RECURSIONS FOR THE COMPUTATION OF MULTIPOLE TRANSLATION AND ROTATION
COEFFICIENTS FOR THE 3-D HELMHOLTZ EQUATION
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Abstract. We develop exact expressions for the coef cients of series representations of translations and rotations of local and multipole
fundamental solutions of the Helmholtz equation in spherical coordinates. These expressions are based on the derivation of recurrence relations,
some of which, to our knowledge are presented here for the rst time. The symmetry and other properties of the coef cients are also examined, and
based on these, ef cient procedures for calculating them are presented. Our expressions are direct, and do not use the Clebsch-Gordan coef cients
or the Wigner 3-5 symbols, though we compare our results with methods that use these, to prove their accuracy. For evaluating a /N; term truncation
of the translated series (involving O(Nf) multipoles), compared to previous exact expressions that require O (Nf’) operations, our expressions
require O(N}) evaluations.
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1. Introduction. In several scienti ¢ computing applications, the solution to the Helmholtz or Maxwell Equa-
tions is expressed in terms of the singular (multipole) and regular solutions of the Helmholtz equation in spherical
coordinates, centered at various points. Series of such solutions (see Eq. (2.16)) in one coordinate system must be
expressed, in terms of series of singular or regular solutions in another coordinate system. Such expressions are guar-
anteed to exist by the completeness of the functions on a sphere. Addition theorems [5], [15] provide the expressions
for the coef cients of the series in the shifted coordinates, in terms of the original coef cients. The paper by Epton and
Dembart [8] provides an introduction to expressions of the coef cients. Chew [22] applied differentiation theorems
for spherical functions similar to those in this paper, to obtain recursions for the translation coef cients.

One important scienti ¢ computing area where there is a need for such expressions is in the Fast Multipole Method
(FMM) solution of the Helmholtz and Maxwell equations [9, 27, 10]. The FMM algorithm was referred in [1] as one
of the top algorithms of the 20th century. Here the complexity of the translation expressions on the one hand, and the
numerical accuracy achievable on the other, are key barriers to use of these methods to more complicated problems
that are of interest, and these are thus an area of active research. Other scienti ¢ computing areas where there is a need
for such translation theorems are in the solution of boundary value problems of scatterings from many spheres [24],
and in the use of the T-matrix method for solution of scattering problems from many scatterers [14]. Note that in some
multipole methods (e.g. [24]) computation of each entry of the translation matrix is needed. In this case the recursive
computation of the matrix elements provides the algorithm with theoretical minimum of asymptotic complexity. For
speci c applications we refer the reader to these papers.

In this paper we follow and extend the approach of [22] to develop general recursive methods for obtaining
translation and rotation coef cients. We also derive recursions for a particular type of translation coef cients, which
we call “coaxial” translation coef cients. An algorithm for fast and exact computation of the latter coef cients together
with the rotation coef cients yields a translation algorithm based on a rotation-coaxial translation decomposition
with the lower asymptotic complexity. While the relations are derived here for the Helmholtz equation with real &
in Equation (2.1) below, in fact they are applicable for arbitrary complex non-zero k, and appear in the modi ed
Helmholtz equation describing screened coulombic (“Yukawa”) interactions, or in the equation obtained on Fourier
transform of the heat conduction equation, telegraph, or of the wave equation describing propagation of waves in
media with relaxation, dispersion and dissipation.

For similar reasons, there is also a need for development of translation expressions for other equations of mathe-
matical physics, such as the Laplace and linearized Poisson-Boltzmann equations. The approach we follow in deriving
the translation is rather general, and might be useful in obtaining similar recursions for these other equations. Finally
rotations on a sphere, and the spherical harmonics play important roles in many areas scienti ¢ computation. In
quantum chemistry, they occur for instance as factors of atomic orbitals and as factors in multipole expansions. The
recursion that we develop for computation of the rotation coef cients is different from those used in this eld (see e.g.,
[18, 19]). A computationally ef cient recursion for rotation coef cients which deals with real numbers is presented
here.
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2. Background. We consider the Helmholtz equation in 3-D for the complex function ¢ (r) , given by

where V? is the Laplace operator V - (V) , and k is a real scalar (the wavenumber). The transformation between
spherical coordinates and Cartesian coordinates with a common origin (z,y, z) — (7, 6, ¢) is given by

x =rsinfcosp, y=rsinfsinp, z=rcosb. (2.2)

The gradient and Laplacian of a function ¢/ in spherical coordinates are
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where (i, ig,i, ) is a right-handed orthonormal basis in spherical coordinates. Solutions of Helmholtz equation in
spherical coordinates can be expressed in the factored form (“separation of variables™)

¢2® (T7 0, 90) = Hn(T)@Zl(e)q)m(Qp)v (2.4)

where the function ©]" is periodic with period 7 and ®™ is periodic with period 27. The spherical harmonics provide
such a periodic basis

dr (n+|m) "

R (0)2™(p) =Y," (0,¢) = (—1)m\/ (e, p= cos, (2.5)

n=0,1,2,..; m=-n,..,n,

where P, (1) are the associated Legendre functions [6]. The spherical harmonics are also sometimes called surface
harmonics of the rst kind, tesseral for m < n and sectorial for m = n. We will use the de nition of the associated
Legendre function P (1) that is consistent with the value on the cut (—1, 1) of the hypergeometric function P2 (z)
(see Abramowitz and Stegun, [6]). These functions can be obtained from the Legendre polynomials P, (u) via the
Rodrigues’ formula

my2 d™ 1 da

Py (p), Po(p) = Sl dpn

2 n
i (u —1) . (2.6)

Pr(p) = (=)™ (1 - p?)

Our de nition of spherical harmonics coincides with that of Epton and Dembart [8], except for a factor /(2n + 1) /4,
which we include to make them an orthonormal basis over the sphere. As remarked in Ref. [8] the de nition of
spherical harmonics has an important bearing on developing an ef cient multipole translation theory, and needs further
research.

The spherical harmonics de ned by (2.5) form a complete orthonormal system on L2(S,,), where S, is the surface
of the unit sphere 22 +y2 + 22 =1:

T 2 T 27
Vi) = [ sinods [ V00T 0. 0de = [ sinods [ VIOV 0.0 = b @)
0 0 0 0

where d,,; is the Kronecker delta. An arbitrary surface function F'(, ¢) can be expanded over this orthonormal basis
as

F,0) =Y Y FIY(0.¢), (2.8)

n=0m=—n

where the coef cients of the expansion F)* are given by

T 21
= (BY™) = / sin 66 / F0, )Y ="(0, 0)dp. 2.9)
0 0
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The dependence of the function II,, on the radial coordinate, in Eq. (2.4), is described by

i 2 dll, 2,2 _
- ('r = ) + [F*r* —n(n+1)] 1L, =0, (2.10)

which is the spherical Bessel equation. Particular solutions are the spherical Bessel functions of the rst and the second
kind, j;, and y,,, related respectively to the Bessel and Neumann functions of fractional order, Jy, 1 1/2 and Yy, /2 :

m s
—Jn+1/2(kr)7 L, = yn(kr) = —Yn+1/2(kr)' (21 1)

Ty = jin(kr) = 2kr 2kr

When problems are posed on in nite domains, linear combinations of these solutions, called the spherical Hankel
functions of the rst and the second kind, are used since they can be used to represent outgoing and incoming waves

RV (kr) = jn(kr) + iyn (kr), B2 (kr) = jn(kr) — iyn (kr). (2.12)

In the problems we are interested in, we will need functions which are either regular at the origin, or satisfy the
Sommerfeld condition

lim 7 (g—”’ - iw) =0, (2.13)

r—00 r

at in nity. These functions respectively are j, (kr) (regular as r — 0,) and S (kr) (outgoing waves). Accordingly,
we can express the general solutions of Helmholtz equation in terms of either the ‘elementary regular solutions’ R;"
or the ‘elementary singular solutions’ S;* de ned by

R™ (r) = jn(kr)Y™(0,¢), S™(r)=hM(kr)Y™0,¢), n=01,2,.; m=-n,.,n, (2.14)

and which are linearly independent. The singular solution S]” (r) sometimes is called as the multipole of order m and
degree n centered at the origin (in some papers the multipoles are introduced as derivatives of the Green function).
Since only the functions Ay (kr) will be considered below, we will drop the superscript (1) for notational simplicity.
Because the functions h,, (kr) and j,, (kr) have similar recurrence properties, and when an expression applies to
both types of functions, we will use the notation
Ey(v) = fu(kr)Y,",  f=hj; F=S5R (2.15)

n

2.1. Reexpansions of Elementary Solutions. Solutions of the Helmholtz equation, ¢, in a nite or an in nite
domain can be expressed in terms of the functions .S} and R]* and we can express it as (see e.g., [5])

D(r) =D > [ATST(v) + BYRy (v)], (2.16)

n=0m=—n

where A" and B])* are expansion coef cients. In particular, for A]* = 0 such a series describe any regular solution
inside a sphere, and for B* = 0 any radiating solution in the space exterior to a sphere circumscribing a scatterer,
and for A7 # 0 and B]* # 0 any regular solution in a spherical layer. These series also can be considered to be
centered at different locations, and sums of such functions provide solutions to the Helmholtz equation in multiply
connected domains, such as appear in multiple scattering problems, or in domains with complex boundaries. In these
cases, the series centered at different locations should be “translated” to provide local or far eld expansions, and
the coef cients of the translated series should be evaluated. These coef cients could be obtained by taking appropri-
ate scalar products, resulting in integral expressions for the coef cients, which, absent analytical expressions, must
be evaluated numerically via quadrature, and are thus inef cient. “Translation theorems” provide explicit ways for
evaluating the coef cients, and are thus more ef cient. The translation theorem expression for the monopole source
centered at the origin is well known and given in many textbooks (see e.g., [5]). The monopole can be expanded in a
series of spherical harmonics centered about a point ¢ using the following identity

Gr)=m =ik > Y Ry (—rl) ST (), |rh] <Irl. (2.17)
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M

0

FI1G. 2.1. Coordinates of points in various reference frames.

where r, is the radius-vector of the eld point in the reference frame centered at g and r7, is the radius-vector of the
point g in the original reference frame. Thus in this expression the multipole of order zero, centered at the origin has
been translated to a series of multipoles centered at a point g, and the series has coef cients (kR ™ (—r;) . If the

outer summation of the series (2.17) is truncated at n = N, the series has O (N; + 1)2 terms, and the monopole can
be translated to a new location in O(N?) operations.

Such succinct expressions are usually not available for higher order multipoles. Exact expressions for multipole
translations for the Helmholtz equation have been presented in [8]. However these expressions are relatively cum-
bersome as they use the Wigner or Clebsch-Gordan coef cients, and are relatively expensive to compute, requiring
O(N}) operations to evaluate the O(N?) terms.

2.2. Translations. We wish to represent S} (r,) and R])" (r,) as sums of singular or regular elementary solu-
tions with the center of expansion speci ed at some other point r = ry. To obtain such representations we introduce

spherical coordinates centered at r = rj, sor —r; = ry = (14,04, ¢,). By de nition, we have
_ ’ ' _ / ro_ /o
r=rp,+r,=r;+r;, Tp,=rg+T,, rpg =Tg—T, =T — Iy, (2.18)
where the vector r},, is directed from point p to point q. This vector determines the radius of reexpansion 7, = |rpq|
Inside the sphere w1th radius 7,,, centered at r = r/, the solution is regular and can be represented as
&S] l
Sit(rp) :Z Z (S|R);m q) R} (rq), Irq| < |r;q|, p#q. (2.19)

=0 s=—1

The singular elementary solution outside this sphere satis es the radiation conditions, and therefore we can represent
S7™ in a series of multipole solutions:

K
M-

Sy (rp) = (SIS (thy) Si (xg),  Irgl > [rpy|- (2.20)

Il
<

—

S

The regular elementary solutions inside a nite domain can be reexpanded in a series of regular elementary solutions
near an arbitrary point, so that

l
> (RIR)T (xh) RS (rg).- (2.21)

s=—1

M8

m _
R (rp) =
!

Il
<
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)

F1G. 2.2. lllustration of the reexpansion of the singular to regular solution (2.19). Such reexpansion can be performed inside the dark sphere.
1t can be used for a eld point M, since the distance to this point from point q is smaller than the radius of the dark sphere.

O

F1G. 2.3. Illustration of the reexpansion of the singular to singular solution (2.20). Such reexpansion can be performed outside the dark
sphere. It can be used for a eld point M, since the distance to this point from point q is larger than the radius of the dark sphere.

In expansions (2.19)~(2.21) the symbols (S|R), (S|.S) and (R|R) denote that the singular (S) and regular (R) elemen-
tary solutions are reexpanded in series of regular or singular elementary solutions, respectively, with coef cients of
reexpansion (S|R);™ , (S|S);™ and (R|R);™.

Note that we do not consider the reexpansion of regular solutions in terms multipoles, i.e. (R|S). If such a
reexpansion were possible, then the regular solution would be “radiating” at in nity, which cannot be true. Therefore
such reexpansions cannot be used either for in nite domains, or for nite domains including the singular point of the
center of the expansion.

With such translations of the basis functions the coef cients in sums of type (2.16) can be also translated by
multiplication of corresponding translation matrices by the vectors of coef cients. For example, if we have a far- eld
expansion of a radiating function F (ry,),

brp) =Y Y ATST(xy), (2.22)

n=0m=—n
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it can be converted to a local expansion near some point ¢ with the aid of matrix (R|R);™ :

00 l 'S} n
b(rp) =D CF(rpg) Bi(vg)s Cf (rpg) =D > (SIRT (vhy) An's Irgl < [rpe].  (223)
=0 s=—1 n=0m=-n

2.3. Rotations. We also consider transforms of multipole expansions due to rotation of one Cartesian system to
another. Fast algorithms for computation of expansion coef cients of singular and regular solutions are needed for
applications in quantum mechanics and, as will be seen, for fast computation of translation coef cients.

Let (i, 1,,1.) and (iz,ig,1z) be two Cartesian systems of coordinates with a common origin. Let @ be the
rotation matrix that takes vector coordinates a in the rst coordinate system to the vector coordinates & in the second
coordinate system, so that

ioip dp-ody dp-is
a=Qa with Q= | iy-ip ig-i, iy-i. |. (2.24)
iy dsed, i

We have the following transform of the spherical harmonics due to rotation of coordinates (e.g., see Wigner [17])

Y60 = Y T @Yy (6.2), (2.25)

v=—n

where T/ (Q) are coef cients depending on the rotation matrix ¢). Due to the de nition of the singular and regular
solutions (2.14), and due to the fact that the magnitude of the vector does not change with rotation of coordinates, we
can write the expansion for the multipole in the rotated coordinate system as

Sr(rp)= > TE™(Q)SL(T,),  RI(y)= Y T¥(@QRL(E,),  [Fl=Irl, (2.26)

vV=—n vV=—n

where T, is the denotes the point in the rotated coordinate system.
Using the reexpansions (e.g. equation (2.19)) the sum (2.22) can be represented in the form

n

) =) Y Cusy(E,), Ci= > TIm(Q) AL (2.27)

n=0v=—n m=—n

2.4. Complexity of Translations and Rotations. Usually we deal with expansions of singular or regular solu-
tions ¢ (r) (such as Eq. (2.22) or Eq. (2.16)) with B[ = 0 or A”" = 0), where the outer sum is truncated at n = Nj.
In this case the goal of the translation and rotation operations is to transform one set of N2 coef cients representing
1 (r) multiplying the regular or singular functions to another set of N2 coef cients multiplying the regular or sin-
gular functions centered at another location, which represent the same function v (r). A plausible way of doing this
would be to look for relations between the N2 coef cients. A general linear transform, would employ a relation that
involved the action of a N2 x N2 matrix on the original coef cients to produce the new coef cients (see Eq. (2.23)).
If the matrix were to be fully populated, it would contain O(N}}) elements, and its evaluation would take O( N;*x cost
of evaluating an element) operations, while direct evaluation of the matrix-vector product for the coef cients would
require O(N;!) operations. In many application areas N; ~ 102 or larger, and this expense can be signi cant.

The st set of relations for obtaining the translation coef cients use the so-called Wigner symbols, and are well
summarized in [8]. These expressions require O(NN}) operations to evaluate the transformation matrix and O(N;')
operations to perform the multiplication directly. Clearly, these are too expensive to evaluate for large Ny, especially
when the computations must be done many times, as in the FMM, and where some error bounds suggest that the num-
ber of terms depends on the discretization. Since there are O(N?) coef cients, the minimum number of computations
necessary to do the translations is O(N7?).

To achieve faster methods for evaluation, research has progressed along two directions. A rst approach, and that
which is quite common in the FMM literature, nesses the transformation problem. In this approach, an analytical
“Fourier” transform on the sphere is performed, and the transform integral is evaluated using numerical quadrature.
Multilevel fast multipole methods are implemented by referring to the transformed version of the multipole expansions.
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Details of this approach can be obtained from [9, 23, 21]. This approach based on so called “diagonal” forms of
translation operators can achieve the translations necessary in a combination of several O(NZ) operations with some
O(N}) operations required for computation of surface integrals of the spherical transforms, which can be reduced to
O(N?log? N;) using fast spherical transforms.

However, we need to make some remarks about these translation methods used in the FMM. First, the numerical
quadrature of oscillatory functions that must be performed on the sphere may introduce large multipliers to the order
estimates. For a practical problem, the number of computations performed by an O(N}) method with a smaller
asymptotic multiplier can be less than that performed by, say, a O(N? log? N;) method with a larger asymptotic
multiplier.

Second, estimates of the complexity of the FMM are usually presented as O( PN) where P is the single translation
cost, and NV is the number of points for which FMM is used. A recent detailed look at the FMM algorithm [25], shows
that it can be optimized by using better data structures, particularly by selection of a so-called “clustering” parameter.
In this case the complexity of the method is O(P'/2N 4 N2N). These estimates show that all translation algorithms
with asymptotic complexity P = O(N!) or below result in an effective complexity of O(NZN) or O(NZN log N) for
the FMM. In this sense even a O(N;!) “slow” translation algorithm deserves consideration, and P = O(N;) methods
can be competitive with, say O(N? log® N;), methods (of course, any fast method providing the same accuracy is
better than a slow method).

Finally, we note that at low frequencies the translation methods based on integral representations experience some
problems, and there are publications dedicated to improvement of convergence of these methods [13]. The matrix
based method of translation is applicable at suf ciently low frequencies (e.g., we tested the accuracy of solutions for
k71073, and characteristic distances of order 1 and obtained good results [26]).

3. Differentiation of Elementary Solutions. To derive recurrence relations for computation of the reexpansion
coef cients we rst present some simple relations that arise from the differentiation of the elementary solutions. Let
us de ne the following differential operators in spherical coordinates:

OZE%ZN%—Fl;uQa—i, = cosf. 3.D
oy = g 43 = e () (g ) 43
ey i 10 () i)

V= 1906a +1y%+iz%:im%(axy+amy) 1y2(6 — Ouy) +1:0.

1, N 1. e NTF— .
=3 (ip —diy) Oy + 3 (ip +iiy) Opy +1-0:,

Applying these operators we obtain the following theorems for the differentiation of the functions SI" (r) or
R!™ (r) . The proofs of these theorems are based on the properties of the associated Legendre functions and spherical
Hankel and Bessel functions and can be found in detail in the report [2], where numerical examples are provided as
well. These theorems also can be found in [22].

THEOREM 3.1. For k # 0 and integer n and m

FOF (1) =l L () -l L (1), F=S,R (32)

where

(n+14+|m|)(n+1—|m|)
2n+1)(2n+3)

apt =0, forn <|m| a =alml = \/ , forn >=|m|. (3.3)

THEOREM 3.2. For k # 0 and integer m and n :

1 —m m m pm
EaTyF'I’T( )_bn—l—l an—ljil( )_bn Fn;iil (I‘), F:S7R (34)
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where

b= \/(n R )for 0<m<n; _\/(n—m—l)(n—m) Jor —n<m <0; 0 for |m|>n,

2n—1)(2n+1) (2n—1)(2n+1)
(3.5)

THEOREM 3.3. For k # 0 and integer n and m
1—
ZOu B (1) = U B () b (), F =S R (3.6)

where the coef cients b are as de ned in Equation (3.5).
THEOREM 3.4. For k # 0 and integer n and m

1 m 1. .. m m m m L. .. m m —m pm—
EVFTL (I‘) = 5 (190 - “y) [bn+1 1Fn+_|il ( ) - bn Fn—_iil (I‘)] + 5 (lfr + “y) [bn+11Fn+11 (I‘) - bn Fn—ll (I‘)]
3.7)

+1i. [aZL—quT—l( ) — mF'rﬁ-l( )] F=SR.

where the coef cients a]' and b are de ned by (3.3) and (3.5).
4. Translation Coef cients.

4.1. Integral Representation of Translation Coef cients. Before considering the ef cient evaluation of the
translation coef cients (S|R);™ (r;q) etc., we note their integral representations which immediately follow from
de nitions (2.14), (2.19), and orthonormality of spherical harmonics (2.5):

1

(SIR)in" (rpq) = - ( (5 (rp), Y (9q790q)) (4.1

a)

n (k) Y (0, 0,) Y, (04, 0,) sinbgdfy, 14 < |r’

d‘Pq pq| ’

-7

Similarly, for the other reexpansion coef cients we have expressions
1 ™ 7'r ) . . )
RIR)™ (x],) = W [ de, / i () Y (0, 0,) Y (0, 0,) sin 6B, 42)

(S|S)IS7’T (I‘ Pq qu / d@q/ kTP Y (9]37(10]3) l_s(elb(pq) Sineqdeth Tq |rpq| (43)

4.2. Structure of the Translation Coef cients. While the above integral representation provides an explicit way
to calculate the reexpansion coef cients, this approach is not practical as the integral must be evaluated numerically,
making the method computationally expensive. Moreover, the representations (4.1), (4.2), and (4.3) use coordinates
of both the source point p and the target point q, they are not useful for fast multipole methods. To be useful they
would need to be rewritten in terms of the translation vector r},, alone.

According to (2.18) and (2.19) we have

Sp (rg 41, Z Z S|R)im (xh,,) B (rq) . 4.4
1=0 s=—1
The function S (v, + 1), ) is regular inside |ry| < |r},, | and satis es the Helmholtz equation:
(V> + &) S (rg+1),) = 0. (4.5)
The Laplace operator here can be considered to be acting either at xed r;,, orat xed r,. In the former case we have

(V> + &%) R} (ry) =0, (4.6)
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which also follows from the de nition of 1. In the latter case we have
(V2 + %) (SIR); (x),,) = 0. (4.7)
The solution of this equation for the coef cients can be sought in the form of a multipole expansion as
(SIR (1) = 3 3 (sIn)iS2 (5, (48)
a=0p=—«a

Indeed, in the expansion we need to only use the functions S2 (r],), not RS ( or combinations of R (

pQ) pQ)

and S8 ( pq) since as |r | — 00, the solution should satisfy the Sommerfeld radiation conditions (see (4.4)).
The coef cients (s|r )ifn are purely numerical and do not depend on the locations of the multipole or the center
of expansion.

Note that these coef cients can be related to the Clebsch-Gordan coef cients due to the addition theorem for the
scalar wave functions [15], or to the Wigner 3-j symbols [17], which are a more symmetrical form. The Clebsch-
Gordan coef cients (j1jamima|j1j2jm) are given by [6]:

(j1gamamaljijajm) = (~1) 79+ (25 4 1)1/? ( 7?111 rJnQQ —jm ) ’ (4.9)

where the 2 X 3 matrix notation on the right hand side is used for the Wigner 3-5 symbols. In the paper of Epton and
Dembart [8] the following expression (rewritten in the present notation) for the reexpansion coef cients is provided

« 1/2
(SR Z Z [Qn—l—l 21+1)(2a+1)] Z,anroéE<m —s —ﬁ>sg(r;q), (4.10)

b P 4 n «

where the symbol F is de ned as

E(Zj ) _f) 4 [(2n+1)(2z{7:1 (2a+1] / /Ym )Y, 750, )Y, P (0, ) sinbdf, (4.11)

and is related to the Wigner 3-5 symbols:
m —-s -0\ _ n |l « n | « =)™ m=0
E( n o )_471-67"6_56_5( 00 0 )(m —5 —ﬁ)’ W em—{ 1, m<0

Computation of the Wigner 3-j symbols, or E symbols requires summations over several indices, and is computation-
ally inef cient. We will not consider this way of obtaining the reexpansion coef cients and refer the reader to [8] for
details of their computation.

Comparing (4.10) with (4.8), we note that

(4.12)

1/2
s _ [@n+ D4 1) (20 +1) Lntag(m =5 =B
(s|r)ogm’ = ym i E{ . 1 o ) (4.13)
The above E/—symbol has a multiplier 03 ,,,— 5, which means that
(slr)55m =0, for B #m — s. (4.14)

It is also noteworthy that from the de nition (4.11) and orthonormality of the spherical harmonics we have

0 m s m 0 s m s 0 1 1/2

leading to

s|M)50 = /(4m) (1) 65, obar,  (sIP)E0" =/ (@m)dsmban, (1) = \/(4T)smbin,  (4.16)
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Substituting (4.8) in (4.4) we have the following expression

[ l 0 el
Sy (rg+1h) =D > Z > (sIr)5imrSE (xh,,) B (xg), (4.17)

=0 s=—1 =0 f=—q

which is a form of the addition theorem for multipole solutions of the Helmholtz equation. Similar considerations for
the other reexpansion pairs yields:

(RIR) Z Z VRS (v) . (SIS (rhe) = 30 3" (SIS RE (xh,),  (4.18)
a=0p=—a a=0f=—a

This leads to the following addition theorems

Ry (rg+1p) => > Z )5 RE (x),) Ry (xq), (4.19)

07

S (rg + 1) = ZZ 37 (sI)5mRE (xh,) SF (ry). (4.20)

1=0s a=0p=—«a

8
8

Comparing (4.20) with (4.17), we see that these are indeed the same expansions of S (rq + rpq) We can simply

transform one to the other by exchanging r},, with r, and subscripts a with [ and 3 with s. Therefore,

(s8)omm" = (s|r)sn 4.21)
The numerical coef cients (r|r)§j§l can be also related to the Wigner symbols in a manner similar to the expression
for (s|r)75™ (4.13). As will follow from our analysis below,

(SI8)int (rpq) = (RIR)G" (rpq) » (4.22)
and thus from (4.18), and (4.21) we have:

(rlrYoin = (s1)at” = (sl (4.23)

However, even if the Wigner coef cients could be computed ef ciently, calculation of the reexpansion coef cients
(SIR);™,(R|R);™, and (S|S); using them would require summation of series (4.8) and (4.18), which would be
computatlonally expensive, since the reexpansion coef cients are 4-dimensional (and numerical coef cients, such as
(s|'r) om_are 5-dimensional (taking in account the relation (4.14)), leading to O (N 5) operations. As an alternative
method we develop a fast computational technique based on recurrent computation of the actual reexpansion coef -
cients.

4.3. Recurrence Relations for Translation Coef cients. Recurrence relations among the fundamental solu-
tions of the Helmholtz equation produce recurrence relations for the reexpansion coef cients due to invariance of the
differential operators 0/0z, 0/0x £ i0/0y with respect to translations of the origin of the reference frame. Since
S and R) satisfy the same recurrence relations, the reexpansion coef cients (S|R):™ , (S|S);" and (R|R);™ also
satisfy the same recurrence relations. To avoid repeating theorems and recurrence relations for every combination of
regular and singular functions, we denote the generic translation coef cient as (E|F);" (r;q) for any of the reex-
pansion coef cients ((E|F) = (S|R), (S]S) or (R|R)), i.e., E and F can be any of the functions S or R. Thus the
following reexpansion holds:

&S] l
Bl (rp) = B (v +1p,) = Z (B|F);" (x),) F¥ (rq), E,F=SR. (4.24)
1=0 s=—1
Denoting by D,, any of operators 0/0z, 0/0x), £ i0/0yj in the reference frame with the origin at r}, and applying

the operator to (4 24)at xed r},,, we have:

o) l
DpE] (vp) = DyE (vg+1p,) = > > (EIF); (v),y) DgFy (vg), E,F=S8,R. (4.25)
=0 s=—1
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The following theorems establish general recurrence relations. Their proofs are based on the theorems for differenti-
ation of multipoles. We provide the proof only for the rst theorem. The other theorems can be proved in a similar
way, or may be obtained from [2]. These relations, presumably rst, were obtained by Chew[22].

THEOREM 4.1. For k # 0 the following recurrence relation holds for (E|F);" (x},,) :

(E|F)ln 1( ; )— (E|F)zn+1( ; )—az (ElF)l+1n( ) aj_ 1(E|F)l 1n(r/q)7 (4.26)
E,F=85R, I,n=0,1,... s=—l,..,1, m=-n,..,n.

Proof. Consider D,, = k~10/0z, = k~10/8z, = D,. Using Theorem 3.1, (3.2), and (4.24) we nd
10

EG_ZPETT (rp) = ap B (rp) —ay n Bt (rp)

iZ[ E|Fln 1(/) (E|F)ln+1( )]Fl(rq)

1=0 s=—1

On the other hand using the same Theorem 3.1 and de nition we have

10 o] l o 10 ¢S] l
E%E;n (rp) = Z Z (E|F);, (r/q) k Oz, -5 (rq) Z Z (E|F);, ) [a, 1By (rg) — af Fy (rq)]
P 1=0 s=—I 1=0 s=—1
%) I+1 o
Z Z aj E|Fl+1n( Fl(rq Z Z allelFlln( ) ° (rq)
I[=—1s=—1—-1 =1 s=—I+1

oo

Z [a, (E|F) l+1n( 2) — ai (BIF)” ln(;Q)] FY (rq).-

1=0 s=—1

The last equality holds due to according de nition (3.3)

ay=att =a " =al_ =a !, =0.
Comparing these two expressions and using the orthogonality and completeness of the surface harmonics we obtain
the statement of the theorem. m

COROLLARY 4.2. Forn = |m|:

A (E|F); T |+ ( ) =aj_; (E|F)]™, JIm| ( ) —aj (E|F)ls_’?1|m| (r;q) , E,F=5R, (4.27)
1=0,1,.. s=—l,...,1, m=0,+1,£2 ...
Forl = |s|:
aly (EIF) 1,0 (the) = any (BIF) ),y (the) —an (BIF) 4 (the) , E.F =S,R, (4.28)
n=20,1,... m=—-n,..,n s=0,%£1,+£2,....

Forn=|m|andl = |s| :

afyy (BIF)I ) oy (V) = —alm (BIFYS L (vh,), E,F =S8R, (4.29)
m=0,41,42,... s=0,£1,£2, ...

THEOREM 4.3. For k # 0 the following recurrence relation holds for (E|F);" ( pq)

m s,m+1 —m— s,m+1 s s—1,m —s s—1,m
bn (ElF)l,n—l (r;q) — Yn+1 ! (E|F)l,n+1 ( ;q) = bH—ll (E|F)H-1,n (r;q) - bl (E|F)l—1,n (r;ﬂI)’
(4.30)
E . F =S8R, I,bn=0,1,... s=—I,...,1, m=-n,..n.
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COROLLARY 4.4. Forn=m

bt (BIF); e (xh,) = by (BIF); 25w (xh,) — birt (BIF); o (thy) (431)
E,F=5R, 1=0,1,.. s=—l,..,1, m=20,1,2,....

Forl=|s],s<0

—|s|—1 —|s|—-1, m —|s|,m+1 —m— —|s|,m+1
E,F=85R, n=20,1,... m=-n,..,n s=0,-1,-2, ...

Forn=mandl =|s|,s<0

—m—1 —|s|,m+1 o —|s]—1 —|s]—1,m
m41 (E|F)|s|,m+1 (rpg) = —big1 (E|F)\s|+1,m (*hg) (4.33)
E,F=S,R, m=0,12.  s=0,-1-2 ..

THEOREM 4.5. For k # 0 the following recurrence relation holds for (E|F);" (x0,,) :

O (BIR)TS (rhe) = b ™ (BIE) S (x) = 0f (BIF)LT (x) = b (L)L () -

n+1 Pa Pq I+1 Pg
(4.34)
E.F=SR, I,n=0,1,... s=-—1,...,1, m=—-n,..,n.
COROLLARY 4.6. Forn =|m|,m <0
—|m|—1 s,—|m|—1 s s+1,—|m)| —s—1 s+1,—|m)|
bjmj+1 (ElF)l,\m\H (tpg) = by (E|F)l—1,|m| (tpg) — b3 (E|F)l+1,|m| (*hg) (4.35)
E,F=85R, 1=0,1,.. s=—=1,...1, m=0,-1,-2,....
Forl=s
ST EIF) () = 0, (BIF)T (v,) = 0 (BIF)IE (x),) (436)
E,F=5R, n=20,1,... m=—n,..,n s=0,1,2,....
Forn=|m|,m<0andl =s
—|m|—1 s,—|m|—1 o —s—1 s+1,—|m| .
bmpin (EIF) 0 (2hg) = =0t HEIF) iyl (8e) s B, F =S, R, (4.37)

m=0,-1,-2,.. s=0,1,2,...

4.4. Particular Values of Translation Coef cients. To use the recurrence relations we need some starting val-
ues. The following particular values provide these.

4.4.1. (S|R) Coef cients. Expression (4.17) reveals a particular value of the reexpansion coef cients (S|R);".
Setting r, = 0 we have

1 I o= "
R; (0) = /Ealoaso, S (xh,) = o S GlrtonsE (xh,),  p#a (4.38)
a=0p=—«a

Due to the orthogonality of the surface harmonics

(slr)oom = v/ (47)80n0 gm. (439)
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This value also can be obtained directly from (4.16). Substituting this expression in (4.8), we have

(S|R)J™ ( ) V (4m) S (x pq) n=0,1,..., m=-n,..n (4.40)

Another particular value can be found from well-known expansion of fundamental solution G (r,,) of the Helmholtzj}
equation [5] in a series of spherical harmonics:

oo s=l

G (rp) = zkz Z S, ° ) B (xg), rgl < |ry]- (4.41)

=0 s=—1

We recall the fundamental solution is a monopole

G ) = o = B ) = 0 1, 41 @42)
p_47r7“p_47r0 p_,/(47r)0 40 e .

Thus, comparing (4.41) and (4.42) with (4.4), we obtain the following value for the reexpansion coef cients:

(SIR)IS (rhy) = V(4m)S;* (=xhy) = V(@m) (<1)' S (xh,),  1=0,1,0, s=—l.,0. (443)
Comparing (4.43) with (4.8), we have

(slr)aio = V/(4m)(=1)'60165, s, (4.44)

which is consistent with (4.16).
Note, that formulae (4.40) and (4.43) are consistent as they both provide the value of (S|R)g) (r7,) as

(S|R)? ( .) =/ (4m) )So (r r,.) = ho(kr,,). (4.45)

It is also wonh mentioning that once (S|R);™ (r},,) is known, the coef cients (S|R);"" (r/,) representing reexpan-
sion of multipoles near point p,

Sy (rq) Z Z (SIR)E Rl (rp), p#4q,
=0 s=—1

can be determined due to a symmetry relation. Indeed, changing the sign of the radius vector in (4.4) we have:

o8] l

D D (SIRT (xhg) Bi (r) = ST (xq 4 1p5) = (=1)"S}7 (=14 = x})
1=0 s=—1
[e%) l [e%) l
= (=1)"Y D> (SIR)T (—rpq) B (=xq) = D> > (D)™ (SIR)ET (xh,) R (vq)
=0 s=—1 =0 s=—1

Due to orthogonality of surface harmonics we obtain:
(SIR)T (rfp) = ()" (SIR)T (vhy) . P# 4, (4.46)
n,1=0,1,.., m=-n,..,n, l=—s,..s.
We also can nd using (4.4) and

S™=0, R™=0, for|m|>n, (4.47)

n

that

(S|R)i™ (x),) =0, for |m| >mnor |s| > L. (4.48)
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4.4.2. (R|R) Coef cients. Setting r, = 0 in (4.19) and using (4.38) we have

\/; 33 (R (). (4.49)

a=0f8=—a

Due to the orthogonality of the surface harmonics we obtain

AN = Vo 30
Substituting this expression in (4.49), we have
(R|R)J" ( ) V/ (4m) Rm( pq) n=0,1,..., m=—-n,..n (4.51)

In (4.19) we also can set rj,, = 0. In this case from (4.38) we have

l
m 1 sM
Ry (ry) \/%ZZ (r|r)5 B (xg) - (452)

=0 s=—1

This yields

I8 = VATt (*+53)

Both values (4.50) and (4.53) are consistent with those following from the particular values of the Wigner symbols
(4.16). It may also be noted that (4.19) is symmetrical with respect to the exchange of r, and r]'Dq. This leads to the
following symmetry relation

(r|r)25sm = (r|r)3Pm. (4.54)

aln lan

To obtain the value of (R|R);¢ (r},,) we note that the spherical Bessel and Hankel functions of the Ist kind are related
by

in(r) = & [ (k) + Fin (kr)] . (4.55)

2
Particularly for n = 0 this results in
0 lrco 20+ Y
Ry(rq) = 3 [SO (rq) + 50 (rq)] : (4.56)

Using this relation and the expansion of the fundamental solution (4.41), (4.42), and (4.55) we obtain:

l
RY(rq) = Z r),.) Ri (rg) . (4.57)

J'DM%%

Comparing this expansion with (2.21) and using the orthogonality of the surface harmonics, we obtain

(RIR)Q (rh,) = V/(Am) (<1)' R (rh,),  1=0,1,.., s=—l,...L (4.58)

In the same way as for (S|R);™ (r;q) (see (4.46) and (4.48)) we can show that

(RIR); (xh,) = (=1)"™(RIR); (v),), ml=0,1,.., m=-n..n, |=-s, .5 (459
(RIR); (r7,4) =0, for |[m| >mnor |s| > 1. (4.60)

Note that to obtain the above values and properties of coef cients (S|R);"™ and (R|R); there is no need to use the
Wigner or Clebsch-Gordan coef cients.
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4.5. Symmetry of Translation Coef cients. The reexpansion coef cients obey many symmetry properties,
which can be a subject for a separate publication and study. These symmetry relations are very important for ef -
cient computation as they enable evaluation of all coef cients by computing only a few of then, and are important for
developing fast numerical methods. Here we just mention the following symmetries (the proofs can be found in [2]):

THEOREM 4.7. The following symmetry relation holds:

(EIF)T (vhy) = (=1)" T (BIF) 7 (rh), E,F=SR, In=01,. s=—l,.,0, m=-n,..

raq

THEOREM 4.8. The following symmetry relation holds:

(R|R);™ (r;q) = (R|R);,>™™ (r;q), Ibn=0,1,... s=—I,...,1, m=—-n,..,n.

THEOREM 4.9. The translation reexpansion coef cients (R|R);" (v},.) and (S|S);" (v},,) are the same:

(S18)5" (xp,) = (RIR); (xh,) Ln=0,1,... s=—I,..,1, m=-n,..n. (4.62)

4.6. Sectorial Translation Coef cients. In analogy with the surface spherical harmonics we will call reexpan-
sion coef cients of the type (E|F);" Iml and (E|F)‘ n a8 “sectorial reexpansion” coef cients, since they involve reex-
pansion of sectorial harmonics or represent coef cients near sectorial harmonics in reexpansions. For such coef cients
we will use simpli ed notation

(BIF),™ = (EIF)jm,

(E|F)S" = (B|F)T,, E,F=S8R (4.63)

lml|> |s|n

Particularly we have from (4.40), (4.43) and (4.51), (4.58):

(SIR);® (rh,) = V/(4m) (1) S;7° (rh,) . (SIR)%™ (v),) = /(4n) Sm(m) (4.64)
(RIR){® (r))=+/(4m) (=1)' B * (rh,) . (RIR)%™ (rh,) =/(4m) R (x),)

We will call the coef cients (E |F) | as “double sectorial reexpansion” coef cients and simplify notation as

|s]|m

(E|F)™ = (B|F)T E,F=S,R. (4.65)

sllm]

Particularly, (4.64) provides:

(SIR)* (r},,) = V/(4m) (1) ;% (x},,) ,  (SIR)*™ (x},) = \/(4m) ST (x},) (4.66)
(RIR)*® (r}g) = v/(47) (=1)° R7* (1), (RIR)™™ (rp,) = v/ (4n) Rm(pq)

The reason why we pay special attention to the sectorial reexpansion coef cients is that they are either known
explicitly or can be computed via simple recurrence relations, and thus can be used as “boundary conditions” (i.e.,

initial values) for the recursive computation of the tesseral reexpansion coef cients (E|F);", E,F = S, R.

4.6.1. Computation of Sectorial Translation Coef cients. The sectorial reexpansion coef cients can be com-
puted independently from the other coef cients, since the initial values (4.64) and recurrence relations (4.31)-(4.32)
and (4. 35) (4.36) include only sectorial coef cients and are suf cient for their computation. Note that only coef cients
(E|F);™ can be computed while (E |F) can be determined using symmetry (4.61). These relations can be rewritten
in the form:

bty H(EIF) ™ =0 (BIF); ™ = by (BIF) " 1=0,1,.. s=—l,..,I, m=012.. (467
b (BIF)) ™ = b (BIF) T b (EIF) ™, E,F=S,R, (4.68)

1=0,1,... s=—l,..., m=0,12,..
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Relations (4.67) and (4.68) provide values of coef cients (E|F)lsm for layers with increasing |m|. This process starts

with known values (E|F);" (4.64).
Note also the following relation for the sectorial reexpansion coef cients following from (4.29)

ajs) (BIF)[, = —ajn (BIF) im0, E,F=5R, (4.69)
m=0 41,42 .. s—=0,+1,42 ..

4.6.2. Particular Values of Double Sectorial Translation Coef cients. Using the notation of (4.65) we can
rewrite relation (4.33) in the form

by (B|F)TI T = by TN (BIF) Y™, B, F=S,R, m,s=0,1,2,.. (4.70)

Recursive application of this formula and values of coef cients b,,™ (3.5) enables expression of (E|F)™"" coef -
cients (m, s = 0,1,2,...) via (E|F) "™

(SIR)=>m (11,) = (~1)" SeEm (k1) @71

(2s+2m+1)!

s+m)! \/47r(2m + 1)!(2s + 1)!
slml!

(RIR)™™ (rp,) = (SI9) 7™ (rp) = (=1)° (szmnf) \/ M((szlizly)n(is&l) R (¥ha)

m=0,1,2, ... s=0,1,2,....
Using this and symmetry relation (4.61) we can also determine (S|R)* ™ (r},) and (R|R) *™ (r,) .
4.7. Zonal Translation Coef cients. Using terminology, similar to that used for spherical surface harmonics
(zonal, sectorial and tesseral harmonics) we call the coef cients

(B|F),, (th,) = (BIF) (r),), E.F=SR, I,n=0,1.2,.. (4.72)

“zonal” reexpansion coef cients.
Particularly we have from (4.40) and (4.43), (4.51) and (4.58) :

(SIR)i0 (rhy) = v/(47) (-=1)' 8P (r},) . (S|R) 0n( ) vV (4m)S) (xh,,) (4.73)
(BIR)io (r}y) = V) (=) R (x},)) . (RIR)on (r},) = /AR (x7,)

As sectorial coef cients, the zonal reexpansion coef cients can be computed independently from the other coef cients
using (4.26), which can be rewritten as

ap (E|F)z,n71 —ap (ElF)l,n+1 =aj (E|F)l+1,n —ajy (E|F)l71,n , Ln=0,1,.. (4.74)

n—1

4.8. Coaxial Translation Coef cients. The translation coef cients derived above correspond to the case where
the fundamental solutions are translated from one 3-D reference frame to another arbitrary 3-D reference frame. In
some situations the second reference frame may not be arbitrary, and in these cases there can be a substantial simpli -
cation in the expressions and a signi cant reduction in the computation necessary for the reexpansion coef cients. We
consider the case where the translation direction has its axis z directed from point ry, to the center of reexpansion r,.
Since, as discussed earlier, the reexpansion coef cients depend only on r7,,, in this case the reexpansion coef cients
will be independent of the angular variables. In these particular cases the general reexpansion formulae (2.19)-(2.21)
simplify considerably to:

St (rp) = Y (SIR)in (rpg) R (ra) s Irql < |rpg

(4.75)

St (xp) = D (SI)in (rpg) SI" (va) s Irql > |r)

I=[ml|

(4.76)

[ee]

Ry (ry) = Y (RIR), (rpy) Ri™ (rg) - (4.77)

I=|m|
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Since the coef cients are now only three dimensional (three indices), we can say that they correspond to a “diagonal-
ization” of the 4-D case. We call them “coaxial translation coef cients”. These coef cients are related to the 4-index
general translation coef cients.

(EIF) (1) = (BIF)™™ ( E,F=S,R, In=01,., m=-n,..n, (4.78)

|9’ =0’

rq

also satisfy the general recurrence relations derived earlier and can could be computed using the algorithm for their
computation. However, it is possible to derive simpler relations that allow for their fast computation.

The recurrence formula (4.26) does not act on the orders of the reexpansion coef cients, so setting s = m there,
we have

an’_q (E|F);nn_1 (E|F),n+1—al (E|F)ﬁ_1’n—aﬁ1(E|F)fi1yn, Ikn=0,1,... m=—n,...,n. 4.79)
In relation (4.30) we set s = m + 1 to obtain

by (E|F);nn+11 = b, 1(E|F)Zz7;11 = b}y (E|F)l+1n_b mHEIR) 1y bn=0,1,.. m=-—n,..n
(4.80)

Now it is obvious that we can start from m = 0 and (E|F) to compute (E|F);. and (E|F),," form =1,2,... by
using (4.80) and obtain all the coef cients. Since the recurrence coef cients in (4 80) for propagation in posmve and
negative directions of m are the same, we come to the conclusion that

(E|F) = (BE|F);™ = (EIF)™, In=0,1,...  m=-n,..n 4.81)
Therefore computation of (E|F);" is required only for non-negative m and formulae (4.79) and (4.80) are suf cient
for this purpose. Due to (4.61) we also have the following symmetry property, enabling further ef ciencies

(EIF) = (-1)""(BIF)™, I,n=0,1,.. m=-n,..n. (4.82)

nl

4.8.1. Computation of the Coaxial Translation Coef cients. Due to the symmetry relations (E|F);. can be
computed only for I > n > m > 0. The process of recurrent computation of the coef cients {(E|F);. } can be
performed by computing the entries corresponding to the degrees [ and n followed by advancement with respect to the
order m . We need to initialize the procedure by providing values for m = 0. According (4.78) and (4.64) we have

(SIR)% () =/ (47)(=1)'SP (x),) ) V@ Dk (kr,), (4.83)
(RIR)fy (r}) = (=1)' /(2L + 1)ju(kry,),

For advancement with respect to mmn it is convenient to use (4.80) forn = m :

! (E|F);”nﬁ1=b—m YEIF) = b (BIF) s l=m+1m+2,.. (4.84)

and obtain other (E|F)erl using (4.79) and (4.82) in the same way as (E|F) are computed.
Formulae (4.84) and (4.83) employ sectorial coef cients of type (E|F) , Wthh can conveniently be denoted as

(E|F)" = (E|F)", l=m,m+1,.. (4.85)

Im >
which satisfy the relations

(SIR)Y = (-1)' /@ + Dha(kry,),  (RIR)Y (rh,) = (SI8) (hy) = (=1)" /(2L + 1) (k) (4.86)
—m m+1 —m— m m
m+11(E|F)l * :bl 1(E|F)l—1_ l+1(E|F)l+17 Eszszv l:m+17m+27a
Note that for computation of the reexpansion coef cients inside an (I, n, m) cube of size (Ny, Ny, N;) ,the coef cients

(E |F)?0 must be computed for [ = 0, ..., 2/V;. This is because the recurrence relations for increase of 7 (4.79) and for
increase of [ (4.86) require knowledge of (E|F)H_1 ,, to compute (E|F);" "1 and (E|F)m+1.
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/m/ﬂ (l,s,m+1)

S
N, i‘ \
/ -

(I-1,5-1,m) (I+1,5-1,m)

0 N, 2N,m. 2N, !

F1G. 4.1. A scheme for computation of the sectorial coef cients. Schematic of relation (4.67), which enables propagation in (1, s, m)-space
for increasing m is shown on the right. Schematic of lling a block of coef cients in this space from initial values speci ed at m = 0 is shown on
the left (in projection to the (1, m)-plane).

4.9. Computation of Translation Coef cients. A variety of recurrence relations provide various strategies for
computation of translation coef cients (E|F);." (r;q) ina speci ed range of indices n, [, m, and s. Below we repre-
sent one of the possible algorithms, which we used for computation of the S| R-translation matrix in multiple scattering
problem [24]. In this problem we needed a truncated matrix, where the indices lie in the range —N; < m,s < Ny,
0 < n,l < Ny, where Ny is the truncation number. First, we note that the range of non-zero coef cients is bounded
bym < mnand|s| <.

The process starts with speci cation of initial values (E|F )lsg using Eq. (4.43) or (4.58) for [ = 0, ...,2N;,and
s = —l,...,1. Eq. (4.67) shows that these data provide computation of the sectorial coef cients (E|F);"" atm = 1
forl =0,..,2N; — 1 and s = —I,...,[l and further till m = N, where the range | = 0, ..., Ny, s = —ly ..l 18

covered. Similarly, Eq. (4.68) enables computation of the sectorial coef cients (E|F);™ form = —1,..., —N; and
the same range of [ and s. Symmetry (4.61) is used to nd sectorial coef cients (E|F)"" for s = —Ny, ..., N; and
n=0,..,2N; — |s|, m = —n,...,n. A scheme for computation of the sectorial translation coef cients is shown in
Fig. 4.1.

Consider now computation of other coef cients. For this purpose we use Eq. (4.26) at the layer m = const,
s = const. Assume that |s| < |m/| . For such a layer we have coef cients knownatn = |m|and! = |s|,...,2N;—|m] .

Atn = |m| + 1 Eq. (4.26) yield values of the translation coef cients for [ = |s|,...,2N; — |m| — 1 and further, until
n = Nyandl =|s|,..., N;. This lls some trapezoidal domain in the (n, [)-plane from left to right (see Fig. 4.2). The
rest of the domain required for lling is performed by applying the same recurrence relation, but with 1ling from the
bottom to the top by propagation with respect to I. So we use known values of the sectorial coef cients at | = |s| and
n = |m|,...,2N; — |s| and use recursion (4.26) resolved with respect to coef cients for [ + 1. A similar procedure
holds for |m| < |s| (see Fig. 4.2). So this algorithm enables computation of all translation coef cients inside the
speci ed domain.

4.9.1. Number of Operations. THEOREM 4.10. Computation of multipole reexpansion, or translation, coef -
cients (E|F);"" (rpq) for all values of | = 0,...,Ny, s = —l,...,1,n = 0,...,N;, m = —n, ...,n can be performed
within O(N}') operations.

Proof. The total number of coef cients (E|F);.",
(N; 4+ 1)* = O(N}). So, even if each coef cient can be computed in constant time the number of operations will be
bounded from below by O(NV}}). Computation of the initial values (E |F)ZS[? and (E|F )8? requires O(N;) operations.
Computation of the sectorial coef cients (E|F);,, and (E|F){],, using the initial values and recurrence relations,
which include not more than 2 multiplications and one addition to produce a new value requires O(N;}) operations,
since the total number of the sectorial coef cients is O(N;). Computation of the tesseral coef cients (E|F);"" using
the values of the sectorial coef cients recurrence relations which include not more than 3 multiplications and 2 addi-
tions requires O(IV}!) operations. In the recurrence process additional values of (E|F);"" for | > N; and n > N, may
be required. However the maximum size of [ and n is limited by 2/V;. Thus the number of operations is O(N;). m

THEOREM 4.11. Computation of coaxial multipole reexpansion, or translation, coef cients (E|F);" (rp,) for all
values of | =0, ..., N;,n =0, ..., N, m = —n, ..., n can be performed in O(N}) operations.

1=0,.... Ny, s = =1,..,l,n=0,...., Ny, m = —n, ...,n, is
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FIG. 4.2. A scheme for recursive computation of the translation coef cients at layer m = const, s = const. Propagation according Eq.
(4.26) can be performed with respect to l or to n as shown in the top graphs. Using precomputed sectorial coef cients at | = |s| and n = |m]|
and these propagation schemes one can compute all translation coef cients in the speci ed range, |s| < | < Ny, |m| < n < Ny. To reduce the
amount of unnecessary computations two cases, |s| < |m| and |m| < |s| can be considered as shown in gures on the bottom right and left.

Proof. The proof follows similarly. m
5. Rotation Coef cients.

5.1. Rotation Matrix. It is often convenient (and physically meaningful) to link the entries of the matrix @) 2.24
to physical angles between the axes. This is usually done via one of many representations such as the Euler angles. In
the present case we wish to rotate a set of axes so that the old z axis is rotated to a speci ed 2 direction (pointing to the
translation location of the multipole). A simple expression for () in terms of the direction cosines of the Z direction that
achieves this objective can be derived from elementary geometric considerations. We recall from Euler’s theorem [20]
that any rotation of a rigid body can be uniquely speci ed by providing an axis of rotation and the angle of rotation
through that axis.

Referring to Figure 5.1, the origin and the two z axes form a given plane (OzZ2). In this case the vector that is
normal to this plane, and passes through the origin is obviously the axis of rotation. Let the direction cosines of the
new £ axis be e, ey, ., and let the direction of the z axis in the current coordinate system be i,. Then the angle
through which we must rotate the original system about the rotation axis is speci ed by

cosy = e..
The direction of the axis of rotation can be speci ed as
i, i, i

n=ixiz=| 0 0 1 |=—eyi,+eyiy.
€r €y €
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=

F1G. 5.1. Rotation of axes.

Let us make a choice that the new i direction is along n. The unit vector along this direction is
. —eyiy + ez
i = L2V (5.1)
(e2+¢€2)

We then have the remaining axis chosen by the cyclic order of coordinate vectors as

. . . 1 Lo iy i —e.eziy, —e, eyly
ig=izxig=—F—————=| e € e —|— e (5.2)
(e24¢€2) | —e, ex O v/ (e2+e2)
We can now evaluate the matrix () using Equation (2.24) as
_ Cy [ 0
ol by Beis V0eter)  /(ez+ed)
Q = i@ . im iflj . iy ifl] . iz = _ ezep _ €zCy (62 + 62) . (53)
o . . o . 2 2 z Y
i, ip-iy iz-is \/(eg-i-e;,) \/(eg-i-e;,)
€ ey €,

Of course, here the choice of the Z and the 3 axes was arbitrary. If we have a speci cation for the orientation of these
axes (thereby xing the 060 meridian in the rotated coordinate system), we can compute the () matrix as a composition
of two rotations as

_ Cu ex 0
cos¢ —sing 0 V0eate)  /(e+e)
Q= | sing cos¢p O RN -1 S 10 €2 4 2 . 54
0 0 1 J@Ete)  (e2+e) (€2 +5)
€y ey €,

where ¢ is the rotation angle near iz axis.

For computation of rotations of spherical harmonics it is convenient to represent the rotation matrix using spherical
polar angles in both coordinate systems (i, i, 1.) and (iz, i7,1z). Let 8’ and ¢’ be the spherical angles of the axis i, in
the reference frame (iz, iy, iz) , and let v and x be the spherical angles of the axis iz in the reference frame (i, iy, 1) .
The angles #’ and ~ are the same since cos§’ = i. - iz = iz - i, = cosy = e.. The three independent angles ¢’, ',
and x uniquely specify arbitrary rotation.
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FIG. 5.2. The gure on the left shows the transformed axes (&, 4§, £) in the original reference frame (x,y, z) . The spherical polar coordinates
of the point A lying on the % axis on the unit sphere are (v, x) . The gure on the right shows the original axes (z,y, z) in the transformed reference
frame (2,7, 2) . The coordinates of the point A lying on the z axis on the unit sphere are (6' = ~y, ') . The points O, A, and A are the same
in both gures. All rotation matrices can be derived in terms of these three angles 0', ', x. Particularly economical expressions for multipole
rotations can be obtained using these angles, as shown in the text.

The relation between the components of the rotation matrix (5.4) and angles #” and ' is provided by the following:
cost =i, iz = Q33 =e., 9 =~. (5.5)
cosg'sing’ =1i. iz = Q13 = —/ (2 + €2) sin g,

sing'sing’ =1i. -iy = Qa3 = /(€2 + €2) cos ¢.

Thus, the rotation angle ¢ and the polar angle ¢’ are related as

T
o=y — 3 (5.6)
At the same time we have
ey =iz -1, = sinycosy = sin# cosx, 5.7)

. . . . . /.
ey =iz - iy = sinysinx = sin 6’ sin x.

The matrix () representing the rotation between the axes can be represented in terms of these angles in the form

sing’  cos¢’ 0 —siny cos x 0
Q(O.¢,x)=| —cos¢’ sing’ 0 —cosf cosy —cos@ siny sin@ (5.8)
0 0 1 sinf cosy  sin@’siny cos6’
[ —sing’siny —cos@ cosg’cosxy  sing’ cosy —cosf cosp’siny  siné’ cos '
= | cos¢'siny —cosf sing’cosxy — (cos¢’cosy + cost sing'siny) sin6 sin¢’
sinf’ cos x sin @’ sin y cos®’

Since () is an orthogonal rotation matrix, it satis es

Q0. ¢, %)] " =[Q0.¢.X)] =Q ¢ x.¢). (5.9)
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The last equality holds because we can exchange the angles y and ¢’ if we exchange the order of the basis vectors
(iz,1y,1:) and (iz, iy, iz) . Note also that () can be represented as a composition of three rotations:

sing’  cosg¢’ 0 -1 0 0 siny —cosxy O
Q(O,¢,x)=| —cos¢’ sing’ 0 0 —cos /0’ sin 0’/ cosy siny 0 |=A()B(0')AT(x).
0 0 1 0 sinf”  cosd 0 0 1

(5.10) |§

Here B (0') = [B (¢')] " = [B (¢)]" and

[Q 0 ¢. )] " =[A)B (0) AT(0)] ' = [AT()] T [B(9)] AW T = A0B (0) AT(¢) = Q (¢, x. ).

(5.11)

Such a symmetrical representation using the angles #’, ', and  leads to compact expressions for the spherical coor-
dinates of vectors in the rotated reference frame.
Note that the angles (<p’ .0, X) are simply related to the standard Euler rotation angles (denote them a g, 85, 75
to avoid confusion with previously de ned angles):
ag=m—-X, Bg= 0, TE = SO/- (5.12)

This can be checked in a straightforward way by comparing the representations of the rotation matrix () in the form
(5.8) and via the Euler angles which can be found elsewhere (e.g., Ref. [20]).

5.2. Integral Representation of Rotation Coef cients. Before considering the ef cient evaluation of the rota-
tion coef cients 7, (Q), we consider their evaluation using their de nition (2.25) and the fact that spherical harmon-
ics (2.5) form a complete orthonormal system. Using the de nition of the scalar product (2.2) we obtain:

T (@) = (v 0.0 v (0.2)) = [ : i /O "y 6, gy (3.2) sinddd. (5.13)

5.3. Structure of the Rotation Coef cients. The structure of the rotation coef cients can be found from the
properties of the rotation matrix. Since the rotation matrix can be decomposed to three rotations about the axes with
angles x, 0, and ¢’ we can see how spherical harmonics change with such a transform. First we note that rotation of
coordinates with the angles y and (’do not change quantities that depend on &, or ~. For example, the y —rotation
conserves the original z axis and denoting the angle ¢ in the original coordinates as ¢, in the rotated coordinates, we
have

Y =pt+Xx
The spherical harmonics then change as
Y (0,0) = Yo" (0,01 +x) = XY (0, 01) (5.14)
The transform of the spherical harmonics from the x-rotated coordinates to the nal coordinates can be described by:
VI Oe) = Y T (06 v (0.9) (5.15)

When we perform the last rotation of coordinates to arrive at the angle ¢ = ¢’ — 7, we have the same situation,
and so

. 71'
90:902"‘@5:9024'90/—57

where ¢, is the angle corresponding to the given point in coordinates where the last rotation was not performed. So

Y (5, @) —y (@, o+ — g) = (=) 'Yy (9, (,02) . (5.16)
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The transform from Y,7” (0, ¢, ) to Y, <§, ¢2> occurs only because of the rotation related to angle #’, and so

n

Y (0,00) = Y TS (0) Y (5, wg)- (5.17)

Combining these results we nd that:

Y (0,¢) = ¢ Y e T (0') Y (9, @) : (5.18)
This shows that

Tf;m (0/7 <P/7X) _ eimxe—iwaHZm (9/) 7 H;:m (9/) _ iuT1g12)um (9/) ) (5.19)

An explicit expression for H:™ (0/) can be found in the paper of Stein [15], which in the notation of the present
paper' can be represented in the form

min(n—m,n—v) n—o 20+v+m 1 gl i 2n—20—v—m 1p/

-1 =60 =0

H!™ (0 ) =€eme [(n+v){(n — v)!(n+m)!(n — m)!]'/? E (=17 cos 27 S0 2
o=max(0,—(m+v))

olln—m-o)l(n—v—-o)l(m+v+o)

(5.20)
5.4. Recurrence Relations for Rotation Coef cients. THEOREM 5.1. The following recurrence relations holds
Jor T™(Q) :
1 d - —m—lTy,m+1 1 . .o m—1prv,m—1 « mmpgum 1 . .o —v v—1,m
) (e —iy)b, 5 T30 "‘5 (iz +iiy)byp'y Ty —iean T = 5(193 —iig)b, L Ty (5.21)
1
5 (i g T T
wheren=0,1,2,... m=-n,...n,v=-n—1,..,n+1 and
1 . .. mTV,m—i—l 1 . .o _mj—,v,mfl s m vm 1 . - v—1pv—1,m
5 (190 - Zly)bn n—1 + 5(19{3+Zly)bn n—1 —1:0p gdp1 = 5(156 - Zl@) bn Tn (522)
1
+ 3 (19} +’iig) b;’/_lTZ+l’m—iga;71T5m.
wheren=0,1,2,... m=—-n,...n,v=-n+1,...n— 1.
Proof. Applying the operator k~'V to any of the relations (2.26), we obtain
KTIVE () = Y T (QFTIVEF), [l =lnl,  F=SR (5.23)

v=—n

The operator V is independent of the reference frame it is represented in. This applies to rotations as well, and so
V = V. We can use Equation (3.7), to represent the left and right hand sides of (5.23). Grouping terms corresponding
to the same basis functions F; (r,,) we obtain the statement of the theorem. A more detailed proof is provided in
Gumerov and Duraiswami [2]. =

THEOREM 5.2. The following recurrence relations holds for T™ (Q) :

b I T b T T = Wb L T Wbl T + Wil TE™, (5.24)
At g N T = Wb Y T Wbl T Y™ 4 Wogal TE™, (5.25)
ap TYTy = Waib U Ty ™5™ 4 Wby T Y™ + Wagal TH™, (5.26)

"Note that in [15] the Euler angles are de ned with sign opposite to our de nitions of g, B, and v .
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wheren = 0,1,2,....m = —n,...,n, v = —n —1,....,n + 1, and W,g are the elements of the following complex
rotation matrix

iy (iz — iig) i - (ii + ii@) —2i, -1z
W = iy - (i;c — ii@) Ty - (iz + iig) —24iy - iz , (5.27)
—%iz . (ii, — iig) —%iz . (ig:« + iig) i, -1z

Proof. Taking scalar product with i, ¢i,, and i, of both sides of (5.21), we obtain the theorem statement. m
COROLLARY 5.3. Summing and subtracting relations (5.24) and (5.25) we have

Qb;ﬁilT:fﬁ_l = (W11 + W21) ;ingil’m + (W12 + WQQ) ;+1T71:+1,m + (ng + W23) arTr™, (5.28)
7 T T = (Wan = War) bty Ty ™ + (Wag — W) b T V™ 4 (Whg — Was) ali TY™, (5:29)

Forv =n+ 1we have

20, T T = (W + W) by 7y TR (5.30)
ST = (W — W) b 07 T, (5.31)
am T ™ = Wb, e, (5.32)

Forv = —n — 1 we have
2b, VT T = (Wag + Wae) b,y M T ™, (5.33)
WA T = (Who = Waa) b3 T, (5.34)
al T, ™ = Wb 7 T, ™ (5.35)

THEOREM 5.4. The following recurrence relations holds for TZ™ (Q) :

O T+ b T T = Wbl T T T A Wy VT TN Wagal T (5.36)
mp L _ el — Wy bV T Wagby VT TV o Wagal,  TY™. (5.37)

am Ty = Wbl M T 5™ 4 Wagh, Ty ™ + Wagal,_ Ty (5.38)

wheren = 0,1,2,...,m = —n,..,n, v = —n+1,...,n — 1, and W,g are components of complex rotation matrix

(5.27).
Proof. Taking scalar product of both sides of (5.21) with i, 7iy, and i., we obtain the theorem statement. m
COROLLARY 5.5. Summing and subtracting relations (5.36) and (5.37) we have

2T = (Wyy + Way ) b VT 5™ 4 (Wig 4 Wag) b,V MU ™ 4 (Wis + Wag) al_ T¥™,  (5.39)

n -—n—

2TV = (Why — W) bY 1Y 5™ o (Whg — Wag) by Y TS 4 (Whg — Was)a”_ TX™,  (5.40)
For m = n we have

(Wit + War) b 1T 5™ + (Wio + Wan) b,V T ™ o+ (Wag + Wag) al_ T™ =0, (5.41)
Wbl " TE =™ + Wby V™' TE TN 4 Wagal (TH™ = 0. (5.42)

For m = —n we have

(Wiy — War) b T =077 4 (Whg — Wag) b,V T~ + (Wig — Wag) ay, (T 7", =0 (5.43)
Wbl YT 4 Wagb, ¥ T + Wagal,_ T ™ = 0. (5.44)
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5.5. Computational Procedure. We describe briefly a computational procedure to obtain the coef cients 7;,"™ (
via recurrence relations. It is noteworthy to remark that these coef cients are not a property of the Helmholtz equation
but purely a property of spherical harmonics. Due to their dependence only on the angular part, these results should
be the same for the Laplace, Schrodinger, heat etc. equations. The spherical harmonics have been studied in greater
depth, than have the translation coef cients for the Helmholtz equation (see e.g. Stein [15] for addition theorems, and
explicit relations to Wigner’s symbols). However this classical problem is still of interest, and research is still ongoing
in the stable and rapid computation of the rotation coef cients based on the recurrence relations for real spherical har-
monics [18] and general complex case [19]. Our derivation of the recurrence relations differs from these cited papers
and has comparable or superior complexity.?

5.5.1. Initial Values. Consider (2.25) form =0:

Y0 (0, ) = 2”4:1 (cos ) = Z 77 (Q) Y? (5 ) (5.45)

A well-known addition theorem for spherical harmonics (it is reproduced e.g., in Ref. [4]) yields:

Py(cost) = +1 Z Y- (5 A), (5.46)

where 6 is the angle between points with spherical coordinates (9’, ¥ ) and <§, @) on the unit sphere. Comparing
(5.45) and (5.46) we obtain

T (Q) = ,/2n4ilyn”(9',<p’), n=0,1,..., v=-n,..n. (5.47)

Note that 6" and ' are nothing but the spherical polar angles of the axis i, in the reference frame (i, iy, iz) and
formulae (5.8) and (5.10) provide explicit expressions for components of ) through these angles. Relations (2.5) and
(5.47) also provide the following expression for functions H}™ (0/) de ned by (5.19):

_ |
H;? (9/) = (-1)¥ %Pk(cosﬂ/), n=0,1,..., v=-n,.,n (5.48)

5.5.2. Symmetry of Rotation Coef cients. THEOREM 5.6. The following symmetry holds
T.77™(Q) =Ty (Q), n=0,1,...., v,m=-n,..n. (5.49)

Proof. Since Y,V = Y_n” foranyn =0,1,..., v = —n, ..., n, we have from (2.25):

/
pq

Y (0, 0)=Ya " (6, ) Z T Qv (0.2) = Xn: T QY (6.2) = _Xn: L QY (0.2).

(5.50)

v=—n v=—n

Comparing this result with expansion of Y, (6, ) (2.25) we obtain the statement of the theorem, since Y;” (5, @) is

orthonormal and representation (2.25) is unique. W
COROLLARY 5.7. Substituting (5.19) in (2.24) and taking in account that H;™ (0') is real, we have

H™(0) = Hy "™ (0), n=0,1,.., v,m=-n,..,n (5.51)
Note also that

HY™ (@) = HM™ (0'), n=0,1,.., v,m=—n,..n. (5.52)
This follows from (5.20).

2(Care should be taken when comparing our results with those of these papers, as we use different de nitions of the spherical harmonics.

)|
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5.5.3. Recursive Computation. Since T"° (QQ) are known explicitly for arbitrary n = 0,1,2,... and v =
—n,...,n, we need perform only one-dimensional recursive propagation for 7,7 for increasing m (m > 0) and
decreasing m (m < 0). The recurrence for negative m can be dropped due to 7Y™ for such m can be simply found
using symmetry relation (5.49). For non-negative m we can use any of the relations (5.28) or (5.39).

For example, using the following relation between the elements of matrices W (5.27) and @ (2.24):

Wit 4+ War = Qi1 + Qa2 + i (Qi2 — Q21) , (5.53)
Wiz + Wao = Q11 — Q22 + i (Q12 + Q21),
Wiz + Wag = —2(Q31 +1Q32),

and expressions for elements of () through the polar angles (5.8), we obtain from (5.39) the following explicit relation
for the rotation coef cients through the reference frame rotation angles 6, ¢’ and  :

x (1 " "
T = Z—m {5 [b;”_lew (1—cos®) Ty+H™ — b2 ~" (14 cos ') e™* Tﬁ_l’m] —a’_ sin&'Tﬁm}
(5.54)

n=23,.., v=-n+1..,n-1 m=0,...n—2,

which enables computation of all T¥™ for positive m. This requires O(N;}) operations for rotating a multipole series
truncated at n = Ny (i.e., for O (N?) coef cients).

Note also that recurrence relation (5.54) enables computation of the complex-valued functions 7;7™. The com-
putational procedure can be simpli ed if we use the factorization (5.19) and then rewrite (5.54) for the real-valued
functions H;™ (0’) :

H™mH = bim {% (b, (1 —cos®) HytH™ — byt (1+ cos') Hy ™) — a_y sin 0/Hq’;m} ,
(5.55)

n=23,.., v=-n+1l..,n-1 m=0,...n-2

This process starts with initial value (5.48).

6. Rotation-Translation Operation. As is clear from the above theorem, the computation of the coaxial coef -
cients can be performed in O(N}?) operations as opposed to O(N;!) operations required for the general case. To take
advantage of this fact for the general case we will consider the rotation of the coordinate system with rotation angles
(@pq, Dy, qu) to make the axis iz directed from point p to point g and then apply the theory for coaxial coef cients.

Such a rotation occurs in the plane determined by vectors i, and iy = r;q / |r;q| , and therefore:

. / ! !

i,-r 2zl —z

_ s+ o+ ="'pg _*q_“p
cosbpy =i, iz = , (6.1)

’ - /
|rpq | Tpq

where 2, and z,, are z—coordinates of points ¢ and p in the original coordinate system.
Equations (2.26) can be rewritten as

n

B (rp) = > T (Qpg) EBX (),  [Fpl=Irpl, E=SR (6.2)

v=—n

where T, is the radius-vector of the point in the rotated coordinate system, and the rotation matrix Q,,, (©pq, ®pq, qu)
is provided by (5.10).
The functions EY, (r,,) then can be translated/reexpanded near the reexpansion point ¢ according to (4.75)-(4.77):

By (%) = Y _(E|F), (r,) FY ), FE=SR, (63)

I=|v|
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where T, is the radius vector centered at point ¢ in the rotated coordinate system. To return to the initial coordinates we
. . . . . . T
rotate the coordinates back, so we perform rotation of coordinate system, speci ed by the rotation matrix [ ;q] =
—1 .
pg -

Z T (Qpg") Fi (rg), [Tl =Iry, E=S,R (6.4)

s=—1
Combining (6.2) and (6.4) we obtain:

n o] l

Ef(ry) =Y > > T (Qp') T (@) (BIF), (rpg) FY (vg),  E=5,R (6.5)

v=—n|=|v| s=—I

Changing the order of summation of [ and v, we obtain

min(l,n)
Ey, Z Z Yo T(Q ) T (@) (BIF), (ryg) B (vg),  E=S,R. (6.6)
[=0 s=—1 y=—min(l,n)

On the other hand we have the representation (4.24). Comparing it with (6.6) and taking into account the fact that the
elementary solutions F (r,) are independent and orthogonal on a sphere with the center at the point g, we obtain:

min(l,n)

(BIF)E () = D2 (BIF)G () T (@4 ) T (@), E=S.R. (6.7)

v=—min(l,n)

Note that according (5.9) and (5.19) we have

T (Qpg) = T (Opas Ppgs Xpg) = €™ Xrae™ W Pr1 HY™ (Oyg) , (6.3)
Tlsz/ (Q;;l) — Tlsz/ (@p% (I)pqa qu) — e—zsxm ewtbmHlsy (epq) )

We also note that angles of rotation @pq and qu, as de ned in (5.7), are nothing but the spherical polar angles H;q
and 7, of the vector rj,, = (r,,, cos gopq sin Hpq, "ng sin y,, sin Hpq, pq COS 0 ;) in the original reference frame (in
the rotated reference frame they are r = (0,0,77,)). Thus, the product of the two functions (6.8) depends only on

»'pg
these angles and can be expressed as

7™ (6; T (@) T (Qhg) = "0 B (0,) HI™ (0,) (69)

Py’ <’DP‘])

and form (6.7) is a separation of the angular and distance variables for the translation reexpansion coef cients. Note
that since rotation and inverse rotation preserve the vector, we have:

min(l,n)

> TH™ = 6inbem. (6.10)

v=—min(l,n)

6.1. Relation Between Rotation and Translation Reexpansion Coef cients. The structure of the coef cients

T5%™ (6,45 5,) can be found using (4.8) for the (S| R)- coef cients, or (4.18) for the (R|R)-coef cients. Substituting

(4.8) for (S|R);™™ (x},) and (S|R)}, (rr,) = (SIR)}Y | , in (6.7) we obtain, using the de nition of the
multipoles (2.14):

min(l,n)
D (irt) 3 ISV @) = D (brl) 0D AT G VI 0,0)
a=0 B=—a a=0 B=—av=—min(l,n)

611 |

Since the functions A, (kzr;q) at a = 0,1, ... are linearly independent, each term in the sum over « in the left hand
side of this equation must be equal to the corresponding term on the right hand side. We also notice that due to (4.14)
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only one term on each side of equation (6.11) represents the sum over 3. So, dropping the prime and the subscript near
the spherical angles we have

min (! n)

2 1
(SlT)m ssmym S a+

aln AT |T)g¢77l: Szm(eﬂo)? a,l,n=0,1,... (6.12)

v=— mln(l n)

This relation is very general since it holds at arbitrary «, I, n, m, and s. In the particular case s = 0, substituting (6.9)
and (5.55) here , we obtain:

mOm~y-m 2a0+1 mm(l g Ovv i(m—v)p rrvm v
(SlT)aln Ya (67 21 +1 | )alne Hn (G)Y'l (9,@) (613)
v=— mm(l n)
For m = 0 this yields
e, = | AC DTS v, (6.14)
alnta\U, @) = (21+1)(2n+1) i aln®n y P »P)s .

while for n = m using the expression for H:™ (6) following from (5.20) we obtain

min(l,m)

a m)! 1/2
(s|r)m2my ™ (6, )= Z EmEw [( (2a +1) (2m)! )'] (s]r)0%v cos™+

alm 204+ 1) (m +v)(m —v)! alm

N D
| —|
o
X
©
wn
8
]
|
—_

3
|
<
N
—
5
S
N~—

v=—min(l,m)

(6.15)

These formulae provide relations between spherical harmonics of different order and degree. We also note that
Ts¥™(8, ¢) are surface functions that can be expanded in terms of spherical harmonics:

[ee]

WO = ) YT (0.), (6.16)

y=|m—s|

where the numerical rotation coef cients ¢377" can be related to the translation reexpansion coef cients (s|r)37 (or
to Wigner 3-5 and other symbols, see (4.13) and above).

6.2. Complexity of Rotation-Coaxial Translation Decomposition. It must be noted that the representation
(6.6) and the above expressions for T2 (6, ¢) in the form of series are conceptual. In practice computation of
the translation reexpansion coef cients (E|F);™ (r;q) would be performed by a composition of successive products
(thereby avoiding expensive matrix-matrix products). The computational advantage of translation decomposition is
that one can perform the rotation operation (which requires O(N) operations), and then the coaxial translation,
which also can be performed for O(N}) operations, and then (if needed), rotation that can again be made for O(N})
operations. So the total number of operations for such a procedure is O(N;}) opposed to O(N;!) operations required
for a general translation.

7. Summary and Conclusions.

7.1. Summary of Basic Recursions. As the paper dealt with many recurrence relations, the tables below provide
a summary of the main results. In the columns, we list the indices of the translation and rotation coef cients, or their
shifts, that are involved in the recursions listed in the columns to the left.

Translation coef cients
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Formula | n l m s
(4.26) -1,0,1| -1,0,1 | 0 0
(4.30) -1,0,1| -1,0,1 | 0,1 -1,0
(4.34) -1,0,1 | -1,0,1 | —-1,0 0,1
(4.27) = |m| -1,0,1 | 0,£1 0
(4.28) 1,0,1 | =|s 0 0,£1
(4.29) = |m| =|s 0,£1 0,+1
(4.31) =m -1,0,1 | 0,1(>0) -1,0
(4.32) -1,0,1 -5 0,1 -1,0(<0)
(4.33) =m —s 0,1(=0) -1,0(<0)
(4.35) =-m | -1,0,1| -1,0(<0) | 0,1
(4.36) -1,0,1 | = -1,0 0,1(=0)
(4.37) =-m | =s -1,0(<0) | 0,1(>0)
(4.80) -1,0,1| -1,0,1 | 0,1 =m
(4.84) =m -1,0,1 | 0,1(>0) =m
Rotation Coef cients

Formula | n m v

(5.24) 0,1 |-1,0,1 | -1,0,1

(5.25) 0,1 | -1,0,1 | -1,0,1

(5.26) 0,1 [0 -1,0,1

(5.36) -1,0 | -1,0,1 | -1,0,1

(5.37) -1,0 | -1,0,1 | -1,0,1

(5.38) -1,0 (0 -1,0,1

(5.55) -1,0 | 0,1 -1,0,1
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7.2. Conclusions. We have presented a method for fast computation of the multipole translation and rotation
coef cients for the 3-D Helmholtz equation using recurrence relations, which are derived. This method enables com-
putation of the full matrix of translation coef cients for a multipole expansion truncated at NV, terms in degree (the total
number of expansion coef cients is O(N?)) using O(N;') operations, as opposed to O(N}) operations required for
computations using the Wigner or Clebsch-Gordan summations. We provided an O(N}}) algorithm for translation of
multipole expansions and proved recurrence theorems for translation coef cients. These theorems also were checked
numerically by comparing the exact values of multipoles and the values computed using multipole reexpansions. Us-
ing rotation-coaxial translation decomposition of the translation operators, the set of N2 expansion coef cients for a
solution of the Helmholtz equation can be computed in O(N}) operations, if coaxial coef cients are used. Since we
provide explicit relations requiring two or three multiplications/additions, the constants multiplying the order symbols
for all our algorithms are small.
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