) - 7rhtp(XT, tn)) _,T (4.36)
n:0 VTEQ MiET

where once again _rh_o(xr, tn) denotes the midpoint value of the linearly interpolated _o function for constant

tn. Examining the first right-hand-side sum of Eqn. 4.36, recall the result of Lemma 4.4,

limsup At E Z 7rh_O(XT'tn)_T-I- (x,t) fi(vh(x,t)) dxdt < _'_i_.tgg_l,p) •
h---_ 0 h axR+

n=0 VTE Q Mi E T

Next, examine the second right-hand-side sum of Eqn. 4.36. From boundedness of [[Dqal[ combined with

_n C' h d-1II Z IIv;' - vrll (4.37)

M i ET

Assumption (H1)

N

n=0 VTEQ MIET

N

< ChdZAt Z Z IIV}'- V['ll . (4.38)
n:0 VTEQ MI,MjET

yielding

-_ 0 (4.39)

Consequently, from Lemma 4.1 as h --_ 0,

n=_OAt VTeEQM,ZeT (_o(Mi, tn) - 7rh_(XT, tnl l ']b_,T

which completes the proof of Theorem 3.1. I1



15

5. The "N" Residual Distribution Scheme. An important example of a residual distribution

scheme is the "N" (Narrow) scheme. It was first considered by Roe [27, 28] and Deconinck [8] for scalar

equations. Here we consider the system extension due to van der Weide and Deconinck [31] and generalize

their scheme to symmetrizable conservation laws

d

w(v),_ + Z _(w(v)),_, = 0 . (5.1)
i----1

Repeating Eqn. (2.18) of Sect. 2.2, our general strategy is to utilize a piecewise linear representation of the

entropy variables themselves so that Vh E _2h. In a simplex T

with

fT f/(W(Vh)),xl dx = Z(.Ai) (vh),x, dx = IT] (.4i)r(vh),z,,Ir
i=1 i----1

(5.2)

/vQ

(.4.i) = Zwt fi-iCvhCq,)) ,qi E T (5.3)
1----1

computed using NQj_oint numerical quadrature. For purposes of analysis, it is convenient to define the

symmetric matrices Kj,T E Rm×m

d
1 •

Kj,T_- d+l Zn_,T (_')T ' VMjeT (5.4)
i=l

where _ E Rd are the inward pointing normal vectors of the face of simplex T opposite vertex Mj scaled

by the integral measure of the face, see for example Fig. 4.1. Also define _'+ = (K -4- IR'])/2 where IKI is

calculated in the usual matrix sense via eigensystem decomposition. Due to the scaling of vector normals,

_VM_ eT n_Jr = 0. Consequently, we have that _-_VM_eT Kj,T = 0 and the identity

Z Z:
VMj ET VM_ ET

(5.5)

For the set of matrices {_4i} equal to the Jacobian matrices of the Euler equations evaluated at a single

state, it is shown in [1] that ()'_VM_eT/_/) is nonsingular everywhere except when the state corresponds to

a stagnation point. More generally, if we define (formally) the matrix N E Rm×m in a simplex T

_- ,

it is shown in the same paper that the matrix product _2jN, VMj E T and its appearance in the N-scheme

always has meaning, even at stagnation points. Hence forward, we assume that the matrix NT always exists

in the sense just described.

Using these definitions, one can easily derive the following relationship for _T

@T= [ f'(w(vh)),_, dx = ITI (A,)r(va),_,,I. = _ Rj,TVj (5.7)
JT i----1 "= VM.iET

Fundamental to the N-scheme is following decomposition formula for 4T

@j,T = /_+T (Vj - V_ n°_) , VMj • T (5.8)
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which is often called "upwind" because it represents a generalization to R _ of two-point upwind differencing

Perhaps surprisingly, the requirement that _j,T represent a decomposition of

¢_ T = E ¢]_j , T = Rj,TV , (5.9)

for model scalar advection.

@T, i.e.

VMj ET VMj 6 T

uniquely determines V_ a°w when NT exists

v? "°" =-NT . (5.1o)
VM_ ET

After some rearrangement, the N-scheme decomposition formula can be written in the following compact
form

@i,T----_[+,,TNTE K; T(vj-vi)' VM, ET . (5.11)
VM_eT

The N-scheme then evolves the solution in time using the algorithm given earlier by Eqn. 2.9. Repeating

this algorithm again while taking care to indicate the underlying dependence on vh and the nodal degrees
of freedom V that describe Vh:

N-scheme in Symmetrization Variables: For all Mi E Th, n > 0, and Vh E Vh

At E , +1 = v(W?+1) (5.12)
wn+l = wn [Cil T, MieT

W ° = W(vo(M/))

The primary interest in the N-scheme for approximating conservation laws centers about a local discrete
maximum principle exhibited by the N-scheme for scalar advection equations in Rd. To see this, let vh, Vi,

and Wi denote the scalar (m = 1) forms of vh, Vi, and Wi respectively. Consider a numerical solution at

steady state v_ = v_ +1 = v_. From Eqn. 5.11, the nodal degree of freedom at vertex Mi satisfies

O= E E --K+TNTK';T (Vj* -- Vi') (5.13)
VTETh ;M_ ET Mj ET;Mj_M_

= Z E a ij(V,'-Vj') , a/j_>0 . (5.14)
VTET_,;Mi ET Mj ET;Mj =_Mi

This latter equation implies a local discrete maximum principle. More precisely, let adj_(Mi) denote the set

of vertices adjacent to Mi with nonzero weights a, then VMi E Th

min Vj* < Vi* < max Vj* .
Al.i eadj_ (Mi) -- -- Mj eadjo (Mi)

Examining the time dependent problem in the scalar (m = 1) ease, one easily derives a similar maximum

principle result for n > 0

rain (Vj n, Vin) < Vin+l < max (V n, Vin)
M iEadj_ (M_) -- -- Mj Eadj_, (Mi)

under the CFL-like condition at each tn

ICl 
At < max

-- V.M, eTa ZVTETh;M, ET ZMjeT;Mj=_M, --K'i+,TNTK;T
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6. Energy and Entropy Analysis of the System N-Scheme. In this section, an energy analysis

of the system (m __ 1) N-scheme is undertaken as first described in Barth [5]. As a motivational exercise, we

first consider analysis of the linear (constant coefficient) form of Eqn. (2.4). We then analyze the energy and

entropy consequences of the N-scheme for nonlinear systems of conservation laws. This latter analysis shows

that the N-scheme using symmetrization variables and numerical quadrature satisfies an entropy inequality
in the limit of mesh refinement.

6.1. Energy Analysis of the System N-Scheme: the Linear Case. In the linear system case,

the numerical scheme (5.12) can be viewed abstractly as an Euler explicit integration of the semi-discrete

matrix equation

DV,t +LV = 0 (6.1)

where V E IRs is a vector representing the nodal degrees of freedom, D E IRs×s a symmetric positive definite

(SPD) matrix, and L E IRs×s a general real-valued matrix. The energy evolution is then given by

l(VTDV).t +VTLV 0 L = (L+LT)/2 (6.2)o

where L denotes the symmetric part of L. Energy boundedness is demonstrated if it can be shown that the

symmetric part of L is positive semi-definite, i.e. for all V

VTL V = VTL V _>0 . (6.3)

Now suppose that this abstract matrix equation originatesfrom a discretizationprocedure such as the

N-scheme. The totalenergy associatedwith the matrix L can be computed and assembled on an element-

by-element basis

vT/,v = _ VTLT VT (6.4)
TETh

where VT and LT denote the nodal degrees of freedom and element matrix associated with a simplex

T. Consequently, to demonstrate energy boundedness of the abstract linear system it is sufficient but not

necessary to show

vTTLTVT>_0 , VTeTh • (6.5)

Turning attention now to the N-scheme. For ease of exposition, we will show the development in two

space dimensions but the generalization to IRd will be clear. Next, consider the linear (constant coefficient)

form of Eqn. (2.4). In this linear model, the conservation and symmetrization variables are related by the

constant matrix ,40, i.e.

Wi=-_oVi , VMiET_ . (6.6)

The SPD matrix D appearing in (6.1) would then be block diagonal with m x m blocks corresponding to

each vertex Mi of the form ICliA0. In two space dimensions, the system N-scheme decomposition (5.11)

reduces to the following space discretization for a simplex T with local numbering T(M1, M2, M3)

LTVT= @2 = ._+ + K + [N] h'2 V2 (6.7)

with R + symmetric and [N] a block diagonal matrix [N] = diag(N, N, N). The symmetric part of L is given

by

R? 1 T 1 R,+]T

[,T = K+ +-_ K + [N] /_2 +2 K2 [N] ._+ j (6.8)K+ K+ /_a K3 K+
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Examining rows of LT or LT, observe that the row sum is nonzero. However, we can add the following block

diagonal matrix to the element matrix L

__ _ (6.9)
R3

so that rows and columns of the LT sum to zero. These additional terms have no impact on the constant

coefficient discretization of the Cauchy problem. These terms all vanish identically when summed for all

elements sharing a mesh vertex since the geome_y surrounding the vertex is closed. Hence forward, we will

include these terms in our definition of LT and LT yielding

IRI3

1

+_

Next, rewrite off-diagonal term such as

in the following form

K + IN] K_- ]g + /_-

1 R1

R;
[N]

T

[N] R2

R_

K+ - K + [NI K +

/_+ g + g +

-K 2 IN] -R_-

-R_- -R;

Consequently, LT can be rewritten as

1 [_'1R_

1 [K++_

1 I -R_-+_

T

K +

K+
(6.10)

(6.11)

Note that the first term appearing on the right hand side of Eqn. (6.11) gives rise to a quadratic form

with positive energy so our only concern is the remaining terms on the right hand side on this equation.

Before proving positive semi-definiteness of (6.11), we first review a simple result concerning the spectra of

noncommuting matrices.

LEMMA 6.1. The nonzero parts of the spectrum of AB and BA are identical for all matrices A E R mxn

and B E Rnxm •

Proof. Omitted, see for example Axelsson [3] p. 69. ['1

Next we prove positive semi-definiteness of a specialized matrix in product form.

LEMMA 6.2 (Golub[12]). The matrix

L = [a00][A][A]T0 B 0 - B N B , N=[A+B+C] -x
0 0 C C C

is positive semidefinite for all A, B, C E R '_x'= symmetric positive definite.
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Proof. Let

and congruence transform L

A 0 0]
Z= 0 B 0

0 0 C

[, ] [a,][A,2]TZ-1/2LZ -1/2 = In - B 1/2 N B l/: = Ian - P.

I, C x/2 C 1/2

Next use Lemma 6.1 concerning the spectra of nonsquare matrix products. In the present case Lemma 6.1

this implies that

([A,2][AX,2]T) )Eigenvalues B 1/_ N B 1/2 = Eigenvalues N1/2(A + B + C)N 1/2 + 2n zeros

CII_ cll2

Eigenvalues(N(A + B + C)) + 2n zeros

= Eigenvalues(I,_) + 2n zeros

and consequently

Ian - P

is positive semidefinite. From this result it follows immediately that

L = Z1/2(Ian - P)Z 1/2

is also positive semidefinite. ['1

(6.12)

The extension to A, B, C _>0 and (A + B + C) > 0 follows by considering the perturbed matrices A, = A+ eI,

B, = B + eI, and C_ = C + eI and letting e J, 0.

Returning to the system N-scheme, we now can prove the main result of this section.

THEOREM 6.3. The system N-scheme discretization of the constant coefficient form of (2.4) is energy

bounded with the element energy matrix (6.11) positive semi-definite, i.e. vT/,v > 0.

Proof. Since N = [K+ + -K+ + _-+]-I = [__¥ _/_2 - _-]-1, the result follows immediately after

application of the Golub lemma to (6.11) together with Eqn. (6.4). I'I

6.2. Energy and Entropy Analysis of the System N-Scheme: the Nonlinear Case. In this
section, an energy analysis of the N-scheme is presented for nonlinear systems of conservation laws. This

energy also represents an approximation to the entropy inequality equation (2.2), see Hughes [15] or BErth

[6, 4] for related entropy analysis of finite element discretizations. Specifically, we show convergence to
an entropy inequality for the N-scheme with exact integration. We then show that with sufficient order

numerical quadrature that the entropy inequality is retained in the limit of mesh refinement.

LEMMA 6.4. Under the assumptions of Theorem 3.1, the limit v of vh defined by the conservative system

N-scheme satisfies

d

fo.(v)+ Z (6.13)
dt f_ i=1

Proof. Consider the system N-scheme decomposition (6.7). Unlike the constant coefficient linear case,

the diagonal term (6.9)

-5
K3
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can not be added to the element matrix LT in the nonlinear case without changing the discretization.

Consequently, the energy associated with the simplex T(M1,..., Md+l) must include this term, i.e.

1 a+l

VTLTVT = _ _] VTKiVi + Q(V1,..., va+,) (6.14)
i=1

where the quadratic form Q is positive by Theorem 6.3. The task is to show that in the limit h --_ 0 that

the first right-hand-side term appearing in Eqn. (6.14) converges to

d

fo E a'(.) _, as (6.15)
i=I

the integral of the entropy flux. Recall that V describes the nodal degrees of freedom in the piecewise linear

space vh E Vh. In a simplex T we have

d+l d+l

5:v;_,v_: _: (vr_,v_-vr_vl)
j=l

where lj_ denotes the vector from vertex Mk

Pj E R m such that

that is

(6.16)

j=2

d+l

y_(Vj 3V vI)TKj(Vj -- Vl) (6.17)

j=2

dA-1

_-'_(Vj -b Vl)Tffj (Dvh "_,) (6.18)
j=2

to /!/Ij. Thus we can define (by identification) the vectors

d+l d O*h

j=l j=l _Xj

d+l

1=2

where we _j is the j-th component of _j. Consequently, we obtain

1. (- = Aj (Vh) _x_-xj_
j=l j=l

where G is the entropy flux associated with v and

Hence, eT can be estimated,

dx -t-_T =

d

i=1

{( ).}l.
j=l

1/2

:{STC:_,[_i-vr_,<v.>])'':}'

(6.19)

dx . (6.20)

{ /T lIDvall_ dx } 1/2
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because DVh is constant in each simplex T. Proceeding as in Lemma 4.1, we see that the function w defined

by (see Figure 6.1 for a 2D illustration)

wit = _ (v_ + v 5) xo,_
[i,j] edge of T

where XD is the characteristic function of the set D converges in L_octo 2v when h -_ 0. By definition of

Dr2 2

3
Dl3

D23

FIG. 6.1. Geometrical elements for the definition of w

KS, we have

d+l d

_i(V5 - V_) = ITI _ AsOVha.
J =2 J =1 _Xj

for any bounded domain Q c R d. This ends the proof. [3

1/2

dx _ 0

THEOREM 6.5.

satisfies the entropy enequality

d

for any smooth _ > O.

Pro@ The first observation is

dx+ < 0.

dH(v) dw (6.23)
dt - ¢pv . -_ .

The second observation is that in a simplex T(MI, M2, Ma)

d+l d+l d+l

i=1 i=1 i=1

Under the assumptions of Theorem 3.1, the limit v of vh defined by the system N-scheme

(6.22)

(6.24)

thus we see that

_-_(_ -) Ova _.OVh (6.21)_jKj _xj ----ITI , Ox 5
j=l \1=2 "=

Due to the boundedness of vh, we can apply the dominated convergence theorem and equation (6.21) thus

yielding
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v_+_2+v3 Then consequently,where qoa = 3 •

d-+-I

= + o(v,,.."
j=1 )=i

(6.25)

where Q is positive. Thus we get, because qoj, qoa > 0

_> vT ,vj + -  a)vT ,
i:l j=l i:1

(6.26)

The last observation is that in a simplex T

d+l

< C h]]D_p]]oo _ ]]Vi[] ]]Cijl] [[V/--Vjl]
i,j=l

(6.27)

where C is a constant depending on the mesh only and C d = K+Nff[_. From this we conclude that

_=(_ - <_C'h_IID_II_IIV,- V_II
(6.28)

where C' depends on maxi [[Vhll which is uniformly bounded by assumption. Since the mesh is regular,

h 2 < C"ITI for a well chose constant independant of the mesh. Lemma 4.1 shows that B --+ 0 when h _ 0.
Using the same arguments as in Theorem 3.1 and Lemma 6.4, we conclude that the semidiscrete scheme

satisfies an entropy inequality. I-I Combining the previous results of this section together, we finally conclude

with the following Corollary:

COROLLARY 6.6. Under the assumptions of theorem 3.1 and 6.5, the system N-scheme associated with

the quadrature formula (2.20) satisfies in the limit h --_ 0 an entropy inequality for any smooth ¢p > 0

d O_pGi(v) 1 (6.29)

7. Numerical Results. In this section, numerical validation of Theorem 3.1 is provided via N-scheme
calculation of smooth and discontinuous solutions of a scalar conservation law and system Euler equations

for subsonic, transonic, and supersonic blunt body flows. Recall that Theorem 3.1 states, under classical

assumptions, that numerical solutions of the N-scheme with adaptive quadrature converge to a function for
which the residual

( d )/Q ¢,tw(x, t) + _ ¢,ifi(w(x, t)) dxdt + ¢(x, O)wo(x)dx
x[0,r] i=1

may not vanish as in the classical Lax-Wendroff theorem. Instead, the residual is bounded by a measure-

valued function with strength independent of the mesh size h such that the measure strength can be made

arbitrarily small by making the number of quadrature points sufficiently large. As a practical matter,

as will be shown in Sect. 7.1, the convergence is very rapid when derivatives of the flux components,

fi, are well behaved. In addition, an adaptive quadrature scheme is proposed and tested which greatly

reduces the computational cost of the N-scheme with quadrature. The adaptive quadrature strategy uses a

simple estimate of solution smoothness to select the number of quadrature points thus producing an overall
economical discretization method since most elements need only use one interior quadrature point (even for

second order accurate extensions [1]).
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7.1. 1D Conservation Law. Consider the scalar Cauchy problem (1.1)

u,t + (f(u),z = 0 for (x,t) E R x IR+u(z, 0) = uo(x)

First observe that the upwind scheme (1.5) of Sect. 1 on a uniform mesh can be rewritten as

duj rb+ '_-f+W2) 0A2Cj W "q- ( j--1/2 "l-

with

_I1_-+1/2= (a)-f+ll2(Uj+l -- uj) , I+./+1/2 = (a)++ll2(Uj+l -- uj)

(7.1)

(7.2)

and from Sect. 1

/(uj+l) - f(uj) fl(ab+,/_ --- = a(Tru(_))) d_ , 7ru(_) = uj + _ (uj+t - uj) . (7.3)
goUj+ 1 Uj

Note that on a nonuniform mesh, Axj is replaced by the lumped average Ax s = (Axj_l/2 + Axj+l/2)/2
:t:

although other possible definitions are possible, e.g. Axj (P+-1/2 AxS-1/2 + Pj-+I/2 AXj+l/2), Pj_:I/2 --

(1 4- sgn((a)S_:l/2))/2. Consistent with the previous analysis, our first numerical experiment implements a
variant of this residual distribution upwind scheme of the form

du s + + : o
with residual distribution calculated via numerical quadrature

NQ NQ

figj+i/2= _ a(_u(qt))-(Us+l - u_), _+s+_/2 = __, _l aOru(q,))+(US+l- us) • (7.5)
/=1 I:1

The scheme (7.4) would be conservative if

_j'+l/2 + fig+S+l/2 = f(us+_) - f(us)

but due to the use of numerical quadrature

NQ I" 1

figj+i/2 + fig+ f0s+112= _ _ a(_u(qt)) (us+_- u_) # a(_u(_)) #_(us+_ - us) = f(uj+l) -/(-#)
I----1

Even so, from Theorem 3.1 we still expect convergence to weak solutions provided sufficient order numerical

quadrature is employed.

7.1.1. ID Numerical Experiment: Fixed Gauss Quadrature on Nonuniform Mesh. We first

test the scheme (7.4) with Euler explicit time advancement for the smooth flux formula and initial data

f(u) = e" , uo(x) = sin(2rrx)

on successively refined meshes (Ax = 10 -2, (1/2) 10 -2, (1/2) 2 10 -2, (1/2) 3 10 -2 and (1/2) 4 10-3). To

eliminate superconvergent behavior of measured error norms due to mesh uniformity, we make the spacing

between successive mesh points alternate between the values Ax and Ax/2. In evaluating the distribution

formulas (7.5), NQ-point Gauss quadrature formulas are used with 1 < NQ < 3 to validate Theorem 3.1.

Selected results are given in Table 7.1 which tabulates L t, L 2 and L _ norms of the difference between the

numerical solution u_ given by standard conservative scheme (7.1) and the nonconservative u_, c provided

by the scheme (7.4) on meshes with decreasing Ax at time nAt = 0.5 (after the shockwave has appeared).

Figures 7.1(a-d) graph the solutions before and after the occurence of the shockwave for the conservative

scheme and the nonconservative schemes using 1, 2, 3, 4 and 5 point Gauss quadrature on a mesh containing

100 unknowns. All the solutions are virtually indistinguishable before the occurrence of the shockwave. It

is only after the solution becomes discontinuous that the importance of sufficient order Gauss quadrature

is visually seen and multiple quadrature points needed. The tabulated results reveal two effects addressed

by the theory: (1) the L 1 error eventually stagnates when h -} 0 for fixed order quadrature and (2) the L 1

error decreases very rapidly with increasing NQ. In fact, upon closer inspection, this error decreases much

more quickly than (p + 1)! typical of Gauss quadrature, see Figure 7.2.
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meshsize,Ax
0.100 10 -1

0.500 10 -2

0.250 10 -2

0.125 10 -2

0.100 10 -1

0.500 10 -2

0.250 10 -2

0.125 10 -2

0.I00 10 -l

0.500 10 -2

0.250 10 -2

0.125 10 -2

Ll(unc - uc)
0.6353110 -2
0.67850 10 -2

0.70532 10 -2

0.72127 10 -2

0.12402 10 -4

0.14468 10 -4

0.15648 10 -4

0.16296 10 -4

0.28748 10-7

0.27937 I0-_

0.27315 I0-_

0.27017 10-_

L:(u.o - uc)
0.25617 10 -I

0.38770 10 -1

0.55376 10 -1

0.73250 10 -1

0.50233 10 -4

0.83082 10 -4

0.12657 10 -3

0.18732 10 -3

0.42536 10 -T

0.44600 10 -7

0.48398 10 -_

0.57222 10 -7

L°°(u.c - Uc)
0.15162

0.35783

0.67416
0.10491 101

0.30796 10 -3

0.74799 10 -3

0.14325 10 -2

0.33085 10 -2

0.23256 10 -8

0.35562 10 -6

0.49170 10 -6

0.93983 10 -6

#quad pts, NQ

TABLE 7.1

Numerical results for 1D Cauchy problem. Numerical error between the conservaLive calculation uc and the nonconserva-

tire calculation unc using NQ point Gauss quadrature.
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(a) Solution before the shockwave.
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x

(b) Solution after the shockwave.
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.......... 2 ,Ix)Jnl _uadratu_ '*_

- - 3 poimquadr=u_ "_

_._ _.po_,_o_-_=,_

-'-0.5 -- 5 point quzd_tum
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x

(c) Solution before the shockwave, zoom.

0.5

= 0

-0.5

-1
0.8 0.8
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........ 2 point quadrata¢ '\

- - 3 point quadrau_ '_

-- - - 4 point quadr',_um ,,_

--- 5 po_ qu_mu,e "x,k
'k

'%___

L I

0.85 0.9 0.95

x

(d) Solution after the shockwave, zoom.

FIG. 7.1. Numerical N-scheme solutions ]or (1.I) and u O = sin(27rih). Solutions before the formation of a shockwave ((a)

and (c)) and solutions after the formation of a shockwave ((b) and (d)).



10 "d

10-'

10-*

104

0 -lo i . ,

1 2 3

25

7.1.2. 1D Numerical Experiment: Adaptive Gauss Quadrature on Nonuniform Mesh. The

results of the previous 1D numerical experiment of Sect. 7.1.1 show very negligible sensitivity to the num-

ber of quadrature points whenever the solution is smooth. This observation suggests the following simple

adaptive quadrature scheme which uses a nondimensional measure of solution gradient to estimate solution
smoothness:

* If ui+l - ui +
max(luil, lug+aI) < V/-A-_/L' then the solution is smooth. Compute _bj+l/2 and ¢_-a/2 with

NQmin point quadrature.
+

• Else, compute _bj+l/_ and _b_-+l/2 with NQm_x point quadrature.

Repeating the calculations of Sect. 7.1.1, Table 7.2 tabulates the corresponding numerical results using

the adaptive parameters NQmin = 1 and NQ,_,x = 2,3 at the time T = 0.5 (after the formation of the

shockwave). Note that in these calculations, nearly all cells required only NQmin -- 1 quadrature point

mesh size, Ax
0.100 10 -1

0.500 10 -2

0.250 10 -2

0.125 10 -2

0.100 10 -1

0.500 10 -2

0.250 10 -2

0.125 10 -2

L 1(uric - uc)
0.39005 10 -4

0.27998 10 -4

0.21424 10 -4

0.18526 10 -4

0.27007 10 -4

0.13642 10 -4

0.57902 10 -5

0.22238 10 -5

L2(unc - Uc)
0.11351 10 -3

L_(un_ - uc)
0.69521 10 -a

0.12200 10 -2

0.18236 10 -2

0.36673 10 -2

0.13526 10 -3

0.16100 10 -3

0.20768 10 -3

0.64119 10 -4

0.52260 10 -4

0.34398 10 -4

0.20259 10 -4

0.38681 10 -3

0.47082 10 -3

0.38955 10 -3

0.35797 10 -3

NQmm NQ,,a=
1 2

1 2

1 2

1 2

1 3

1 3

1 3

1 3

Error between the

quadrature.

conservative scheme and

TABLE 7.2

the adaptive quadrature scheme at t = 0.5 using 1, 2, or 3 point Gauss

with only 3-5 cells requiring NQmax number of quadrature points. This results in a notable savings in

computational resources. These numerical results indicate that the quality of the solutions is compatible

with those of Table 7.1 with some reduced accuracy that would be improved by a more stringent criteria for

quadrature adaptation. We have not run this case with a second order upwind scheme, but we believe that

the same strategy could be used since quadrature with NQ,nln = 1 points is second order accurate. In fact,

it can be shown formally that to recover second order accuracy, the "exact" total residual _j-+1/2 + _+j+l/2
needs only be recovered up to second order accuracy to have a second order accuracte scheme, see [1]. Finally,

we note that other tests have been carried out, for example with the flux f(u) = exp(u 2) with similar results.
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7.2. 2D Conservation Laws. Next, we present 2D solutions of the Euler equations of gasdynamics

assuming a perfect gas relationship. Throughout the remaining 2D numerical experiments, standard quadra-

ture formulas for simplicies are utilized with weights and quadrature point locations as given in Table 7.3,

see also [29].

NQ
1

3

6

16

Accuracy Barycentric coordinates, ql weights, wt

O(h 2) (1/3, 1/3, 1/3) 1/2

O(h 3) (1/2, 1/2, 0) 1/3

O(h 4) (0.816847572980459,0.091576213509771,0.091576213509771) 0.109951743655322

(0.108103018168070, 0.445948490915965, 0.445948490915965) 0.223381589678011

O(h _) (1/3, 1/3, 1/3) 0.225

(0.797426985353087, 0.101286507323456, 0.101286507323456) 0.125939180544827

(0.470142064105115, 0.470142064105115, 0.059715871789770) 0.132394152788506

O(h z) (0.057104196114518,

(0.276843013638124,

(0.583590432368917,

(0.860240135656220,

(0.057104196114518,

(0.276843013638124,

(0.583590432368917,

(0.860240135656220,

(0.057104196114518,

(0.276843013638124,

(0.583590432368917,

(0.860240135656220,

(0.057104196114518,

(0.276843013638124,

(0.583590432368917,

(0.860240135656220,

0.065466994555014,

0.050210123211370,

0.028912084224389,

0.009703785126946,

0.311164552244357,

0.238648659731443,

0.137419104134574,

0.046122079906452,

0.631731251641125,

0.484508326630433,

0.278990463496509,

0.093637784437328,

0.877428809330468)

0.672946863150506)

0.387497483406694)

0.130056079216834)

0.631731251641125)

0.484508326630433)

0.278990463496509)

0.093637784437328)

0.311164552244357)

0.238648659731443)

0.137419104134574)

0.046122079906452)

0.877428809330468,0.065466994555014)

0.672946863150506,0.050210123211370)

0.387497483406694,0.028912084224389)

0.130056079216834,0.009703785126946)

0.047136736386776

0.070776135796160

0.045168098564740

0.010846451821051

0.088370177044746

0.132688432214078

0.084679449043492

0.020334519128958

0.088370177044746

0.132688432214078

0.084679449043492

0.020334519128958

0.047136736386776

0.070776135796160

0.045168098564740

0.010846451821051
TAnLE 7.3

Quadrature points and weights. The missing quadrature points are obtained by cyclic permutation as needed.

The significant computational savings obtained by adaptive numerical quadrature in 1D suggest using
a similar strategy in higher space dimensions were the savings is even more dramatic. For any simplex T, a

criterion must be developed which determines if the numerical solution is locally smooth or not. For efficiency

reasons, this decision should ideally be made from the information available in T only. Let sj denotes the

(physical) entropy at node Mj and hT the maximum length of the edges of T. We have implemented the
following heuristic criterion for use in the adaptive quadrature strategy:

• If minM_,M_eT -- 1 _> V/_/L, then the solution is smooth. Compute the N-scheme decomposi-

tion using NQmin point quadrature.

• Else, compute the N-scheme decomposition using NQm,,: point quadrature.

7.2.1. 2D Numerical Experiments: Euler Equations on Mesh Triangulations. We first study

the effect of the loss of conservation and the influence of the number of quadrature points for the N-scheme

with quadrature. To achieve this goal, we have selected three test cases that are simple yet representative of

different flow regimes: a subsonic flow test case, a transonic flow case with mild shockwaves, and a supersonic

flow case over a blunt body which produces a strong bow shockwave. The solutions are compared to those

obtained by the reference conservative N-scheme using Z variables. Our intent is not to assess the accuracy

of the solution with respect to a mesh-converged solution, but rather to see how the loss of conservation

affects the structure of the solution compared with the reference solution on the same mesh. In particular,

we qualitatively and quantitatively compare the overall structure of conservative and nonconservative N-

scheme solutions by examining representative cross-sectional and/or boundary data plots. Additionally,

we examine the behavior of numerical solutions with adaptive mesh refinement for the cases containing
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discontinuitieswhereexactdiscreteconservation is normally very important as it insures proper solution

jump approximation. Ideally, it would be illuminating to perform uniform mesh refinement in evaluating

the adaptive quadrature N-scheme as h _ 0. This was done in the 1D calculations. Unfortunately, this is

prohibitively expensive in 2D so we rely on multiple levels of adaptive mesh refinement to approximate the

h _ 0 process.

7.2.2. Subsonic Flow Case. This case is taken from Dervieux [9]. It is a flow over a cylinder with

a Mach number at infinity of Moo = 0.38 computed on a relatively coarse mesh containing 3010 simplicial

elements. Under these flow conditions, the flow remains subsonic and devoid of solution discontinuities.

Figures 7.3(a-d) show Mach number isolines for N-scheme calculations using 1, 3, and 7 point quadrature as

well as the N-scheme using the conservative Z variables. Figure 7.4(a) shows Mach number isolines for the
N-scheme using the adaptive quadrature procedure described earlier with parameter values NQmi,_ = 1 and

NQm,_x = 3. Figure 7.4(b) provides a quantitative comparison of pressures on the surface of the cylinder

using all the fixed and adaptive quadrature formulas as well as the conservative Z variable N-scheme. As

(a) 1 point quadrature (b) 3 point quadrature

(c) 7 point quadrature (d) conservative Z variables

FIG. 7.3. (a-d) Math number isolines for N-scheme calculations using fixed I, 3, and 7 point quadrature and the conser-

vative Z variables for the subsonic cylinder problem, Moo = 0.38, on a simplicial mesh containing 3010 elements.

expected, all calculations show no discernible differences. This results confirm our analysis if we assume
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(a)1-3pointadaptivequadrature

1.2

• [ o I point quadrature

] _ 2 point quadrature
1.1 _ / z_7 point quadrature

/ - - con._,ati_,Z?,nabl. ._

1

0.9

0.8

0.7

I , L , i
0"_-0.6 -0.3 0 0.3

x location

(b) Pressure along top-bottom line of symmetry

0.6

FIG. 7.4. (a) Mach number isolines for N-scheme calculations using 1-3 point adaptive quadrature and (b) the resulting

pressure along top-bottom line of symmetry for the subsonic cylinder problem, M_ = 0.38, on a simplicial mesh containing

3010 elements.

that the support of the measure # is concentrated near discontinuities in the solution. Since there are no
discontinuities in this flow and our quadrature formulas are at least second order accurate using single point

quadrature, a Lax Wendroff theorem is satisfied up to O(h2).

7.2.3. Transonic Flow Case. The second 2D test case consists of transonic flow, -Moo = 0.85, over

the NACA0012 geometry with flow incidence of 1 ° computed on a baseline simplicial mesh containing 5050
elements. The flow solution consists of both upper and lower surface shockwaves. Due to the 1° flow

-1.5

-0.5

8

0.5

1.5

• -- --_- _ r- ..... i -1.5

-0.5

0.5

l o 1 point quadrature

o 3 point quadrature i

a 7 point quadrature I

-- conservative Z variables ]

i
i i L , J

02. 0.4 0.6 0.8 1

x / chord

(a) Fixed 1,3, and 7 point quadrature and conservative
Z variables

o 1 level mesh adaptation, 1-3 point adaptive quadrature
2 levels mesh adaptation, 1-3 point edapOve quad_slum

z_ 3 levels mesh adaptation, 1-3 point adap_ve quadrature
-- conservative Z variables, 3 levels mesh adaptation

i , i r1.50 02 0.4 0.6 0.8

x/chord

(b) Three levels adaptive mesh refinement

with 1-3 point adaptive quadrature

FIG. 7.5. Surface pressure coe_icient distribution on the NACAO012 airfoil using the N-scheme with (a) 1, 3, and 7point

quadrature and the conservative Z variable and (b) three levels of adaptive mesh refinement together with 1-3 point adaptive

quadrature.

incidence, the upper surface shockwave is notably stronger than the lower surface shockwave. N-scheme

calculations were performs using fixed 1, 3, and 7 quadrature point formulas as well as the conservative

Z variables on the baseline simplicial mesh containing 5050 elements. In addition, three levels of adaptive
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mesh refinement were performed and solutions computed using the adaptive quadrature N-scheme with

NQr, in = 1 and NQmaz = 3. Surface pressure coefficient values are graphed in Fig. 7.5(a) and Mach

number isocontours shown in Figs. 7.6(a-d) for N-scheme calculations using 1, 3, and 7 point quadrature
and the conservative Z variables on fixed mesh composed of 5050 elements. Similarly, surface pressure

coefficient values are graphed in Fig. 7.5(b) and Mach number isocontours in Figs. 7.7(a-d) using three
levels of shockwave-adapted mesh refinement together with the 1-3 adaptive quadrature point form of the

N-scheme. Although the Mach number isocontour plots look visually very similar, the Fig. 7.5(a) graph

/

(a) 1 point quadrature (b) 3 point quadrature

/ /i

(c) 7 point quadrature (d) Conservative Z variables

FIG. 7.6. (a-d) Mach number isolines for N-scheme calculation using fixed I, 3, and 7point quadrature and the conservative

Z variables for the transonic NACAOOIZ problem, Moo = 0.85 and 1 ° flow incidence, on a simplicial mesh containing 5050

elements.

of the pressure coefficient on the body of the NACA0012 airfoil is more revealing. This graph shows that

the location of the shockwaves depends on the number of quadrature points. Specifically, the use of single

point quadrature leads to a significant change in shockwave location when compared to 3 and 7 point

quadrature as well as the conservative Z variable scheme. For this particular flow, the effect of the measure

# is not sufficiently reduced using one quadrature point but using three or more quadrature points seems
sufficient to reduce conservation error less than truncation errors present in the conservative N-scheme. The

comparability of the 3 and 7 point quadrature with the conservative Z variable scheme once again suggests
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(a)1 level 2p_1-3point

(
(a) 3 levels adaptive mesh refinement, (b) 3 levels adaptive mesh refinement,

1-3 point adaptive quadrature conservative Z variables

FIG. 7.7. (a-d) Mach number isolines for N-scheme calculations using 1, 2, and 3 levels of adaptive mesh refinement

and 1-3 point adaptive quadrature and the reference conservative Z variables on the 3 level refined mesh. for the transonic

NACAO012 problem, Moo = 0.85 and 1 ° flow incidence.

an adaptive quadrature implementation. The calculations presented in Fig. 7.5(b) are intended at checking

whether the errors generated by the loss of conservation on refined meshes dominate the truncation error,

even in an adaptive quadrature setting. With adaptive mesh refinement, all the computations in Fig. 7.5(b)

are very comparable which further validates Theorem 3.1 and our adaptive quadrature strategy.

7.2.4. Supersonic Blunt Body Flow. The last 2D test case consists of supersonic flow, Moo = 3.5,

over a circular cylinder geometry computed on a baseline simplicial mesh containing 4075 elements. The flow

solution consists of strong bow shock forward of the cylinder geometry. Figures 7.8 (a-d) show Mach number

isocontours for numerical solutions computed using 1, 3, and 7 point quadrature and conservative Z variable

forms of the N-scheme. In addition, Mach number isocontours for 1-3 and 1-7 point adaptive quadrature

N-scheme calculations are shown in Figs. 7.9 (a-b). Both fixed and adaptive quadrature calculations are

compared in Fig. 7.9 for pressure data along the top-bottom line of symmetry. This latter figure shows a
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(a)1pointquadrature (b) 3 point quadrature (c) 7 point quadrature (d) conservative Z variables

FIG. 7.8. Mach number isolines for N-scheme calculations using fixed 1, 3, and 7 point quadrature and the conservative

Z variables for the supersonic cylinder problem, M_ = 3.5 on the baseline simplicial mesh containing 4075 elements.

/
l

._ _,\ L/J_
i ,

( (

(a) 1-3 point adaptive

quadrature

(b) 1-7 point adaptive

quadrature

50

40

30

o- -- o 1 point quadrature

[_ 3 point quadrature

z_ 7 point quadrature

c. 1-3 point adaptive quadrature

× 1-7 point adaptive quadrature

conservative Z varab es

20

10

f

D
C.

-011 : :- - .j--

-2 -1.75 -1.5 -1.25
x location

-1

(c) Pressure along line of top-bottom symmetry

FIG. 7.9. (a-b) Mach number isolines for N-scheme calculations using 1-3 and 1-7 point adaptive quadrature and (c)

comparison of all fized and adaptive quadrature N-scheme calculations along the top-bottom line of symmetry for the supersonic

cylinder problem, Moo = 3.5 on the baseline simplicial mesh containing 4075 elements.
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large difference between the one quadrature calculation and the other calculations. This difference is also

clearly seen in the Mach number isocontour plot, Fig. 7.8(a). Perhaps more importantly, Fig. 7.9 shows that

the 3 point quadrature (and 1-3 point adaptive quadrature) also produced incorrect shockwave locations on
the baseline mesh, although the error is much smaller than that obtained using 1 point quadrature. Recall

that for the transonic flow problem, 3 point quadrature was of sufficient order on the baseline and adaptively

refined meshes for computing correct shock locations. Using 7 point fixed quadrature and 1-7 point adaptive

quadrature yields solution shockwave positions in agreement with the conservative scheme. These results

are also in agreement with the inequality (3.8) of Theorem 3.1, since the strength of the measure depends
on the number of quadrature points but also on the supremum of a norm of higher derivatives of the flux,

D_+lf, v. Estimation of this norm is difficult, but it is reasonable that this number tends to infinity as the
maximum Mach number also tends to c_. However, since the flux f is analytical in v and the Mach number

finite, the right-hand-side of (3.8) still converges to zero, albeit more slowly.
Next, we examine the effect of adaptive mesh refinement. Figures 7.10(a-c) show Mach number iso-

contours for the N-scheme calculations using 16 point quadrature, 1-16 point adaptive quadrature, and

conservative Z variables. Figure 7.11 shows a graph of Mach number along the top-bottom symmetry line
for these same schemes as well as 1-7 point adaptive quadrature. Surprisingly, Fig. 7.11 shows small differ-

(a) 16 )oint quadrature (b) 1-16 point adaptive quadrature (c) conservative Z variables

FIG. 7.10. (a-b) Mach number isolines for N-scheme calculations using 16 point fixed and 1-16 point adaptive quadrature

and (c) conservative Z variables for the supersonic cylinder problem, Moo = 3.5, on the baseline simplicial mesh with 3 levels

of adaptive mesh refinement.

ences in shock profile using 1-7 point adaptive quadrature for this problem with three levels of adaptive mesh

refinement. It is only with 16 point fixed or adaptive quadrature that the adaptive N-scheme solutions match

the conservative Z variable N-scheme. This demonstrates some slight dependency on the mesh parameter h

not captured by the present analysis.

8. Concluding Remarks. A number of upwind schemes are derived in quasilinear form and discrete

conservation obtained by devising specialized mean-value linearized coefficients. This approach is problematic

for systems such as magnetohydrodynamics, Euler equations with certain forms of chemistry, etc. where these

specialized mean-values linearizations may not exit in closed form. In the present analysis, we consider a

more general construction of these upwind schemes which avoids explicitly constructing these exact mean-
value linearizations. Our construction is well-tailored to systems of conservation laws with convex entropy
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2.75

1.75

0.75

o 1-7 point adaptive quadrature

a 1-18 point adaptive quadrature

z_ 16 point quadrature

-- conservative Z variables

, I , _1-0"25-2 -1.5 - -0.5

x location

FIG. 7.11. Comparison of the Mach number along a top-bottom symmetryline using the N-scheme w/th 1 - 16 point

adaptive quadrature, 16 point quadrature, and the conservative Z variables.

extension. Using the tools of weak-* convergence, a Lax-Wendroff theorem has been derived for this class

of nonconservative schemes utilizing numerical quadrature. By using sufficient order numerical quadrature,
we show that correct weak solutions of conservation laws are obtained. Numerical results confirm the basic

analysis but do show some weak interdependence of the mesh space parameter h and the required order of

accuracy of the numerical quadrature. This indicates that further investigation and quantification of this

effect is needed.
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