PERFORMANCE OF DISCONTINUOUS GALERKIN METHODS
FOR ELLIPTIC PDE’S
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Abstract. In this paper, we compare the performance of the main discontinuous Galerkin (DG)
methods for elliptic partial differential equations on a model problem. Theoretical estimates of the
condition number of the stiffness matrix are given for DG methods whose bilinear form is symmetric,
which are shown to be sharp numerically. Then, the efficiency of the methods in the computation of
both the potential and its gradient is tested on unstructured triangular meshes.
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1. Introduction. In the last decade, several discontinuous Galerkin (DG) meth-
ods have been proposed for solving non-linear hyperbolic and convection dominated
problems; see [8] for an introduction to the subject and [16] for an overview of the
state of the art. They are preferred over standard continuous finite element methods
because they provide high-order accurate approximations in contrast to traditional fi-
nite volume methods; they have a high degree of parallelism and since no inter-element
continuity is imposed, polynomials of arbitrary degree can be used on different ele-
ments, making these methods suitable for hp refinement. Over the last years, there
has been a tremendous interest in their application to problems where the diffusion
is not negligible, and to pure elliptic problems.

Recently, Arnold, Brezzi, Cockburn and Marini [2] developed a unified framework
in which theoretical stability analysis and optimal error estimates can be obtained for
virtually all the existing DG methods. However, they do not discuss important issues
that could be relevant to the practitioner. In this paper, which is part of my Ph.D.
work [12], we complete the work presented in [2] by analyzing the methods from a
practical point of view. The DG methods we consider are the following : the Babuska-
Zlamal’s penalty method [6], which is the simplest of all DG methods; the Interior
Penalty (IP) method [18, 7, 24, 3, 4], which is one of the first symmetric DG methods
for linear and non-linear parabolic problems with provable optimal error estimates;
the steady state version of the so called Local Discontinuous Galerkin method (LDG)
for purely elliptic problems [17, 13, 14], and, finally, a class of non-symmetric methods,
called Non-symmetric Interior Penalty Galerkin (NIPG) [22, 23] which includes the
method proposed by Baumann and Oden [5, 10].

We are interested in the quality and efficiency of the numerical approximation.
We compare the above methods with respect to asymptotic behavior of the spec-
tral condition number of the stiffness matrix, storage cost, rates of convergence and
accuracy of the approximation of the potential and gradient. This comparison is car-
ried out on a model elliptic problem with a smooth solution. The spectral condition
number is analyzed numerically and theoretically for symmetric DG methods. The
analysis strives in getting explicit expressions of the bounds in terms of the stabi-
lization parameters of each method. For the non-symmetric methods, we perform a
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numerical study of the spectral condition number as a function of the mesh size as
well as of their stabilization parameters.

The organization of the paper is as follows. In section 2, we present the general
formulation of a class of discontinuous Galerkin (DG) methods which contains all
the DG methods considered in this paper. In section 3, we present a theoretical
analysis of the spectral condition number for DG methods with symmetric bilinear
forms. We also carry out a numerical study of the condition number in terms of the
stabilization parameter of each method. In section 4, we describe the computational
framework in which the comparisons are made. In section 5, we perform a comparison
from a practical perspective. We analyze the storage cost and compute the rates of
convergence of the LDG, IP and NIPG, as well as the accuracy of the potential and the
gradients; unstructured meshes are used. Finally, we end in 6 with some concluding
remarks.

2. General formulation of DG methods. We describe the formulation of a
general discontinuous Galerkin method applied to the following elliptic model problem
with Dirichlet boundary conditions.

—Au=f, inQ, (2.1)
u=g, onJf,
where  is a bounded convex domain in R?.

We follow [13]; see also [2]. By introducing a new variable ¢ = Vu, we can rewrite
our model problem as a system of the form

g=Vu, inQ, (2.3)
-V-q=f, inQ, (2.4)
u=g, on 9.

We must point out that the auxiliary variable g can be eliminated from the equations
which is usually not the case for classical mixed methods.

Let 7 be a general triangulation of Q. The weak formulation is obtained by
multiplying equations (2.3) and (2.4) by smooth test functions r and v, respectively
on each element, T' of Tj,. After integrating by parts we obtain the following weak

formulation
/q-r:}{ ur-ﬁT—/uV-r, (2.5)
T aT T

/Tq-Vv:faTvq-ﬁT + /va, (2.6)

where 7iT is the outward unit vector normal to the element 7. Note that the above
equations are well defined for any functions (u,q) and (v,r) in V x M where

V={ueL*(Q) : u|, € H(T), VT € Ta},
M={qe (L*(Q)* : q|, € H(T), VT € Tp}.

Next, we seek to approximate the exact solution (u, q) with functions (up,qp,) in
the finite element space Vi, X Mp C V x M, where

Vi ={u€ L*(Q) : u|, € Pe(T), VT € Tn},
Mu={qe (L*(Q)* : q|, € P(T)%, VT € Ta},
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and the local finite element space P(T") is the set of polynomials of degree at most
k. Since for a given element T, the restrictions to T of u, and of each of the compo-
nents of g, belong to the same local space; this renders the coding of these methods
considerably simpler than that of the standard mixed methods, especially for high-
degree polynomial local spaces. The finite element solution (up,q;) is defined by
using the aforementioned weak formulation by requiring that for all T € T, and for
all (v,7) € Pi(T) x Pr(T)? we have

/qh-r :f. Uhie,r}T - AT — /uhV'T, (2.7)
T ot T
/Qh'VU=7{ V@n e,y AT + /f% (2.8)
T or T

where uy, {e,1} and an {e,r} are the so called numerical fluzes which can be thought as
being approximations to the traces of the function u and g, respectively. We assume
that these fluxes are local quantities in the sense that they depend only on the traces
to the edge e of functions un|(1 K}, qr|{T,K} and/or Vup(r,Ky, where T and K are
the elements sharing edge e. Moreover, we expect these functions to satisfy some
basic properties such as consistency, that is, @{e’T} = vy and qn {e,T} = Vu, for a
smooth function u, required in numerical methods for conservation laws and the so
called conservation property, which can be formally defined as follows. Let T and K
be the elements sharing edge e, a numerical flux o, 1 is conservative if

Oe, T = O¢K-

By suitably choosing the numerical fluxes, we obtain the DG methods we are interested
in, as shown in [2]. To define the fluxes we need to introduce some notation. Let e be
an interior edge shared by elements T' and K, we denote by 7ip and 7fig the outward
unit normal vectors on e, relative to T' and K respectively. For any function v € V,
we define the jump, [v], and the average, {v}, of v on an interior edge e, by

~ o 1
[v] = vkfik + vritr and fo} = 3 (v + vr)-

For the boundary edges we simply define set [u] = wpfiz and {u} = up. For any
function r € M, the jump and the average are defined similarly,

. . 1
[r] = rk-fixk + rir-Ar and {r} :§(T|K + 7).

In Table 2.1, we show the definition of the numerical fluxes for the DG methods
considered in this paper. Observe that, in Babugka-Zldmal’s method, u’\h{e’T} is not
conservative and @ (. 1y is not consistent. Although optimal error estimates can still
be obtained by using penalty terms of the order O(h~(?711)), these type of methods
are not suitable for practical computations, since the condition number of the stiffness
matrix is proportional to O(h~(2?*2)) which is especially bad when p > 1. In the
IP method both numerical fluxes are consistent and conservative. The method is
symmetric and achieves optimal rates of convergence for both the potential and the
gradient, using, unlike Babuska-Zldmal’s method, a penalization term independent
of the approximation polynomial degree. However, the stabilization parameter 7 is
mesh-dependent and must chosen large enough to make the bilinear form coercive. As
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for the IP, the LDG is a symmetric method and both numerical fluxes are consistent
and conservative. Unlike the IP method, the LDG method is stable for 5 > 0. In the
NIPG and Baumann-Oden’s method, the numerical flux @{C’T} is not conservative;
this renders the bilinear form non-symmetric. Note that, Baumann-Oden’s method
does not require a penalty terms. However, this lack of stabilization is responsable
for the suboptimality of the accuracy of the method. The NIPG method tries to fix
this problem by including a penalty term which is of the order O(h~?), 8 = 1 for the
NIPG1 and g8 = 3 for NIPG3.

TABLE 2.1
Definition of the numerical fluzes for various DG methods, when using approximations of degree p

method Uh{e,T} Qn {e,1}
Babuska-Zldmal Uh — # [wh]
IP fur} {Vur} — gL lun]
LDG fur} + Be - [un]  fan} — Be - lan] — 7-[un]
Baumann-Oden  {up} + 77 - Jup] {Vur}
NIPG1 fur} + iz - [ur] {Vur} — 2t [un]
NIPG3 furn} + iz - [ur] {Vur} - h—%[uh]]

3. Conditioning of the stiffness matrix. It is well known that, under certain
conditions of the uniformity of the mesh, the spectral condition number of the stiffness
matrix for the standard finite element method is of order O(h~2) where h is the mesh
size. In this section, we analyze the spectral condition number of the reduced stiffness
matrix, i.e., the matrix obtained after the elimination of the auxiliary variable q;. We
derive theoretical bounds for the DG methods with symmetric bilinear forms. The
proof relies on a Poincaré-Friedrichs-type inequality; see Lemma 2.2 of Arnold [4]. For
non-symmetric methods, namely, the method of Baumann-Oden [20] and the NIPG of
Wheeler, [21, 22] and Siili et al. [23], a theoretical characterization of the spectrum is
significantly difficult; this is why a numerical study of the spectral condition number
is mandatory.

3.1. Preliminaries. For each element T € Tj, we denote by hr the diameter of
T and by pr the diameter of the largest ball contained in T'; and we set h = max{hy :
T € Tn}. We denote by &; the set of interior edges and by £ the set of all the edges,
including the boundary edges. We assume that the triangulation is quasi regular, that
is, there exists a positive constant ¢ such that

h
VT eT, — <o
pr

Then we have the following relation between the I norm, |-|q, and the L? norm ||||(2)7Q
in V. There exist positive constant C* and C** that depend on d and o, such that
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for each u € Vi, we have

Ch'fufy < llullgg < AIC uf.
The spectral condition number k(A) of the stiffness matrix A can then be bounded
by

C
K(4) < B2, (3.1)

C1
where R* is the ratio C**/C* and Cy,Cy are positive constants, which can depend
on the mesh size h, such that for all u € V4, the bilinear form A (+,-) is bounded by

2 2
Cilullpg < A(u,u) < Collullyg -

Thus, to obtained the bound (3.1) we prove the existence of the constants C; and Cs.
These are derived from the Poincaré-Friedrichs type of inequality Lemma 3.2, and the
following standard inverse and trace inequalities.

LEMMA 3.1. For any u € Py(T) there exist positive constants C; = C1(k,0) and
Cy = Cs(k,0) such that

IVully < Crhz? lully 4, (3.2)
2 — 2
||U||0,e < C2hT1 ||U||0,T- (3:3)

As mentioned before, our results rely upon a Poincaré-Friedrichs type of inequal-
ity. This inequality will be crucial in proving the coercitivity of the bilinear form of
several DG methods. Here, we want to slightly refine that result in order to obtain
an explicit expression in terms of the parameters of a DG method.

LEMMA 3.2 (Lemma 2.2 in [4]). Letu be a function in V), for any positive number
A, there exist constants Cy1 and Cs such that

A
e < 0 (IVullg + [ 2.

where C\ = Cy + MCQ; C1 depends on Q and Cy depends on the minimum
angle bound of the mesh.

Proof. We proceed as in [4]. Let z € H?(Q)(Hg(2) be the solution of the
problem, —Az = u in  and z = 0 on 9Q. It is clear that (z, Vz) satisfies

lul2g = /Qvu-w—/g[[u]]w,

then, after an application of Cauchy-Schwarz inequality we obtain

1/2
A\ 1/2 he 2

e < (IVollo+ [ 1) (nwné,m L% ,
& e 2 0,e

where ) is an arbitrary positive parameter. A simple computation gives

%
on

2 2
IVzlloe < Cillullog:
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where C7 = C1() is the Poincaré constant. Moreover, using the following trace
inequality; see [1, 4] :

V¢ € H(T

1
H n Cy (h_|¢|iT + he|¢|§,T) )

0,e

where the constant Cy = C2(0) depends only on the minimal angle bound, we get

IValba+ [ 5

where C\ = C1 + %1”1/2}02, and C1, Cy have the above stated dependence. This
completes the proof. O

We are now ready to prove the estimates of the condition number for those meth-
ods with symmetric bilinear form. In subsection 3.2, we prove that for Babugka-
Zlamal’s penalty method, the condition number is of order O(h=(P+2)) | where p is
the approximation polynomial degree, showing that the method is not suitable for
high order approximations. In subsections 3.3 and 3.4, we analyze the IP and the
LDG methods, respectively. We show that both methods have a condition number
that is of order O(h~2), similar to the asymptotic behavior of the standard continuous
finite element. Finally, we end this section with a numerical study of the condition
number for the non-symmetric methods, subsection 3.5, where we show that the con-
dition number is of order O(h~2) for NIPG1 and Baumann-Oden’s method or O(h=*)
for NIPG3.

0z

2
671 < C)\ ”uhHO,Q )

0,e

3.2. Babuska-Zldmal’s penalty method. To obtain the bilinear form we pro-
ceed as follows. First, observe that the auxiliary variable gy, is equal to Vuy. Indeed,
for any up € Vh, using integration by parts on the right term of equation (2.7) and
the definition of 4,1}, We have

Vr € Mp, / (gn —Vup)-r = ?{ (Ohfe,ry —un)7 - = 0.
T oT

Hence, g5, = Vuy,. Inserting this expression in equation (2.8), and adding over all the
elements, we obtain

A (up,vp) = /Qvuh'vvh + /g#[[uh]][[vh]] = /vah-

The corresponding energy norm || - || is given by

n
ol = Aunw) = [Vurliq + [ g lunl® (34)

The following result shows the dependence of the condition number of A (-, -) with
the mesh size h.

THEOREM 3.3. We have

Conllunllog < Alun,un) < Cpyllunllg

where CL, = 1/ (C{‘ + %02) and C2,, = 5Ci + jates Cs where Cf,C3,C1,Cs

are positive constants that depend on Q,0, k.
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Proof. The lower bound constant C;’h can be obtained by using the Poincaré-
Friedrichs inequality, Lemma 3.2, with A = ;5. We have

2 2 7
e < & (IVulka + [ faclal?)

2P~y * * * 2P v
where Oy = C{+12.C3, and Cf = C(), C3 = C(0). Thenset C}, =1/ (C1 + %02).
The upper bound constant Cg’ , can be easily obtained after an application of
Lemmas (3.2) and (3.3) :

C nC
Awnun) < (53 + 505 hunli .

where Cy = C(k,0) and Cy = C(k,0). Hence, let C7 , = C1/h* +nCo /h*P12. 0
Using (3.1), it is then easy to see that if Ay is the corresponding stiffness matrix,

the spectral condition number x(Ay) is bounded by

2 2
* ,h * 1 7 * h P * 2p+2
k(Ap) < R 1t - R (EC& + W(jz) (Cl + TCQ> =0 (h rt+ ) .

3.3. The Interior Penalty method. We now consider the IP method. It can
be shown that the energy norm || - || associated to this method is defined

ol = Av(unw) = [Vunlig = 2 [[mlVud + [ il

THEOREM 3.4. We have

C2
2 2
Chllunlly e < Alunsun) < 72 llunliyq

where Cﬁ = 1/ (Cf + 7:%3) and Cﬁ = Cy + Can, and the constants C1,Cs,Cs are

generic constants that depend on Q,0,k.

This represents a major drawback for the IP method since the stabilization param-
eter 17 must be larger than the constant C3, which depends on the shape regularity of
the mesh and the approximation polynomial degree and is difficult to find in practice.

Proof. Using the inequality, ab < £a” + 5-b?, for any € > 0, we have

JEnivud < 5 [ 0l + 5 [ A0,

and by Lemma, (3.2), we obtain

Jwlevud < § [ Sl + &IVl (3.5)

where C = C(k, o) is a positive constant. Then,

Alunsun) > =€/ [Vunll + [ () bl

> (1= 0/) (Nunllyo + 2 [ 3wl
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The existence of the constant C% will follow by choosing 7 such that C' < € < n. The
lower bound is obtained by using Lemma 3.2, with A= (n—¢€) / (1 — C/e),

1-C
Alunw) > 2 .
A

Then C’% - I—C(;’/e, which is of the form 1/ (Ci" + nci)

To obtain the upper bound, we proceed as follows :
1
An(unun) < (1+0)[VulPg + (14 n)/ Lunl’, by 35, with e = 1,
£

Co(1 +
— ||uh||§,Q + % ||“h||3,9 , by Lemmas 3.2 and 3.3,

IA

2
2
< h_g ”uh”o,Q )

where C? = Cy +nC>, and Cy = C(k,0), C> = C(k,0) are positive constants. [
An upper bound for the spectral condition number of the stiffness matrix of the
IP method is given by

s < B (Cenc) (020 ) 5.5
where C,Cy,Cs,CY,C5 are positive constants.
In Fig 3.1, we show the condition number of the reduced stiffness matrix for the
IP method as a function of the mesh size h. A given line represents the variation of
the conditioning for a fixed polynomial degree. Using linear regression we find that
the slopes of the lines are —2.1360e + 00 for p = 1, —2.0603e + 00 for p = 2 and
—2.0276e + 00 for p = 3. Thus, the conditioning of the matrix behaves like O(h~2)
independently of the polynomial degree, showing that our analysis is sharp.

— degree=1
¥ degree=2 |-
¥ degree =3

109, (k)

11 -0.9 -0.7 -05 -0.3 -0.1 0.1 03
log,, (h)

Fi1G. 3.1. Spectral condition number of the IP method as a function of the mesh size h

The upper bound (3.6) shows that there exists a mesh-dependent positive constant
7o such that the spectral condition number x(7) has the following asymptotic behavior

KJ( ) — 0(1/77_770); 1f77_7)0 < 17
O(n), ifp>1.
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In Fig 3.2, we show the function k(n) for linear and quadratic approximations. The
plot is in logarithmic scale and has been shifted to the critical value 1y ~ 2.8666825
for p =1 and 7y =~ 6.9016989 for p = 2. Observe that x(n) grows linearly as n goes
to infinity and when 7 approaches to 7g, that is log;,(n — m0) — —oo, the curve
resembles a straight line with slope —1, meaning that x(n) = O(1/n—1no). This shows
that our theoretical analysis is also sharp for the stabilization parameter 7.

425

109, (x)
10g,, ()

325 4

275

225 y 2‘ 1‘ y y 1‘ 2‘ | | | | | | | i
“4s -35 25 -15 -05 05 5 5 5 = > » " 5 1 . 3
log,, (n -n,) log,, (n-n,)

F1G. 3.2. Spectral condition number of the IP method, using linear (left) and quadratic (right)
approzimations as a function of the stabilization parameter n

3.4. The Local Discontinuous Galerkin method. The LDG method was in-
troduced by Cockburn and Shu in [17] as a generalization of the DG method proposed
by Bassi and Rebay [9] for the solution of the compressible Navier-Stokes equations.
Recently, Castillo, Cockburn, Perugia and Schétzau [13] presented the first optimal
a priori error estimates for the steady state version of the LDG on arbitrary meshes.
Using the general formulation of a discontinuous Galerkin method, equations (2.7),
(2.8), it can be shown that a general expression for the mesh-dependent energy norm
-1 is given by

n
unlP = A Cnwn) = lanlli + [ Iuallc, (37)

where the vector function g belongs to My, and is defined by equation 2.7 in terms of
up. In general, for any discontinuous Galerkin method defined by equations (2.7) and
(2.8), we can view g, as an approximation of the gradient of the exact solution u. This
approximation is of practical interest since it could lead to a more accurate approxi-
mation of the gradient or could even converge with higher rates of convergence than
the standard piecewise gradient Vu,. Recently, Cockburn, Kanschat, Perugia and
Schétzau [15] obtained a superconvergence result for the gradient on Cartesian grids,
using gp, as an approximation to Vu. The following lemma establishes a connection
between qp and Vuy.

LEMMA 3.5. For any function up, € Vn, there exists a positive constant Cg =
C(B,k,0) such that

1
||f1h—VUh||(2),Q < Cﬂ/g h—[[uh]]Q-
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Proof. Since g, and Vuy belong to My, we can take 7 = g5, — Vuy, in equation
(2.7). Then, after integrating by parts the right term of equation (2.7) and adding
over all the elements, we obtain

lgn — Vunl.o = /5 (@ o.ry — un) (@ — Vur)]

- / (Bellan — Vun] — {gn — Vur}) - [us],

i

since

[ur] = fu}lr] + [u]{r}-

Using Cauchy-Schwarz inequality, we get

lan = Vunli < (| e 19ekan - Vr) - {an - wh}né,e) (/] 7t )

Finally, after applying the inverse inequality (3.3), we obtain the estimate

1
lan = Vunll < Cs [ -l

where the constant Cg has the stated dependence. This completes the proof. O
The following result shows that the spectral condition number of the stiffness
matrix for the LDG method is bounded by O(h~2).

THEOREM 3.6. We have

02
2 3, 2
Chollunlloq < An (un,up) < h2n llunllo.q

where Cj , = 1/ (Cg max{1, %}) and C3 , = C1 +nCa, where Cp,Cy, Cy are positive
constants that depend on 8,0,k

Proof. From the definition of the stabilizing term «, and the general expression
of the energy norm 4, equation 3.7, we have

An (unyun) = llanlZg + / [un]?.

To obtain the upper bound, we proceed as follows :

A unyun) < 2Vl g+ 2lhan = Vanli g+ [ L funl?
< 2||Vuh||OQ + Cg/ —[un]?® + / [un]?, by Lemma 3.5
< %nuhng@ + (cg+n)%||uh||§79, by Lemmas 3.2 and 3.3
< C;fg" lunllg.o
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where the positive constant Cé’" has the general form, Cg’n = Cy + nC5. and the
positive generic constant C; and Cy have the following dependence Cy = C(k, o, 3)
and Cy = C(k,0).

To prove the lower bound we proceed as follows :

lullo < C(||Vuh||(2)79 + /g hie[[u]]’z), by Lemma 3.2 with X = 1
< ¢ (2lalo + 20Vu-alle + [ 0P,
< ¢(2lmlia + 0 +0o) [ 1), by Lemma 3.5
<

1
Cs <||61h||§,9 + /h—[[u]]z),
E e

where the positive constant C, = max{2,1+ Cg}. Then we have
2 1 2 M, 12
lullog < Comax{l, 2} { llanllog + g pLunl” ) -

The lower bound constant follows by setting Cém =1/ (Cﬁ max{1, %}) O

The spectral condition number x(Ap), of the stiffness matrix A; of the LDG
method is bounded by

1
K(Ap) < R*=21p-2 = R*(Cy +nCs) (Cg max{1,5}) B2 (3.8)

In Fig 3.3, we show the condition number of the reduced stiffness matrix for the LDG
as a function of the mesh size h. Each line represents the condition number using a
different polynomial degree p = 1,2, 3. Using linear regression we find that the slopes
of the lines are —2.1109¢e + 00 for p = 1, —2.0334e + 00 for p = 2 and —2.0207e + 00 for
p = 3, thus the condition number varies like O(h~2), independently of the polynomial
degree as predicted by our theoretical analysis.

Note that, unlike the IP method, the LDG method is stable for any n > 0. Next
we show that the theoretical upper bound obtained in (3.8) is sharp. In Fig 3.4, we
plot the spectral condition number x(n) as a function of 7 on a logarithmic scale; we
have used approximations of degree p = 1,2,3. Observe that the global asymptotic
behavior is independent from the approximation polynomial degree. The stiffness
matrix becomes ill-conditioned as 1 approaches to 0, meaning that the LDG method
becomes less stable as expected. For 1 < 1, log k(n) behaves like a straight line with
slope —1, that is k(n) = O(%) Finally, for > 1, the curve behaves like a straight
line with slope 1, that is k() = O(n). Both asymptotic behaviors agree with our
theoretical analysis.

3.5. The Non-symmetric Interior Penalty Galerkin methods . This class
of DG methods includes the methods analyzed by Riviere, Wheeler and Girault [22],
Baumann-Oden’s method [10, 5, 11] and the discontinuous hp-finite element method
of Houston, Schwab and Siili [23].

Unlike the IP method, Baumann-Odens’s method is always well defined and
weakly stable in the sense used in [2]. Unfortunately, this lack of stabilization has
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—+ degree=1
=¥ degree=2
—¥- degree =3

10g,, (1)

05 I I I I I I I
-11 -09 -0.7 -05 -03 -0.1 01 03

log,, (n)

F1G. 3.3. Spectral condition number of the LDG method as a function of the mesh size h

109, ()

3F | degree=1

+= degree=2
— degree =3

F1G. 3.4. Spectral condition number of the LDG method for approzimations of degree p = 1,2,3.

a negative impact in the accuracy of the method since it has been observed that a
loss in the order of convergence for polynomials of even degree occurs on meshes with
quadrilateral elements [5]. In our experiments, using unstructured triangular meshes,
we also observe this loss of accuracy; see section 5.3. The NIPG methods of Wheeler
et al. [22] are a stabilization of Baumann-Oden’s method. Here, we consider two
cases; NIPG1 (i.e., 8 = 1, which corresponds to a stabilization term similar to that of
the LDG and IP methods), and NIPG3 (i.e., 8 = 3, which is the minimal value that
gives optimal rates of convergence in the L, norm for the potential. The analysis can
be found in [22]).

In Table 3.1, we present the spectral condition number of the stiffness matrix
for Baumann-Oden’s method, NIPG1 and NIPG3 method, on a sequence of nested
structured meshes. Since Baumann-Oden’s method is stable for polynomial of degree
greater or equal than 2, the column corresponding to p = 1 is left empty. We assume
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the asymptotic behavior of the spectral condition number is of order O(h®). In Table
3.2, we show a numerically estimate of «, which was obtained by linear regression.
Thus, the spectral condition number of the NIPG1 and Baumann-Oden’s method, is
of order O(h~2), and of order O(h—*) for the NIPG3.

TABLE 3.1
Spectral condition number for a sequence of meshes

p=1

p=2

p=3

Baumann-Oden

7.8607e+4-01
3.1155e+02
1.2509¢+03
5.0113e+03
2.0076e+04

2.0620e+-02
8.2943e+02
3.3246e+03
1.3318e+-04
5.3348e+04

NIPG1

8.0255e+-02
3.7107e+03
1.5485e+4-04
6.2639e+04
2.5338e+05

1.7005e+-03
7.0816e+03
2.8607e+04
1.1471e+-05
4.6000e+05

2.6404e+03
1.0785e+-04
4.3358e+04
1.7365e+4-05
6.9546e4-05

NIPG3

1.3979e+-03
2.5128e+04
4.1695e4-05
6.7348e+06
1.0878e+4-08

2.9992e+03
4.8332e+04
7.7360e+05
1.2375e4-07
1.9796e+4-08

4.8334e+03
7.6398e+04
1.2185e+-06
1.9481e+4-07
3.1146e+08

TABLE 3.2
Numerical estimate of the order a of the conditioning number

p=1 p=2 p=3
Baumann-Oden — -2.0001e+00 -2.0036e+4-00
NIPG1 -2.0682e+00 -2.0177e4+00 -2.0091e+4-00
NIPG3 -4.0562e+00 -4.0021e+00 -3.9946e+00

In Fig 3.5, we plot x(n) for the NIPG1 (left) and NIPG3 (right) methods for linear,
quadratic and cubic approximations. Since the NIPG is a stabilization of Baumann-
Oden’s method, the spectral condition number should remain bounded as 7 goes
to 0, for polynomials of degree greater or equal than 2. For linear approximations,
Baumann-Oden’s method is unstable, thus the condition number of the NIPG method
should grow as 1 becomes smaller. Now, for large values of 7, k grows linearly with
respect to 7, for both values of 8. This suggests an asymptotic behavior of the order
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O(n) for n > 1, similar to that of the IP and LDG methods.

109, (k)
109, (K)

o degree=1
+= degree =2
250 — degree =3

F1G. 3.5. Spectral condition number as a function of the stabilization parameter n for the NIPG
method, NIPG1 3 =1 (left) and NIPG8 8 = 3 (right)

4. Implementation issues. The implementation used for this paper is derived
from the formulation of a general DG method, equations (2.7) and (2.8). This abstract
formulation can be be easily translated into a practical modular code by using an
Object-Oriented Programming (OOP) paradigm. For this particular implementation
we have used the C++ programming language. OOP provides a natural way for
implementing a general class of DG methods in a single computational framework.
By defining an abstract base class, we can define a general DG method, while keeping
the implementation details out of the interfaces. In this abstract class, we define the
common interfaces such as routines for the generation of the stiffness matrix and right
hand side, routines for the computation of the gradients, and differential and edge
flux operators. A particular method can now be implemented as an object derived
from the abstract class. Since it inherits all the members (data and functions) from
its base class, we avoid the redevelopment and testing of existing routines.

In order to have a uniform framework, we have used the same local polynomial
space. Here, we have implemented the high-order orthogonal basis for triangular
simplices proposed by Dubiner [19].

4.1. Stiffness matrix. The global linear system obtained from the general dis-
continuous formulation is a large sparse system which involves not only the potential
but also the auxiliary variable q as well. Moreover, the resulting system is indefinite.
For these reasons it is preferable in practice to eliminate the auxiliary variable and
solve only for the potential. We must point out that this elimination is possible only
because of the particular choice of the numerical flux % . 7}, which depends only on
the variable .

The assembly of the reduced stiffness matrix can be done either by computing a
Schur complement from the global linear system or by exploiting the discontinuous
formulation at the element level. The first approach is the classical procedure used in
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mixed methods. First we obtain the matrix expression for equations (2.7) and (2.8) :

Mg + Biup = f, (4.1)
Bagn + Cup = g, (4.2)

where the matrix M is a block diagonal mass matrix. The block structure of the global
matrix is similar to that of mixed methods. Here, the stabilizing term is represented
by the block matrix C'. Since M is invertible, we can obtained an explicit expression
for g5 from equation 4.1. Using this expression in the equation 4.2 we obtain the
following linear system for the variable up

(C - BQM_IBI) up = g — B2M_1f.

The second approach, which is the one we have used in our current implementation
takes advantage of the block structure at the element level, making the assembly
process more local. This approach is suitable for refinement since we only need to
reassemble the block entries of those elements that have been marked for refinement
and the elements in their stencil. The process is similar to the Schur complement
approach, however, here, we consider the local expressions of the equations at each
element. The stiffness matrix can then be stored using a block version of a standard
scheme for storing sparse matrices such as Ellpack-Itpack scheme or compressed sparse
row.

5. Comparison of methods. In this section we compare storage cost, condition
number, rates of convergence and accuracy. To this end, we solve the model problem
2.1 with homogeneous boundary conditions in the convex domain, = (-1, 1) x
(=1, 1). The right hand side is chosen such that the exact solution is the smooth
function u(z,y) given by

U(w,y) = 4(1 - x2)(1 _ y2)60-75($+y)‘

We use restarted GMRES to solve the linear system. In order to obtain as much
precision as possible, the stopping criterion is such that the relative residual norm is
less than 10713,

5.1. Memory requirements. The size of the stencil provides an upper bound
for the storage cost of the stiffness matrix and has a direct impact in parallel imple-
mentations. It is completely determined by the choice of the numerical flux gn {e,T}-
If this flux depends on the auxiliary variable gpn, an element interacts with its im-
mediate neighbors and also with the neighbors of its neighbors, the maximum size
of the stencil is 10 (in two dimensional domains). This is the case for LDG method.
Otherwise, an element interacts only with its immediate neighbors, hence the possible
maximum size for a stencil is 4, i.e. IP, Baumann-Oden and NIPG methods.

We measure the storage cost of the stiffness matrix in terms of the total number
of its non-zero entries. Let s be the size of the stencil, d; the dimension of the
local polynomial space (we assume that the polynomial degree k is the same on each
element) and n the total number of elements in the triangulation 7j. Then, an upper
bound for nnz is

nnz < nsd;.

However, we must point out that this is a rough estimate and in practice the actual
number will be below this bound. In Table 5.1 we show the ratio of cost relative to
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the matrix with minimum storage for approximations of degree p = 1,2, 3. Since the
IP, NIPG and Baumann-Oden’s have a compact stencil this ratio should be close to 1.
However, for the LDG the ratio should be close to the theoretical bound 10/4 = 2.5.

TABLE 5.1
Ratio.

dofs 1P LDG BO NIPG1 NIPG3
16 x 3 | 1.000 1.571 — 1.000 1.041
64 x3 | 1.000 1.861 — 1.000 1.059
p=1 256 x 3 | 1.000 2.007 — 1.000 1.068
1024 x 3 | 1.000 2.081 —_— 1.000 1.073
4096 x 3 | 1.000 2.117 — 1.000 1.075

16 x6 | 1.183 1.917 1.000 1.195 1.207

64 x6 | 1.185 2.288 1.000 1.202 1.219

p=2 256 x 6 | 1.186 2.465 1.000 1.206 1.225
1024 x 6 | 1.186 2.552 1.000 1.207 1.228

4096 x 6 | 1.187 2.595 1.000 1.208 1.229

16 x 10 | 1.090 1.792 1.000 1.106 1.110

64 x 10 | 1.087 2.159 1.000 1.110 1.116

p=3 256x10 | 1.086 2.336 1.000 1.112 1.119
1024 x 10 | 1.085 2.423 1.000 1.113 1.120

4096 x 10 | 1.085 2.466 1.000 1.114 1.121

5.2. Conditioning. In Table 5.2, we summarize the theoretical estimates ob-
tained in section 3. We show the order of the condition number as well as the order
of the penalization term of the method as function of the mesh size h and the poly-
nomial degree p. We have also included the non-symmetric methods based on our
numerical results. For small mesh size h, the penalization term dominates, thus for a
penalization term of order O(h%), the spectral condition number should be of order
O(heth).

We consider the condition number as a function of the stabilization parameter 7.
In Fig 5.1, we have plotted the spectral condition number of the IP, LDG, NIPG1
and NIPG3 methods, for linear, quadratic and cubic approximations on a structured
triangular mesh with 256 elements. For large values of 5, the condition number of
the IP, LDG and NIPG1 are asymptotically the same. This result is, to some extent,
expected since their stabilization term is of the same order, i.e., O(3). This suggests
that when no preconditioning is used, the IP method will take less CPU time than
the LDG method, since performing a matrix-vector multiplication with the LDG is
2 to 2.5 times more expensive than with the IP. For the non-symmetric methods,
the NIPG1 will outperform the NIPG3, since the condition number of the NIPG3 is
significantly larger. However, we must keep in mind the loss of accuracy of the NIPG1
on polynomials of even degree.
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Fi1G. 5.1. Comparison of the spectral condition number k(n) as a function of the stabilization
parameter 1 for linear (top), quadratic (middle) and cubic (bottom) approzimations.
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TABLE 5.2
Asymptotic behavior of the spectral condition number k(h) as a function of the mesh size, when

using uniform approzimations of degree p.

method penalization k(h)

Babuska-Zldmal O (h=CPHD) O (A= (2r+2)
P 0 (h)

LDG O (h™)

0 (h™?)

0 (h™?)
Baumann-Oden  no penalization 0 (h™2)
NIPG1 O (h™1) 0 (h™2)
O (h™*)

NIPG3 O (h™3)

5.3. Orders of convergence. We compare the orders of convergence for both
the potential and the gradient. We used a sequence of structured triangular meshes
{Ti}, i = 1,2,..., where the mesh-size parameter of 7;; is half the one of T;. If ¢;
denotes the error on mesh 7; in the L2-norm then the numerical rate of convergence
r;, is defined as

- logyg (ei+1/€i)
r, = —0 e/
log4(0.5)

We consider two approximations of the gradient. The first, Vuy, is obtained by a
direct application of the gradient operator to the computed solution uy. The other
approximation is derived from the general discontinuous formulation, using the def-
inition of the auxiliary variable g5 in equation 2.3. In Tables 5.3, 5.4 and 5.5, we
present the numerical orders of convergence of the error in the potential uj, gradient
Vuy, and gradient gp, respectively, for polynomials of degree 1 to 4. Observe that for
the NIPG1 and Baumann-Oden’s method, the rates of the potential are sub-optimal
when polynomials of even degree are used. However, they are optimal for polynomials
of odd degree. This behavior has also been reported by Baumann, Oden and Babuska,
[5] on quadrilateral meshes. NIPG3 is the only non-symmetric method achieving op-
timal rates of convergence in both the potential and gradient. Both approximations
of the gradient converge optimally for all the methods.

5.4. Effect of the stabilization parameter 1. We carry out a numerical study
of the effect of the stabilization parameter n on the quality of the approximation.
Testing the accuracy of a method is a difficult if not an impossible task. Ideally, for a
particular mesh, we would have to find the set of parameter which gives the minimal
error. Here, we compare the ratio of the errors between the non-symmetric and the
LDG method, as a function of the stabilization parameter 7 for linear, quadratic and
cubic approximations. We have used three unstructured meshes of 248, 264 and 304
elements, which are shown in 5.2. In figures 5.3, 5.4 and 5.5, we show the ratio of
the error in the potential, the gradient q5 and piecewise gradient Vup, respectively.
It is clear that, when 7 is small, the LDG is more accurate than both variants of the
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TABLE 5.3
Orders of convergence for the potential up,.

method p=1 p=2 p=3 p=4
1.9004 2.9637 3.9283 4.9396
P 1.9694 2.9809 3.9516 4.9593

1.9895 29889 3.9724 4.9772

1.9027 29671 3.9397 4.9560
LDG 1.9706 2.9830 3.9572 4.9672
1.9900 2.9900 3.9749 4.9802

——  2.8608 3.8608 4.7267
Baumann-Oden — 24596 3.9390 4.2964
—— 2.1391 39781 4.0699

1.6906 2.8581 3.8524 4.7765
NIPG1 1.8178 24510 3.9322 4.3458
1.9067 2.1489 3.9755 4.0849
1.7900 2.7301 3.6508 5.0263
NIPG3 1.9630 2.9338 3.9062 4.9425
1.9924 29814 3.9678 4.9561

TABLE 5.4
Orders of convergence for qp.

method p=1 p=2 p=3 p=4
0.9239 1.9495 2.9246 3.9179
1P 0.9733 1.9760 2.9594 3.9548

0.9896 1.9890 2.9801 3.9778

0.9268 1.9550 2.9401 3.9442
LDG 0.9749 1.9793 2.9667 3.9666
0.9904 1.9905 2.9833 3.9827

— 2.0745 3.1677 4.1756
Baumann-Oden — 2.1127 3.1321 4.2221
— 2.1150 3.0901 4.2111

1.1661 2.1794 3.2240 4.0711
NIPG1 1.1599 2.1608 3.2056 4.0537
1.1323 2.1403 3.1631 4.0734
0.8339 1.7886 2.6990 4.0246
NIPG3 0.9718 1.9710 2.9510 3.9518
0.9951 1.9957 2.9891 3.9882

NIPG, and consequently than Baumann-Oden’s method. However, for large values of
7 all the methods, including the IP (not shown in the figures) have the same accuracy.
We have also compared q; and Vuy,. We consider the ratio of the errors Ry,

defined as follows
|Vu — vUh”sz
Ry, = ———2.
VT Ve — anllg

In Fig 5.6, we compare this ratio. For the IP method we only considered large values
of n, for the LDG and NIPG we considered small values as well. In general, we
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Unstructured mesh 1

Unstructured mesh 2

Unstructured mesh 3

Fic. 5.2. Unstructured meshes, 248, 264 and 304 elements.
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TABLE 5.5
Orders of convergence for Vuy,.

method p=1 p=2 p=3 p=4
0.9458 1.9685 2.9806 3.9878
P 0.9859 1.9879 29871 3.9878

0.9960 1.9946 2.9926 3.9920

0.9462 1.9696 2.9816 3.9861
LDG 0.9861 1.9885 2.9873 3.9871
0.9961 1.9948 2.9926 3.9918

—— 2.0611 3.1524 4.2098

Baumann-Oden —— 2.0912 3.1114 4.1906
— 2.0935 3.0698 4.1450

1.2214 2.1639 3.2161 4.0229

NIPG1 1.1366 2.1557 3.1868 4.0420
1.0780 2.1426 3.1369 4.0180

0.9212 1.9118 2.9647 4.0140

NIPG3 0.9817 1.9733 2.9692 3.9636
0.9956 1.9919 2.9884 3.9846

observe two regimes. For n < 1, g, is more accurate for the LDG than for the NIPG
methods. For 5 > 1 both approximations have the same accuracy. So in this case,
the approximation obtained from the gradient operator is more efficient since it is
completely local and offers the same accuracy than the auxiliary variable gy,.

6. Conclusions. In this paper, we present the first numerical comparison of DG
methods for a model elliptic problem. We give a theoretical analysis of the behavior
of the spectral condition number for methods with symmetric bilinear forms in terms
of the parameters of the method, which has been shown to be sharp.

From our numerical experiments we can extract the following conclusions :

The conditioning of the IP and LDG method is asymptotically of the same
order as for the standard continuous case.

The non-symmetric methods can only achieve optimal rates of convergence
for the potential by using large penalty terms, hence increasing conditioning
of the method from A~2 to h~%, when 3 increases from 1 to 3. This can
severely degrade the performance of the iterative method used for solving the
linear system.

Methods with symmetric discretizations, i.e, LDG, IP, have a better perfor-
mance than those with non-symmetric discretizations. However, for large
values of the stabilizing parameter all the methods have the same accuracy.
The LDG requires at most 2.5 times the storage of the methods with compact
stencil, such IP, Baumann-Oden and NIPG. This has a negative impact in
the operation counts and parallel implementations.

For larger values of 7, the asymptotic behavior of the spectral condition num-
ber and accuracy of both symmetric methods, IP and LDG is the same. In
this range of penalization parameter, since the LDG is a more expensive
method, the IP is more efficient.

The LDG method is more stable than the IP method since its stabilization
parameter does not depend on the mesh nor on the approximation polynomial
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F1G. 5.3. Ratio of the errors for the potential NIPG : LDG. Row i corresponds to mesh i and
column j to approzimation of degree j.

degree.

e Although the LDG method becomes less stable as its stabilization parameter n
approaches 0, the method is more accurate than the non-symmetric methods,
like the Baumann-Oden’s method.

e For large values of 7, all the methods have similar accuracy in the potential
and gradients g and Vu,. However, the gradient q; of the IP and LDG
methods is more accurate than the piecewise gradient Vuy for small values
of n. For non-symmetric methods is the opposite.
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